Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (1) : 12501    https://doi.org/10.1007/s11467-021-1092-7
RESEARCH ARTICLE
Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system
Zhi-Rong Zhong(), Lei Chen, Jian-Qi Sheng, Li-Tuo Shen, Shi-Biao Zheng
Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
 Download: PDF(991 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this paper, we propose a scheme to achieve a multiphonon-resonance quantum Rabi model and adiabatic passage in a strong-coupling cavity optomechanical system. In the scheme, when the driving bichromatic laser beam is adjusted to the off-resonant j-order red- and blue-sideband, the interaction between the cavity and mechanical oscillator leads to a j-phonon resonance quantum Rabi model. Moreover, we show that there exists a resonant multi-phonon coupling via intermediate states connected by counter-rotating processes when the frequency of the simulated bosonic mode is near a fraction of the transition frequency of the simulated two-level system. As a typical example, we theoretically analyze the two-phonon resonance quantum Rabi model, and derive an effective Hamiltonian of the six-phonon coupling. Finally, we present a method of six-phonon generation based on adiabatic passage across the resonance. Numerical simulations confirm the validity of the proposed scheme. Theoretically, the proposed scheme can be extended to the realization of 3j-phonon state.

Keywords quantum Rabi model      cavity-optomechanical system      adiabatic passage     
Corresponding Author(s): Zhi-Rong Zhong   
Issue Date: 03 August 2021
 Cite this article:   
Zhi-Rong Zhong,Lei Chen,Jian-Qi Sheng, et al. Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system[J]. Front. Phys. , 2022, 17(1): 12501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1092-7
https://academic.hep.com.cn/fop/EN/Y2022/V17/I1/12501
1 M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Ha-gley, J. M. Raimond, and S. Haroche, Quantum Rabi oscillation: A direct test of field quantization in a cavity, Phys. Rev. Lett. 76(11), 1800 (1996)
https://doi.org/10.1103/PhysRevLett.76.1800
2 Q. Ai, Y. Li, H. Zheng, and C. P. Sun, Quantum anti-Zeno effect without rotating wave approximation, Phys. Rev. A 81(4), 042116 (2010)
https://doi.org/10.1103/PhysRevA.81.042116
3 D. Z. Xu, Q. Ai, and C. P. Sun, Dispersive-coupling based quantum Zeno effect in a cavity-QED system, Phys. Rev. A 83(2), 022107 (2011)
https://doi.org/10.1103/PhysRevA.83.022107
4 T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hmmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys. 6, 772 (2010)
https://doi.org/10.1038/nphys1730
5 P. Forn-Díaz, J. Lisenfeld, D. Marcos, J. J. García-Ripoll, E. Solano, C. J. P. M. Harmans, and J. E. Mooij, Observation of the Bloch–Siegert shift in a qubit-oscillator system in the ultrastrong coupling regime, Phys. Rev. Lett. 105(23), 237001 (2010)
https://doi.org/10.1103/PhysRevLett.105.237001
6 J. Casanova, G. Romero, I. Lizuain, J. J. García-Ripoll, and E. Solano, Deep strong coupling regime of the Jaynes– Cummings model, Phys. Rev. Lett. 105(26), 263603 (2010)
https://doi.org/10.1103/PhysRevLett.105.263603
7 S. De Liberato, Light-matter decoupling in the deep strong coupling regime: The breakdown of the Purcell effect, Phys. Rev. Lett. 112(1), 016401 (2014)
https://doi.org/10.1103/PhysRevLett.112.016401
8 D. Braak, Q. H. Chen, M. T. Batchelor, and E. Solano, Semiclassical and quantum Rabi models: In celebration of 80 years, J. Phys. A Math. Theor. 49(30), 300301 (2016)
https://doi.org/10.1088/1751-8113/49/30/300301
9 J. F. Huang and C. K. Law, Photon emission via vacuum dressed intermediate states under ultrastrong coupling, Phys. Rev. A 89(3), 033827 (2014)
https://doi.org/10.1103/PhysRevA.89.033827
10 L. Garziano, R. Stassi, A. Ridolfo, O. Di Stefano, and S. Savasta, Vacuum-induced symmetry breaking in a superconducting quantum circuit, Phys. Rev. A 90(4), 043817 (2014)
https://doi.org/10.1103/PhysRevA.90.043817
11 L. T. Shen, Z. B. Yang, H. Z. Wu, and S. B. Zheng, Quantum phase transition and quench dynamics in the anisotropic Rabi model, Phys. Rev. A 95(1), 013819 (2017)
https://doi.org/10.1103/PhysRevA.95.013819
12 S. Ashhab, Superradiance transition in a system with a single qubit and a single oscillator, Phys. Rev. A 87(1), 013826 (2013)
https://doi.org/10.1103/PhysRevA.87.013826
13 T. H. Kyaw, S. Felicetti, G. Romero, E. Solano, and L. C. Kwek, Scalable quantum memory in the ultrastrong coupling regime, Sci. Rep. 5(1), 8621 (2015)
https://doi.org/10.1038/srep08621
14 S. Felicetti, E. Rico, C. Sabin, T. Ockenfels, J. Koch, M. Leder, C. Grossert, M. Weitz, and E. Solano, Quantum Rabi model in the Brillouin zone with ultracold atoms, Phys. Rev. A 95(1), 013827 (2017)
https://doi.org/10.1103/PhysRevA.95.013827
15 A. Mezzacapo, U. Las Heras, J. S. Pedernales, L. DiCarlo, E. Solano, and L. Lamata, Digital quantum Rabi and Dicke models in superconducting circuits, Sci. Rep. 4(1), 7482 (2015)
https://doi.org/10.1038/srep07482
16 C. H. Alderete and B. M. Rodríguez-Lara, Crosscavity quantum Rabi model, J. Phys. A Math. Theor. 49(41), 414001 (2016)
https://doi.org/10.1088/1751-8113/49/41/414001
17 R. Puebla, J. Casanova, and M. B. Plenio, A robust scheme for the implementation of the quantum Rabi model in trapped ions, New J. Phys. 18(11), 113039 (2016)
https://doi.org/10.1088/1367-2630/18/11/113039
18 K. K. W. Ma and C. K. Law, Three-photon resonance and adiabatic passage in the large-detuning Rabi model, Phys. Rev. A 92(2), 023842 (2015)
https://doi.org/10.1103/PhysRevA.92.023842
19 L. Garziano, R. Stassi, V. Macrì, A. F. Kockum, S. Savasta, and F. Nori, Multiphoton quantum Rabi oscillations in ultrastrong cavity QED, Phys. Rev. A 92(6), 063830 (2015)
https://doi.org/10.1103/PhysRevA.92.063830
20 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
21 S. Mancini, V. Giovannetti, D. Vitali, and P. Tombesi, Entangling macroscopic oscillators exploiting radiation pressure, Phys. Rev. Lett. 88(12), 120401 (2002)
https://doi.org/10.1103/PhysRevLett.88.120401
22 X. W. Xu, Y. J. Zhao, and Y. X. Liu, Entangled-state engineering of vibrational modes in a multimembrane optomechanical system, Phys. Rev. A 88(2), 022325 (2013)
https://doi.org/10.1103/PhysRevA.88.022325
23 Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys. 13(5), 130319 (2018)
https://doi.org/10.1007/s11467-018-0824-9
24 Y. H. Chen, Z. C. Shi, J. Song, and Y. Xia, Invariantbased inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system, Phys. Rev. A 97(2), 023841 (2018)
https://doi.org/10.1103/PhysRevA.97.023841
25 C. S. Hu, Z. Q. Liu, Y. Liu, L. T. Shen, H. Wu, and S. B. Zheng, Entanglement beating in a cavity optomechanical system under two-field driving, Phys. Rev. A 101(3), 033810 (2020)
https://doi.org/10.1103/PhysRevA.101.033810
26 S. S. Chen, H. Zhang, Q. Ai, and G. J. Yang, Phononic entanglement concentration via optomechanical interactions, Phys. Rev. A 100(5), 052306 (2019)
https://doi.org/10.1103/PhysRevA.100.052306
27 X. B. Yan, H. L. Lu, F. Gao, F. Gao, and L. Yang, Perfect optical nonreciprocity in a double-cavity optomechanical system, Front. Phys. 14(5), 52601 (2019)
https://doi.org/10.1007/s11467-019-0922-3
28 L. Qi, G. L. Wang, S. Liu, S. Zhang, and H. F. Wang, Dissipation-induced topological phase transition and periodic-driving-induced photonic topological state transfer in a small optomechanical lattice, Front. Phys. 16(1), 12503 (2021)
https://doi.org/10.1007/s11467-020-0983-3
29 Z. Zhang, J. Pei, Y. P. Wang, and X. Wang, Measuring orbital angular momentum of vortex beams in optomechanics, Front. Phys. 16(3), 32503 (2021)
https://doi.org/10.1007/s11467-020-1030-0
30 K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Wein-stein, and N. Mavalvala, A quantum-enhanced prototype gravitational-wave detector, Nat. Phys. 4(6), 472 (2008)
https://doi.org/10.1038/nphys920
31 U. B. Hoff, G. I. Harris, L. S. Madsen, H. Kerdoncuff, M. Lassen, B. M. Nielsen, W. P. Bowen, and U. L. Andersen, Quantum-enhanced micromechanical displacement sensi-tivity, Opt. Lett. 38(9), 1413 (2013)
https://doi.org/10.1364/OL.38.001413
32 R. C. Pooser and B. Lawrie, Ultrasensitive measurement of microcantilever displacement below the shotnoise limit, Optica 2(5), 393 (2015)
https://doi.org/10.1364/OPTICA.2.000393
33 C. M. Caves, Quantum-mechanical noise in an interferom-eter, Phys. Rev. D 23(8), 1693 (1981)
https://doi.org/10.1103/PhysRevD.23.1693
34 D. Kienzler, C. Flühmann, V. Negnevitsky, H. Y. Lo, M. Marinelli, D. Nadlinger, and J. P. Home, Observation of quantum interference between separated mechanical oscil-lator wave packets, Phys. Rev. Lett. 116(14), 140402 (2016)
https://doi.org/10.1103/PhysRevLett.116.140402
35 J. Q. Liao, Q. Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A 89(1), 014302 (2014)
https://doi.org/10.1103/PhysRevA.89.014302
36 T. Hong, H. Yang, H. Miao, and Y. Chen, Open quantum dynamics of single-photon optomechanical devices, Phys. Rev. A 88(2), 023812 (2013)
https://doi.org/10.1103/PhysRevA.88.023812
37 J. Q. Liao, H. K. Cheung, and C. K. Law, Spectrum of single-photon emission and scattering in cavity optome-chanics, Phys. Rev. A 85(2), 025803 (2012)
https://doi.org/10.1103/PhysRevA.85.025803
38 B. He, Quantum optomechanics beyond linearization, Phys. Rev. A 85(6), 063820 (2012)
https://doi.org/10.1103/PhysRevA.85.063820
39 H. Xie, G. W. Lin, X. Chen, Z. H. Chen, and X. M. Lin, Single-photon nonlinearities in a strongly driven optome-chanical system with quadratic coupling, Phys. Rev. A 93(6), 063860 (2016)
https://doi.org/10.1103/PhysRevA.93.063860
40 X. W. Xu, Y. J. Li, and Y. X. Liu, Photon-induced tunnel-ing in optomechanical systems, Phys. Rev. A 87(2), 025803 (2013)
https://doi.org/10.1103/PhysRevA.87.025803
41 A. Kronwald, M. Ludwig, and F. Marquardt, Full photon statistics of a light beam transmitted through an optome-chanical system, Phys. Rev. A 87(1), 013847 (2013)
https://doi.org/10.1103/PhysRevA.87.013847
42 G. F. Xu and C. K. Law, Dark states of a moving mirror in the single-photon strong-coupling regime, Phys. Rev. A 87(5), 053849 (2013)
https://doi.org/10.1103/PhysRevA.87.053849
43 P. Rabl, Photon blockade effect in optomechanical sys-tems, Phys. Rev. Lett. 107(6), 063601 (2011)
https://doi.org/10.1103/PhysRevLett.107.063601
44 A. Miranowicz, J. Bajer, N. Lambert, Y. X. Liu, and F. Nori, Tunable multiphonon blockade in coupled nanome-chanical resonators, Phys. Rev. A 93(1), 013808 (2016)
https://doi.org/10.1103/PhysRevA.93.013808
45 A. Miranowicz, J. Bajer, M. Paprzycka, Y. X. Liu, A. M. Zagoskin, and F. Nori, State-dependent photon blockade via quantum-reservoir engineering, Phys. Rev. A 90(3), 033831 (2015)
https://doi.org/10.1103/PhysRevA.90.033831
46 V. Macrì, A. Ridolfo, O. Di Stefano, A. F. Kockum, F. Nori, and S. Savasta, Nonperturbative dynamical casimir effect in optomechanical systems: Vacuum Casimir-Rabi splittings, Phys. Rev. X 8(1), 011031 (2018)
https://doi.org/10.1103/PhysRevX.8.011031
47 T. Holz, R. Betzholz, and M. Bienert, Suppression of Rabi oscillations in hybrid optomechanical systems, Phys. Rev. A 92(4), 043822 (2015)
https://doi.org/10.1103/PhysRevA.92.043822
48 E. Solano, R. L. de Matos Filho, and N. Zagury, Meso-scopic superpositions of vibronic collective states of n trapped ions, Phys. Rev. Lett. 87, 060402(4) (2001)
https://doi.org/10.1103/PhysRevLett.87.060402
49 P. C. Haljan, K.-A. Brickman, L. Deslauriers, P. J. Lee, and C. Monroe, Spin-dependent forces on trapped ions for phase-stable quantum gates and entangled states of spin and motion, Phys. Rev. Lett. 94, 153602(4) (2005)
https://doi.org/10.1103/PhysRevLett.94.153602
50 A. Sorensen and K. Molmer, Entanglement and quantum computation with ions in thermal motion, Phys. Rev. A 62(2), 022311 (2000)
https://doi.org/10.1103/PhysRevA.62.022311
51 A. Nunnenkamp, K. Børkje, and S. M. Girvin, Single-photon optomechanics, Phys. Rev. Lett. 107(6), 063602 (2011)
https://doi.org/10.1103/PhysRevLett.107.063602
52 X. H. Cheng, I. Arrazola, J. S. Pedernales, L. Lamata, X. Chen, and E. Solano, Nonlinear quantum Rabi model in trapped ions, Phys. Rev. A 97(2), 023624 (2018)
https://doi.org/10.1103/PhysRevA.97.023624
53 R. G. Unanyan, N. V. Vitanov, and K. Bergmann, Prepa-ration of entangled states by adiabatic passage, Phys. Rev. Lett. 87(13), 137902 (2001)
https://doi.org/10.1103/PhysRevLett.87.137902
54 P. Král, I. Thanopulos, and M. Shapiro, Coherently con-trolled adiabatic passage, Rev. Mod. Phys. 79(1), 53 (2007)
https://doi.org/10.1103/RevModPhys.79.53
55 M. Weitz, B. C. Young, and S. Chu, Atomic interferometer based on adiabatic population transfer, Phys. Rev. Lett. 73(19), 2563 (1994)
https://doi.org/10.1103/PhysRevLett.73.2563
56 A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, Syn-thesis of arbitrary quantum states via adiabatic transfer of Zeeman coherence, Phys. Rev. Lett. 71(19), 3095 (1993)
https://doi.org/10.1103/PhysRevLett.71.3095
57 W. Lange and H. J. Kimble, Dynamic generation of max-imally entangled photon multiplets by adiabatic passage, Phys. Rev. A 61(6), 063817 (2000)
https://doi.org/10.1103/PhysRevA.61.063817
58 M. Amniat-Talab, S. Lagrange, S. Guérin, and H. R. Jauslin, Generation of multiphoton Fock states by bichro-matic adiabatic passage: Topological analysis, Phys. Rev. A 70(1), 013807 (2004)
https://doi.org/10.1103/PhysRevA.70.013807
59 S. Y. Ye, Z. R. Zhong, and S. B. Zheng, Deterministic gen-eration of three-dimensional entanglement for two atoms separately trapped in two optical cavities, Phys. Rev. A 77(1), 014303 (2007)
https://doi.org/10.1103/PhysRevA.77.014303
60 C. Marr, A. Beige, and G. Rempe, Entangled-state prepa-ration via dissipation-assisted adiabatic passages, Phys. Rev. A 68(3), 033817 (2003)
https://doi.org/10.1103/PhysRevA.68.033817
61 K. Toyoda, T. Watanabe, T. Kimura, S. Nomura, S. Haze, and S. Urabe, Generation of Dicke states using adiabatic passage, Phys. Rev. A 83(2), 022315 (2011)
https://doi.org/10.1103/PhysRevA.83.022315
62 F. Beaudoin, J. M. Gambetta, and A. Blais, Dissipation and ultrastrong coupling in circuit QED, Phys. Rev. A 84(4), 043832 (2011)
https://doi.org/10.1103/PhysRevA.84.043832
63 J. Kabuss, A. Carmele, T. Brandes, and A. Knorr, Op-tically driven quantum dots as source of coherent cavity phonons: A proposal for a phonon laser scheme, Phys. Rev. Lett. 109(5), 054301 (2012)
https://doi.org/10.1103/PhysRevLett.109.054301
64 W. Maryam, A. V. Akimov, R. P. Campion, and A. J. Kent, Dynamics of a vertical cavity quantum cascade phonon laser structure, Nat. Commun. 4(1), 2184 (2013)
https://doi.org/10.1038/ncomms3184
65 H. X. Han, B. W. Li, S. Volz, and Y. A. Kosevich, Ul-tracompact interference phonon nanocapacitor for storage and lasing of coherent terahertz lattice waves, Phys. Rev. Lett. 114(14), 145501 (2015)
https://doi.org/10.1103/PhysRevLett.114.145501
66 H. Jing, S. K. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, and F. Nori, PT-symmetric phonon laser, Phys. Rev. Lett. 113, 053604 (2014)
https://doi.org/10.1103/PhysRevLett.113.053604
67 B. He, L. Yang, and M. Xiao, Dynamical phonon laser in coupled active-passive microresonators, Phys. Rev. A 109, 054301 (2012)
68 I. S. Grudinin, H. Lee, O. Painter, and K. J. Vahala, Phonon laser action in a tunable two-level system, Phys. Rev. Lett. 104(8), 083901 (2010)
https://doi.org/10.1103/PhysRevLett.104.083901
69 M. A. Lemonde, S. Meesala, A. Sipahigil, M. J. A. Schuetz, M. D. Lukin, M. Loncar, and P. Rabl, Phonon networks with silicon-vacancy centers in diamond waveguides, Phys. Rev. Lett. 120(21), 213603 (2018)
https://doi.org/10.1103/PhysRevLett.120.213603
70 G. Calaj’ o, M. J. A. Schuetz, H. Pichler, M. D. Lukin, P. Schneeweiss, J. Volz, and P. Rabl, Quantum acoustooptic control of light-matter interactions in nanophotonic net-works, Phys. Rev. A 99(5), 053852 (2019)
https://doi.org/10.1103/PhysRevA.99.053852
71 M. J. A. Schuetz, E. M. Kessler, G. Giedke, L. M. K. Van-dersypen, M. D. Lukin, and J. I. Cirac, Universal quantum transducers based on surface acoustic waves, Phys. Rev. X 5(3), 031031 (2015)
https://doi.org/10.1103/PhysRevX.5.031031
72 R. Manenti, A. F. Kockum, A. Patterson, T. Behrle, J. Ra-hamim, G. Tancredi, F. Nori, and P. J. Leek, Circuit quan-tum acoustodynamics with surface acoustic waves, Nat. Commun. 8(1), 975 (2017)
https://doi.org/10.1038/s41467-017-01063-9
73 X. Y. Chu, X. Honga, P. Zou, J. Men, and Y. C. Liu, Ultrasensitive protein detection in terms of multiphonon resonance Raman scattering in ZnS nanocrystals, Appl. Phys. Lett. 98(25), 253703 (2011)
https://doi.org/10.1063/1.3601917
74 J. J. Viennot, X. Ma, and K. W. Lehnert, Phonon number-sensitive electromechanics, Phys. Rev. Lett. 121(18), 183601 (2018)
https://doi.org/10.1103/PhysRevLett.121.183601
75 M. Kounalakis, Y. M. Blanter, and G. A. Steele, Synthe-sizing multi-phonon quantum superposition states using flux-mediated three-body interactions with superconduct-ing qubits, npj Quant. Inform. 5, 100, (2019)
https://doi.org/10.1038/s41534-019-0219-y
76 Y. Chu, P. Kharel, T. Yoon, L. Frunzio, P. T. Rakich, and R. J. Schoelkopf, Creation and control of multi-phonon Fock states in a bulk acoustic-wave resonator, Nature 563(7733), 666 (2018)
https://doi.org/10.1038/s41586-018-0717-7
77 R. Ohira, T. Mukaiyama, and K. Toyoda, Phononnumber-resolving detection of multiple local phonon modes in trapped ions, Phys. Rev. A 100, 060301(R) (2019)
https://doi.org/10.1103/PhysRevA.100.060301
78 Q. Bin, X. Y. Lü, F. P. Laussy, F. Nori, and Y. Wu, N-phonon bundle emission via the Stokes process, Phys. Rev. Lett. 124(5), 053601 (2020)
https://doi.org/10.1103/PhysRevLett.124.053601
79 M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, and O. Painter, Optomechanical crystals, Nature 462(7269), 78 (2009)
https://doi.org/10.1038/nature08524
80 J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, Sideband cooling of micromechanical motion to the quantum ground state, Nature 475(7356), 359 (2011)
https://doi.org/10.1038/nature10261
81 S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, Cavity nonlinear optics at low photon numbers from collective atomic motion, Phys. Rev. Lett. 99(21), 213601 (2007)
https://doi.org/10.1103/PhysRevLett.99.213601
82 X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched am-plification and dissipation, Phys. Rev. Lett. 114(9), 093602 (2015)
https://doi.org/10.1103/PhysRevLett.114.093602
83 J. M. Pirkkalainen, S. U. Cho, F. Massel, J. Tuorila, T. T. Heikkilä, P. J. Hakonen, and M. A. Sillanpää, Cavity optomechanics mediated by a quantum two-level system, Nat. Commun. 6(1), 6981 (2015)
https://doi.org/10.1038/ncomms7981
[1] Qian Liang, Tao Chen, Wen-Hao Bu, Yu-He Zhang, Bo Yan. Laser cooling with adiabatic passage for type-II transitions[J]. Front. Phys. , 2021, 16(3): 32501-.
[2] Xiao-hong LI(李小红), Rui-zhou ZHANG(张瑞州), Xian-zhou ZHANG(张现周), . Coherent population transfer in four-level ladder systems by single frequency-chirped laser pulse[J]. Front. Phys. , 2009, 4(4): 481-486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed