Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (1) : 13503    https://doi.org/10.1007/s11467-021-1086-5
RESEARCH ARTICLE
Strain engineering of ion migration in LiCoO2
Jia-Jing Li1, Yang Dai2(), Jin-Cheng Zheng1,3,4()
1. Department of Physics, and Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen University, Xiamen 361005, China
2. Department of Chemical Engineering, School of Environmental and Chemical Engineering, and Institute for Sustainable Energy, Shanghai University, Shangda Road 99, Shanghai 200444, China
3. Department of Physics, Xiamen University Malaysia, 439000 Sepang, Selangor, Malaysia
4. Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
 Download: PDF(1763 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Strain engineering is a powerful approach for tuning various properties of functional materials. The influences of lattice strain on the Li-ion migration energy barrier of lithium-ions in layered LiCoO2 have been systemically studied using lattice dynamics simulations, analytical function and neural network method. We have identified two Li-ion migration paths, oxygen dumbbell hop (ODH), and tetrahedral site hop (TSH) with different concentrations of local defects. We found that Li-ion migration energy barriers increased with the increase of pressure for both ODH and TSH cases, while decreased significantly with applied tensile uniaxial c-axis strain for ODH and TSH cases or compressive in-plane strain for TSH case. Our work provides the complete strain-map for enhancing the diffusivity of Liion in LiCoO2, and therefore, indicates a new way to achieve better rate performance through strain engineering.

Keywords LiCoO2      strain engineering      migration energy barrier      lithium-ion battery     
Corresponding Author(s): Yang Dai,Jin-Cheng Zheng   
Issue Date: 23 August 2021
 Cite this article:   
Jia-Jing Li,Yang Dai,Jin-Cheng Zheng. Strain engineering of ion migration in LiCoO2[J]. Front. Phys. , 2022, 17(1): 13503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1086-5
https://academic.hep.com.cn/fop/EN/Y2022/V17/I1/13503
1 K. Mizushima, P. C. Jones, P. J. Wiseman, and J. B. Goodenough, LixCoO2 (0<x≤1): A new cathode material for batteries of high energy density, Mater. Res. Bull. 15(6), 783 (1980)
https://doi.org/10.1016/0025-5408(80)90012-4
2 J. M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature 414, 359 (2001)
https://doi.org/10.1038/35104644
3 J. B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater. 22(3), 587 (2010)
https://doi.org/10.1021/cm901452z
4 L. J. Wu, K. W. Nam, X. J. Wang, Y. N. Zhou, J. C. Zheng, X. Q. Yang, and Y. M. Zhu, Structural origin of overcharge-induced thermal instability of Ni-containing layered-cathodes for high-energy-density lithium batteries, Chem. Mater. 23(17), 3953 (2011)
https://doi.org/10.1021/cm201452q
5 D. H. Wu and Z. Zhou, Recent progress of computational investigation on anode materials in Li ion batteries, Front. Phys. 6(2), 197 (2011)
https://doi.org/10.1007/s11467-011-0186-z
6 J. B. Goodenough, Evolution of strategies for modern rechargeable batteries, Acc. Chem. Res. 46(5), 1053 (2013)
https://doi.org/10.1021/ar2002705
7 C. Y. Ouyang and L. Q. Chen, Physics towards next generation Li secondary batteries materials: A short review from computational materials design perspective, Sci. China: Phys. Mech. Astron. 56(12), 2278 (2013)
https://doi.org/10.1007/s11433-013-5340-x
8 N. Liu, W. Y. Li, M. Pasta, and Y. Cui, Nanomaterials for electrochemical energy storage, Front. Phys. 9(3), 323 (2014),
https://doi.org/10.1007/s11467-013-0408-7
9 Y. Wu, J. P. Wang, K. L. Jiang, and S. S. Fan, Applications of carbon nanotubes in high performance lithium ion batteries, Front. Phys. 9(3), 351 (2014)
https://doi.org/10.1007/s11467-013-0308-x
10 R. Q. Lin, E. Y. Hu, M. J. Liu, Y. Wang, H. Cheng, J. P. Wu, J. C. Zheng, Q. Wu, S. M. Bak, X. Tong, R. Zhang, W. L. Yang, K. A. Persson, X. Q. Yu, X. Q. Yang, and H. L. Xin, Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery, Nat. Commun. 10(1), 1650 (2019)
https://doi.org/10.1038/s41467-019-09248-0
11 S. Li, Y. F. Dong, D. D. Wang, W. Chen, L. Huang, C. W. Shi, and L. Q. Mai, Hierarchical nanowires for highperformance electrochemical energy storage, Front. Phys. 9(3), 303 (2014)
https://doi.org/10.1007/s11467-013-0343-7
12 Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Review of borophene and its potential applications, Front. Phys. 14(3), 33403 (2019)
https://doi.org/10.1007/s11467-019-0884-5
13 Y. Liang, et al., A review of rechargeable batteries for portable electronic devices, InfoMat. 1, 6 (2019)
https://doi.org/10.1002/inf2.12000
14 Y. Wang, Q. H. Zhang, Z. C. Xue, L. F. Yang, J. Y. Wang, F. Q. Meng, Q. H. Li, H. Y. Pan, J. N. Zhang, Z. Jiang, W. L. Yang, X. Q. Yu, L. Gu, and H. Li, An in situ formed surface coating layer enabling LiCoO2 with stable 4.6 V highvoltage cycle performances, Adv. Energy Mater. 10(28), 2001413 (2020)
https://doi.org/10.1002/aenm.202001413
15 Y. S. Hong, X. J. Huang, C. X. Wei, J. Y. Wang, J. N. Zhang, H. F. Yan, Y. S. Chu, P. Pianetta, R. J. Xiao, X. Q. Yu, Y. J. Liu, and H. Li, Hierarchical defect engineering for LiCoO2 through low-solubility trace element doping, Chem 6(10), 2759 (2020)
https://doi.org/10.1016/j.chempr.2020.07.017
16 J. N. Zhang, Q. H. Li, C. Y. Ouyang, X. Q. Yu, M. Y. Ge, X. J. Huang, E. Y. Hu, C. Ma, S. F. Li, R. J. Xiao, W. L. Yang, Y. Chu, Y. J. Liu, H. G. Yu, X. Q. Yang, X. J. Huang, L. Q. Chen, and H. Li, Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V, Nat. Energy 4(7), 594 (2019)
https://doi.org/10.1038/s41560-019-0409-z
17 H. Zeng, M. Wu, H. Q. Wang, J. C. Zheng, and J. Y. Kang, Tuning the magnetic and electronic properties of strontium titanate by carbon doping, Front. Phys. 16(4), 43501 (2021)
https://doi.org/10.1007/s11467-020-1034-9
18 L. Wang, B. Chen, Jun Ma, G. Cui, and L. Chen, Reviving lithium cobalt oxide-based lithium secondary batteriestoward a higher energy density, Chem. Soc. Rev. 47, 6505 (2018)
https://doi.org/10.1039/C8CS00322J
19 F. H. Ning, S. Li, B. Xu, and C. Y. Ouyang, Strain tuned Li diffusion in LiCoO2 material for Li ion batteries: A first principles study, Solid State Ionics 263, 46 (2014)
https://doi.org/10.1016/j.ssi.2014.05.008
20 L. M. Wu and J. Zhang, Ab initiostudy of anisotropic mechanical properties of LiCoO2 during lithium intercalation and deintercalation process, J. Appl. Phys. 118(22), 225101 (2015)
https://doi.org/10.1063/1.4937409
21 P. Stein, A. Moradabadi, M. Diehm, B. X. Xu, and K. Albe, The influence of anisotropic surface stresses and bulk stresses on defect thermodynamics in LiCoO2 nanoparticles, Acta Mater. 159, 225 (2018)
https://doi.org/10.1016/j.actamat.2018.07.046
22 J. C. Zheng and J. W. Davenport, Ferromagnetism and stability of half-metallic MnSb and MnBi in the strained zinc-blende structure: Predictions from full potential and pseudopotential calculations, Phys. Rev. B 69(14), 144415 (2004)
https://doi.org/10.1103/PhysRevB.69.144415
23 J. C. Zheng and Y. M. Zhu, Searching for a higher superconducting transition temperature in strained MgB2, Phys. Rev. B 73(2), 024509 (2006)
https://doi.org/10.1103/PhysRevB.73.024509
24 N. Wei, L. Q. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: A demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)
https://doi.org/10.1088/0957-4484/22/10/105705
25 T. Y. Lu, X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the indirect-direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: A quasiparticle GW study, J. Mater. Chem. 22(19), 10062 (2012)
https://doi.org/10.1039/c2jm30915g
26 H. Cheng and J.-C. Zheng, Ab initio study of anisotropic mechanical and electronic properties of strained carbonnitride nanosheet with interlayer bonding, Front. Phys. 16(4), 43505 (2021)
https://doi.org/10.1007/s11467-021-1077-6
27 J. D. Gale and A. L. Rohl, The general utility lattice program (GULP), Mol. Simul. 29(5), 291 (2003)
https://doi.org/10.1080/0892702031000104887
28 C. R. A. Catlow, I. D. Faux, and M. J. Norgett, Shell and breathing shell model calculations for defect formation energies and volumes in magnesium oxide, J. Phys. C: Solid State Phys. 9(3), 419 (1976)
https://doi.org/10.1088/0022-3719/9/3/008
29 U. Schroder, A new model for lattice-dynamics (breathing shell-model), Solid State Commun. 88(11–12), 1049 (1993)
https://doi.org/10.1016/0038-1098(93)90293-V
30 C. A. J. Fisher, M. S. Islam, and H. Moriwake, Atomic level investigations of lithium ion battery cathode materials, J. Phys. Soc. Jpn. 79, 59 (2010)
https://doi.org/10.1143/JPSJS.79SA.59
31 N. F. Mott and M. J. N. Littleton, Conduction in polar crystals (I): Electrolytic conduction in solid salts, Trans. Faraday Soc. 34(5), 485 (1938)
https://doi.org/10.1039/tf9383400485
32 A. L. Samuel, Some studies in machine learning using the game of checkers, IBM J. Res. Dev. 3(3), 210 (1959)
https://doi.org/10.1147/rd.33.0210
33 T. M.  Mitchell,  Machine Learning,  New York: McGraw-Hill,  1997
34 J. C.  Zheng,  J. Y.  Chen,  J. W.  Shuai,  S. H.  Cai, and R. Z.  Wang, Storage capacity of the Hopfield neural network, Physica A  246(3–4),  313 (1997)
https://doi.org/10.1016/S0378-4371(97)00359-2
35 J. W.  Shuai,  J. C.  Zheng,  Z. X.  Chen,  R. T.  Liu, and B. X.  Wu, The three-dimensional rotation neural network, Physica A  238(1),  23 (1997)
https://doi.org/10.1016/S0378-4371(96)00465-7
36 B.  Meredig,  A.  Agrawal,  S.  Kirklin,  J. E.  Saal,  J. W.  Doak, A.  Thompson,  K.  Zhang,  A.  Choudhary, and  C.  Wolverton, Combinatorial screening for new materials in unconstrained composition space with machine learning,  Phys. Rev. B  89(9),  094104 (2014)
https://doi.org/10.1103/PhysRevB.89.094104
37 Y. L.  Ouyang,  C. Q.  Yu,  G.  Yan, and  J.  Chen,  Machine learning approach for the prediction and optimization of thermal transport properties,  Front. Phys.  16(4),  43200 (2021)
https://doi.org/10.1007/s11467-020-1041-x
38 V.  Deringer,  Modelling and understanding battery materials with machine-learning-driven atomistic simulations,  J. Phys.: Energy  2(4),  041003 (2020)
https://doi.org/10.1088/2515-7655/abb011
39 S. Q.  Li,  J. W.  Li,  H. W.  He, and  H. X.  Wang,  Lithium-ion battery modeling based on big data,  Energy Procedia  159, 168 (2019)
https://doi.org/10.1016/j.egypro.2018.12.046
40 M.  Dahbi,  I.  Saadoune, and  J. M.  Amarilla, LixNi0.7Co0.3O2 electrode material: Structural, physical and electrochemical investigations,  Electrochimica Acta 53(16),  5266 (2008)
https://doi.org/10.1016/j.electacta.2008.02.072
41 H.  Gabrisch,  R.  Yazami, and  B.  Fultz,  The character of dislocations in LiCoO2, Electrochem. Solid-State Lett.  5(6), A111 (2002)
https://doi.org/10.1149/1.1472257
42 Y. I.  Jang,  B. J.  Neudecker, and  N. J.  Dudney,  Lithium diffusion in LixCoO2 (0.45 <  x < 0.7) intercalation cathodes, Electrochem. Solid-State Lett.  4(6),  A74 (2001)
https://doi.org/10.1149/1.1368717
43 D. C.  Li,  Z. H.  Peng,  H. B.  Ren,  W. Y.  Guo, and  Y. H.  Zhou,  Synthesis and characterization of LiNi1−xCoxO2 for lithium batteries by a novel method, Mater. Chem. Phys.  107(1),  171 (2008)
https://doi.org/10.1016/j.matchemphys.2007.06.069
44 C. W.  Wang,  X. L.  Ma,  L. Q.  Zhou,  J. G.  Cheng,  J. T. Sun, and Y. H. Zhou, Study on the rapid synthesis of LiNi1−xCoxO2 cathode material for lithium secondary battery, Electrochimica Acta  52(9),  3022 (2007)
https://doi.org/10.1016/j.electacta.2006.09.047
45 F.  Xiong,  H. J.  Yan,  Y.  Chen,  B.  Xu,  J. X.  Le, and  C. Y. Ouyang,  The atomic and electronic structure changes upon delithiation of LiCoO2: From first principles calculations, Int. J. Electrochem. Sci.  7(10),  9390 (2012)
46 M.  Holzapfel,  C.  Haak, and  A.  Ott, Lithium-ion conductors of the system LiCo1−xFexO2, preparation and structural investigation,  J. Solid State Chem.  156(2),  470 (2001)
https://doi.org/10.1006/jssc.2000.9026
47 A.  Van der Ven and  G.  Ceder,  Lithium diffusion in layered LixCoO2,  Electrochem. Solid-State Lett.  3(7),  301–304 (2000)
https://doi.org/10.1149/1.1391130
48 A.  Van der Ven and  G.  Ceder,  Lithium diffusion mechanisms in layered intercalation compounds,  J. Power Sources  97–98,  529 (2001)
https://doi.org/10.1016/S0378-7753(01)00638-3
49 G. H.  Vineyard,  Frequency factors and isotope effects in solid state rate processes,  J. Phys. Chem. Solids  3(1–2), 121 (1957)
https://doi.org/10.1016/0022-3697(57)90059-8
50 R.  Kutner,  Chemical diffusion in the lattice gas of noninteracting particles,  Phys. Lett. A  81(4),  239 (1981)
https://doi.org/10.1016/0375-9601(81)90251-6
51 X.  Gong,  J. M.  Huang,  Y.  Chen,  M. S.  Wu, and  C. Y. Ouyang,  Vibrational contribution to the thermodynamic properties of lithium ion batteries system: A first principles calculations,  Int. J. Electrochem. Sci.  8(8),  10549 (2013)
52 J.  Sugiyama,  K.  Mukai,  Y.  Ikedo,  H.  Nozaki,  M.  Månsson, and  I.  Watanabe,  Li diffusion in LixCoO2 probed by muonspin spectroscopy,  Phys. Rev. Lett.  103(14),  147601 (2009)
https://doi.org/10.1103/PhysRevLett.103.147601
53   L.  Wu,  J.-C.  Zheng,  J.  Zhou,  Q.  Li,  J.  Yang, and Y.  Zhu,  Nanostructures and defects in thermoelectric AgPb18SbTe20 single crystal,  J. Appl. Phys.  105,  094317 (2009)
https://doi.org/10.1063/1.3124364
54 J.-C.  Zheng,  L.  Wu,  Y.  Zhu, and  J. W.  Davenport,  On the sensitivity of electron and X-ray scattering factors to valence charge distributions,  J. Appl. Cryst.  38,  648 (2005)
https://doi.org/10.1107/S0021889805016109
55 J.-C.  Zheng,  L.  Wu, and  Y.  Zhu,  Aspherical electron scattering factors and their parameterizations for elements from H to Xe,  J. Appl. Cryst.  42,  1043 (2009)
https://doi.org/10.1107/S0021889809033147
56 J.-C.  Zheng,  A. I.  Frenkel, L.  Wu,  J.  Hanson,  W.  Ku,  E. S.  Bozin,  S. J. L.  Billinge, and  Y.  Zhu,  Nanoscale disorder and local electronic properties of CaCu3Ti4O12: An integrated study of electron, neutron, and X-ray diffraction, X-ray absorption fine structure, and first-principles calculations,  Phys. Rev. B  81,  144203 (2010)
https://doi.org/10.1103/PhysRevB.81.144203
57 J.-C.  Zheng and  H. Q.  Wang,  Principles and applications of a comprehensive characterization method combining synchrotron radiation technology, transmission electron microscopy, and density functional theory, Scientia Sinica: Physica,  Mechanica et Astronomica,  51(3),  030007 (2021) (in Chinese)
https://doi.org/10.1360/SSPMA-2020-0441
[1] Hao Cheng, Jin-Cheng Zheng. Ab initio study of anisotropic mechanical and electronic properties of strained carbon-nitride nanosheet with interlayer bonding[J]. Front. Phys. , 2021, 16(4): 43505-.
[2] Qi Pei, Xiao-Cha Wang, Ji-Jun Zou, Wen-Bo Mi. Tunable electronic structure and magnetic coupling in strained two-dimensional semiconductor MnPSe3[J]. Front. Phys. , 2018, 13(4): 137105-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed