|
|
Strain engineering of ion migration in LiCoO2 |
Jia-Jing Li1, Yang Dai2( ), Jin-Cheng Zheng1,3,4( ) |
1. Department of Physics, and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, China 2. Department of Chemical Engineering, School of Environmental and Chemical Engineering, and Institute for Sustainable Energy, Shanghai University, Shangda Road 99, Shanghai 200444, China 3. Department of Physics, Xiamen University Malaysia, 439000 Sepang, Selangor, Malaysia 4. Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China |
|
|
Abstract Strain engineering is a powerful approach for tuning various properties of functional materials. The influences of lattice strain on the Li-ion migration energy barrier of lithium-ions in layered LiCoO2 have been systemically studied using lattice dynamics simulations, analytical function and neural network method. We have identified two Li-ion migration paths, oxygen dumbbell hop (ODH), and tetrahedral site hop (TSH) with different concentrations of local defects. We found that Li-ion migration energy barriers increased with the increase of pressure for both ODH and TSH cases, while decreased significantly with applied tensile uniaxial c-axis strain for ODH and TSH cases or compressive in-plane strain for TSH case. Our work provides the complete strain-map for enhancing the diffusivity of Liion in LiCoO2, and therefore, indicates a new way to achieve better rate performance through strain engineering.
|
Keywords
LiCoO2
strain engineering
migration energy barrier
lithium-ion battery
|
Corresponding Author(s):
Yang Dai,Jin-Cheng Zheng
|
Issue Date: 23 August 2021
|
|
1 |
K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density, Mater. Res. Bull. 15(6), 783 (1980)
https://doi.org/10.1016/0025-5408(80)90012-4
|
2 |
J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414, 359 (2001)
https://doi.org/10.1038/35104644
|
3 |
J. B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22(3), 587 (2010)
https://doi.org/10.1021/cm901452z
|
4 |
L. J. Wu, K. W. Nam, X. J. Wang, Y. N. Zhou, J. C. Zheng, X. Q. Yang, and Y. M. Zhu, Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries, Chem. Mater. 23(17), 3953 (2011)
https://doi.org/10.1021/cm201452q
|
5 |
D. H. Wu and Z. Zhou, Recent progress of computational investigation on anode materials in Li ion batteries, Front. Phys. 6(2), 197 (2011)
https://doi.org/10.1007/s11467-011-0186-z
|
6 |
J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res. 46(5), 1053 (2013)
https://doi.org/10.1021/ar2002705
|
7 |
C. Y. Ouyang and L. Q. Chen, Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective, Sci. China: Phys. Mech. Astron. 56(12), 2278 (2013)
https://doi.org/10.1007/s11433-013-5340-x
|
8 |
N. Liu, W. Y. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014),
https://doi.org/10.1007/s11467-013-0408-7
|
9 |
Y. Wu, J. P. Wang, K. L. Jiang, and S. S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
https://doi.org/10.1007/s11467-013-0308-x
|
10 |
R. Q. Lin, E. Y. Hu, M. J. Liu, Y. Wang, H. Cheng, J. P. Wu, J. C. Zheng, Q. Wu, S. M. Bak, X. Tong, R. Zhang, W. L. Yang, K. A. Persson, X. Q. Yu, X. Q. Yang, and H. L. Xin, Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery, Nat. Commun. 10(1), 1650 (2019)
https://doi.org/10.1038/s41467-019-09248-0
|
11 |
S. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for highperformance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
https://doi.org/10.1007/s11467-013-0343-7
|
12 |
Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)
https://doi.org/10.1007/s11467-019-0884-5
|
13 |
Y. Liang, et al., A review of rechargeable batteries for portable electronic devices, InfoMat. 1, 6 (2019)
https://doi.org/10.1002/inf2.12000
|
14 |
Y. Wang, Q. H. Zhang, Z. C. Xue, L. F. Yang, J. Y. Wang, F. Q. Meng, Q. H. Li, H. Y. Pan, J. N. Zhang, Z. Jiang, W. L. Yang, X. Q. Yu, L. Gu, and H. Li, An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V highvoltage cycle performances, Adv. Energy Mater. 10(28), 2001413 (2020)
https://doi.org/10.1002/aenm.202001413
|
15 |
Y. S. Hong, X. J. Huang, C. X. Wei, J. Y. Wang, J. N. Zhang, H. F. Yan, Y. S. Chu, P. Pianetta, R. J. Xiao, X. Q. Yu, Y. J. Liu, and H. Li, Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping, Chem 6(10), 2759 (2020)
https://doi.org/10.1016/j.chempr.2020.07.017
|
16 |
J. N. Zhang, Q. H. Li, C. Y. Ouyang, X. Q. Yu, M. Y. Ge, X. J. Huang, E. Y. Hu, C. Ma, S. F. Li, R. J. Xiao, W. L. Yang, Y. Chu, Y. J. Liu, H. G. Yu, X. Q. Yang, X. J. Huang, L. Q. Chen, and H. Li, Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V, Nat. Energy 4(7), 594 (2019)
https://doi.org/10.1038/s41560-019-0409-z
|
17 |
H. Zeng, M. Wu, H. Q. Wang, J. C. Zheng, and J. Y. Kang, Tuning the magnetic and electronic properties of strontium titanate by carbon doping, Front. Phys. 16(4), 43501 (2021)
https://doi.org/10.1007/s11467-020-1034-9
|
18 |
L. Wang, B. Chen, Jun Ma, G. Cui, and L. Chen, Reviving lithium cobalt oxide-based lithium secondary batteriestoward a higher energy density, Chem. Soc. Rev. 47, 6505 (2018)
https://doi.org/10.1039/C8CS00322J
|
19 |
F. H. Ning, S. Li, B. Xu, and C. Y. Ouyang, Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: A first principles study, Solid State Ionics 263, 46 (2014)
https://doi.org/10.1016/j.ssi.2014.05.008
|
20 |
L. M. Wu and J. Zhang, Ab initiostudy of anisotropic mechanical properties of LiCoO2 during lithium intercalation and deintercalation process, J. Appl. Phys. 118(22), 225101 (2015)
https://doi.org/10.1063/1.4937409
|
21 |
P. Stein, A. Moradabadi, M. Diehm, B. X. Xu, and K. Albe, The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles, Acta Mater. 159, 225 (2018)
https://doi.org/10.1016/j.actamat.2018.07.046
|
22 |
J. C. Zheng and J. W. Davenport, Ferromagnetism and stability of half-metallic MnSb and MnBi in the strained zinc-blende structure: Predictions from full potential and pseudopotential calculations, Phys. Rev. B 69(14), 144415 (2004)
https://doi.org/10.1103/PhysRevB.69.144415
|
23 |
J. C. Zheng and Y. M. Zhu, Searching for a higher superconducting transition temperature in strained MgB2, Phys. Rev. B 73(2), 024509 (2006)
https://doi.org/10.1103/PhysRevB.73.024509
|
24 |
N. Wei, L. Q. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)
https://doi.org/10.1088/0957-4484/22/10/105705
|
25 |
T. Y. Lu, X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the indirect-direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study, J. Mater. Chem. 22(19), 10062 (2012)
https://doi.org/10.1039/c2jm30915g
|
26 |
H. Cheng and J.-C. Zheng, Ab initio study of anisotropic mechanical and electronic properties of strained carbonnitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)
https://doi.org/10.1007/s11467-021-1077-6
|
27 |
J. D. Gale and A. L. Rohl, The general utility lattice program (GULP), Mol. Simul. 29(5), 291 (2003)
https://doi.org/10.1080/0892702031000104887
|
28 |
C. R. A. Catlow, I. D. Faux, and M. J. Norgett, Shell and breathing shell model calculations for defect formation energies and volumes in magnesium oxide, J. Phys. C: Solid State Phys. 9(3), 419 (1976)
https://doi.org/10.1088/0022-3719/9/3/008
|
29 |
U. Schroder, A new model for lattice-dynamics (breathing shell-model), Solid State Commun. 88(11–12), 1049 (1993)
https://doi.org/10.1016/0038-1098(93)90293-V
|
30 |
C. A. J. Fisher, M. S. Islam, and H. Moriwake, Atomic level investigations of lithium ion battery cathode materials, J. Phys. Soc. Jpn. 79, 59 (2010)
https://doi.org/10.1143/JPSJS.79SA.59
|
31 |
N. F. Mott and M. J. N. Littleton, Conduction in polar crystals (I): Electrolytic conduction in solid salts, Trans. Faraday Soc. 34(5), 485 (1938)
https://doi.org/10.1039/tf9383400485
|
32 |
A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Dev. 3(3), 210 (1959)
https://doi.org/10.1147/rd.33.0210
|
33 |
T. M. Mitchell, Machine Learning, New York: McGraw-Hill, 1997
|
34 |
J. C. Zheng, J. Y. Chen, J. W. Shuai, S. H. Cai, and R. Z. Wang, Storage capacity of the Hopfield neural network, Physica A 246(3–4), 313 (1997)
https://doi.org/10.1016/S0378-4371(97)00359-2
|
35 |
J. W. Shuai, J. C. Zheng, Z. X. Chen, R. T. Liu, and B. X. Wu, The three-dimensional rotation neural network, Physica A 238(1), 23 (1997)
https://doi.org/10.1016/S0378-4371(96)00465-7
|
36 |
B. Meredig, A. Agrawal, S. Kirklin, J. E. Saal, J. W. Doak, A. Thompson, K. Zhang, A. Choudhary, and C. Wolverton, Combinatorial screening for new materials in unconstrained composition space with machine learning, Phys. Rev. B 89(9), 094104 (2014)
https://doi.org/10.1103/PhysRevB.89.094104
|
37 |
Y. L. Ouyang, C. Q. Yu, G. Yan, and J. Chen, Machine learning approach for the prediction and optimization of thermal transport properties, Front. Phys. 16(4), 43200 (2021)
https://doi.org/10.1007/s11467-020-1041-x
|
38 |
V. Deringer, Modelling and understanding battery materials with machine-learning-driven atomistic simulations, J. Phys.: Energy 2(4), 041003 (2020)
https://doi.org/10.1088/2515-7655/abb011
|
39 |
S. Q. Li, J. W. Li, H. W. He, and H. X. Wang, Lithium-ion battery modeling based on big data, Energy Procedia 159, 168 (2019)
https://doi.org/10.1016/j.egypro.2018.12.046
|
40 |
M. Dahbi, I. Saadoune, and J. M. Amarilla, LixNi0.7Co0.3O2 electrode material: Structural, physical and electrochemical investigations, Electrochimica Acta 53(16), 5266 (2008)
https://doi.org/10.1016/j.electacta.2008.02.072
|
41 |
H. Gabrisch, R. Yazami, and B. Fultz, The character of dislocations in LiCoO2, Electrochem. Solid-State Lett. 5(6), A111 (2002)
https://doi.org/10.1149/1.1472257
|
42 |
Y. I. Jang, B. J. Neudecker, and N. J. Dudney, Lithium diffusion in LixCoO2 (0.45 < x < 0.7) intercalation cathodes, Electrochem. Solid-State Lett. 4(6), A74 (2001)
https://doi.org/10.1149/1.1368717
|
43 |
D. C. Li, Z. H. Peng, H. B. Ren, W. Y. Guo, and Y. H. Zhou, Synthesis and characterization of LiNi1−xCoxO2 for lithium batteries by a novel method, Mater. Chem. Phys. 107(1), 171 (2008)
https://doi.org/10.1016/j.matchemphys.2007.06.069
|
44 |
C. W. Wang, X. L. Ma, L. Q. Zhou, J. G. Cheng, J. T. Sun, and Y. H. Zhou, Study on the rapid synthesis of LiNi1−xCoxO2 cathode material for lithium secondary battery, Electrochimica Acta 52(9), 3022 (2007)
https://doi.org/10.1016/j.electacta.2006.09.047
|
45 |
F. Xiong, H. J. Yan, Y. Chen, B. Xu, J. X. Le, and C. Y. Ouyang, The atomic and electronic structure changes upon delithiation of LiCoO2: From first principles calculations, Int. J. Electrochem. Sci. 7(10), 9390 (2012)
|
46 |
M. Holzapfel, C. Haak, and A. Ott, Lithium-ion conductors of the system LiCo1−xFexO2, preparation and structural investigation, J. Solid State Chem. 156(2), 470 (2001)
https://doi.org/10.1006/jssc.2000.9026
|
47 |
A. Van der Ven and G. Ceder, Lithium diffusion in layered LixCoO2, Electrochem. Solid-State Lett. 3(7), 301–304 (2000)
https://doi.org/10.1149/1.1391130
|
48 |
A. Van der Ven and G. Ceder, Lithium diffusion mechanisms in layered intercalation compounds, J. Power Sources 97–98, 529 (2001)
https://doi.org/10.1016/S0378-7753(01)00638-3
|
49 |
G. H. Vineyard, Frequency factors and isotope effects in solid state rate processes, J. Phys. Chem. Solids 3(1–2), 121 (1957)
https://doi.org/10.1016/0022-3697(57)90059-8
|
50 |
R. Kutner, Chemical diffusion in the lattice gas of noninteracting particles, Phys. Lett. A 81(4), 239 (1981)
https://doi.org/10.1016/0375-9601(81)90251-6
|
51 |
X. Gong, J. M. Huang, Y. Chen, M. S. Wu, and C. Y. Ouyang, Vibrational contribution to the thermodynamic properties of lithium ion batteries system: A first principles calculations, Int. J. Electrochem. Sci. 8(8), 10549 (2013)
|
52 |
J. Sugiyama, K. Mukai, Y. Ikedo, H. Nozaki, M. Månsson, and I. Watanabe, Li diffusion in LixCoO2 probed by muonspin spectroscopy, Phys. Rev. Lett. 103(14), 147601 (2009)
https://doi.org/10.1103/PhysRevLett.103.147601
|
53 |
L. Wu, J.-C. Zheng, J. Zhou, Q. Li, J. Yang, and Y. Zhu, Nanostructures and defects in thermoelectric AgPb18SbTe20 single crystal, J. Appl. Phys. 105, 094317 (2009)
https://doi.org/10.1063/1.3124364
|
54 |
J.-C. Zheng, L. Wu, Y. Zhu, and J. W. Davenport, On the sensitivity of electron and X-ray scattering factors to valence charge distributions, J. Appl. Cryst. 38, 648 (2005)
https://doi.org/10.1107/S0021889805016109
|
55 |
J.-C. Zheng, L. Wu, and Y. Zhu, Aspherical electron scattering factors and their parameterizations for elements from H to Xe, J. Appl. Cryst. 42, 1043 (2009)
https://doi.org/10.1107/S0021889809033147
|
56 |
J.-C. Zheng, A. I. Frenkel, L. Wu, J. Hanson, W. Ku, E. S. Bozin, S. J. L. Billinge, and Y. Zhu, Nanoscale disorder and local electronic properties of CaCu3Ti4O12: An integrated study of electron, neutron, and X-ray diffraction, X-ray absorption fine structure, and first-principles calculations, Phys. Rev. B 81, 144203 (2010)
https://doi.org/10.1103/PhysRevB.81.144203
|
57 |
J.-C. Zheng and H. Q. Wang, Principles and applications of a comprehensive characterization method combining synchrotron radiation technology, transmission electron microscopy, and density functional theory, Scientia Sinica: Physica, Mechanica et Astronomica, 51(3), 030007 (2021) (in Chinese)
https://doi.org/10.1360/SSPMA-2020-0441
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|