|
|
Laser cooling with adiabatic passage for type-II transitions |
Qian Liang1, Tao Chen1( ), Wen-Hao Bu1, Yu-He Zhang1, Bo Yan1,2,3( ) |
1. Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China 2. Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China 3. Key Laboratory of Quantum Optics, Chinese Academy of Sciences, Shanghai 200800, China |
|
|
Abstract We extend the idea of laser cooling with adiabatic passage to multi-level type-II transitions. We find the cooling force can be significantly enhanced when a proper magnetic field is applied. That is because the magnetic field decomposes the multi-level system into several two-level sub-systems, hence the stimulated absorption and stimulated emission can occur in order, allowing for the multiple photon momentum transfer. We show that this scheme also works on the laser-coolable molecules with a better cooling effect compared to the conventional Doppler cooling. A reduced dependence on spontaneous emission based on our scheme is observed as well. Our results suggest this scheme is very feasible for laser cooling of polar molecules.
|
Keywords
laser cooling of polar molecule
adiabatic passage
type-II transition
cold molecule
cold atom
|
Corresponding Author(s):
Tao Chen,Bo Yan
|
Just Accepted Date: 20 October 2020
Issue Date: 14 December 2020
|
|
1 |
S. Chu, The manipulation of neutral particles, Rev. Mod. Phys. 70(3), 685 (1998)
https://doi.org/10.1103/RevModPhys.70.685
|
2 |
W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)
https://doi.org/10.1103/RevModPhys.70.721
|
3 |
C. N. Cohen-Tannoudji, Manipulating atoms with photons, Rev. Mod. Phys. 70(3), 707 (1998)
https://doi.org/10.1103/RevModPhys.70.707
|
4 |
E. A. Cornell and C. E. Wieman, Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)
https://doi.org/10.1103/RevModPhys.74.875
|
5 |
I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
https://doi.org/10.1103/RevModPhys.80.885
|
6 |
A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)
https://doi.org/10.1103/RevModPhys.87.637
|
7 |
J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)
https://doi.org/10.1126/science.aam6299
|
8 |
M. S. Safronova, D. Budker, D. DeMille, D F J. Kimball, A. Derevianko, and C. W. Clark, Search for new physics with atoms and molecules, Rev. Mod. Phys. 90(2), 025008 (2018)
https://doi.org/10.1103/RevModPhys.90.025008
|
9 |
H. Metcalf, Strong optical forces on atoms in multifrequency light, Rev. Mod. Phys. 89(4), 041001 (2017)
https://doi.org/10.1103/RevModPhys.89.041001
|
10 |
T. Lu, X. Miao, and H. Metcalf, Bloch theorem on the Bloch sphere, Phys. Rev. A 71(6), 061405 (2005)
https://doi.org/10.1103/PhysRevA.71.061405
|
11 |
X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, Strong optical forces from adiabatic rapid passage, Phys. Rev. A 75(1), 011402 (2007)
https://doi.org/10.1103/PhysRevA.75.011402
|
12 |
A. M. Jayich, A. C. Vutha, M. T. Hummon, J. V. Porto, and W. C. Campbell, Continuous all-optical deceleration and single-photon cooling of molecular beams, Phys. Rev. A 89(2), 023425 (2014)
https://doi.org/10.1103/PhysRevA.89.023425
|
13 |
J. Söding, R. Grimm, Yu. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, Short-distance atomic beam deceleration with a stimulated light force, Phys. Rev. Lett. 78(8), 1420 (1997)
https://doi.org/10.1103/PhysRevLett.78.1420
|
14 |
L. Yatsenko and H. Metcalf, Dressed-atom description of the bichromatic force, Phys. Rev. A 70(6), 063402 (2004)
https://doi.org/10.1103/PhysRevA.70.063402
|
15 |
M. Partlow, X. Miao, J. Bochmann, M. Cashen, and H. Metcalf, Bichromatic slowing and collimation to make an intense helium beam, Phys. Rev. Lett. 93(21), 213004 (2004)
https://doi.org/10.1103/PhysRevLett.93.213004
|
16 |
C. Corder, B. Arnold, and H. Metcalf, Laser cooling without spontaneous emission, Phys. Rev. Lett. 114(4), 043002 (2015)
https://doi.org/10.1103/PhysRevLett.114.043002
|
17 |
E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
https://doi.org/10.1038/nature09443
|
18 |
M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
https://doi.org/10.1103/PhysRevLett.110.143001
|
19 |
M. D. Di Rosa, Laser-cooling molecules, Europ. Phys. J. D 31, 395 (2004)
https://doi.org/10.1140/epjd/e2004-00167-2
|
20 |
T. Chen, W. Bu, and B. Yan, Structure, branching ratios, and a laser-cooling scheme for the 138BaF molecule, Phys. Rev. A 94(6), 063415 (2016)
https://doi.org/10.1103/PhysRevA.94.063415
|
21 |
B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magnetooptical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)
https://doi.org/10.1103/PhysRevLett.101.243002
|
22 |
T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 053401 (2017)
https://doi.org/10.1103/PhysRevA.96.053401
|
23 |
I. Kozyryev, L. Baum, L. Aldridge, P. Yu, E. E. Eyler, and J. M. Doyle, Coherent bichromatic force deflection of molecules, Phys. Rev. Lett. 120(6), 063205 (2018)
https://doi.org/10.1103/PhysRevLett.120.063205
|
24 |
H. Metcalf and P. V. der Straten, Laser Cooling and Trapping, Springer, 1999
https://doi.org/10.1007/978-1-4612-1470-0
|
25 |
J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: Simple theoretical models, J. Opt. Soc. Am. B 6(11), 2023 (1989)
https://doi.org/10.1364/JOSAB.6.002023
|
26 |
P. Ungar, D. Weiss, E. Riis, and S. Chu, Optical molasses and multilevel atoms: Theory, J. Opt. Soc. Am. B 6(11), 2058 (1989)
https://doi.org/10.1364/JOSAB.6.002058
|
27 |
S. A. Malinovskaya and G. Liu, Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation, Chem. Phys. Lett. 664, 1 (2016)
https://doi.org/10.1016/j.cplett.2016.09.049
|
28 |
M. A. Norcia, J. R. K. Cline, J. P. Bartolotta, M. J. Holland, and J. K. Thompson, Narrow-line laser cooling by adiabatic transfer, New J. Phys. 20(2), 023021 (2018)
https://doi.org/10.1088/1367-2630/aaa950
|
29 |
J. A. Muniz, M. A. Norcia, J. R. K. Cline, and J. K. Thompson, A robust narrow-line magneto-optical trap using adiabatic transfer, arXiv: 1806.00838 (2018)
|
30 |
N. Petersen, F. Mühlbauer, L. Bougas, A. Sharma, D. Budker, and P. Windpassinger, Sawtooth-wave adiabaticpassage slowing of dysprosium, Phys. Rev. A 99(6), 063414 (2019)
https://doi.org/10.1103/PhysRevA.99.063414
|
31 |
J. P. Bartolotta and M. J. Holland, Sawtooth-wave adiabatic passage in a magneto-optical trap, Phys. Rev. A 101(5), 053434 (2020)
https://doi.org/10.1103/PhysRevA.101.053434
|
32 |
G. P. Greve, B. Wu, and J. K. Thompson, Laser cooling with adiabatic transfer on a Raman transition, New J. Phys. 21(7), 073045 (2019)
https://doi.org/10.1088/1367-2630/ab2f3c
|
33 |
J. P. Bartolotta, M. A. Norcia, J. R. K. Cline, J. K. Thompson, and M. J. Holland, Laser cooling by sawtoothwave adiabatic passage, Phys. Rev. A 98(2), 023404 (2018)
https://doi.org/10.1103/PhysRevA.98.023404
|
34 |
A. M. L. Oien, I. T. McKinnie, P. J. Manson, W. J. Sandle, and D. M. Warrington, Cooling mechanisms in the sodium type-II magneto-optical trap, Phys. Rev. A 55(6), 4621 (1997)
https://doi.org/10.1103/PhysRevA.55.4621
|
35 |
V. B. Tiwari, S. Singh, H. S. Rawat, and S. C. Mehendale, Cooling and trapping of 85Rb atoms in the ground hyperfine F= 2 state, Phys. Rev. A 78(6), 063421 (2008)
https://doi.org/10.1103/PhysRevA.78.063421
|
36 |
L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)
https://doi.org/10.1103/PhysRevLett.119.103201
|
37 |
S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)
https://doi.org/10.1038/nphys4241
|
38 |
M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
https://doi.org/10.1103/PhysRevLett.114.223003
|
39 |
K. Mølmer, Y. Castin, and J. Dalibard, Monte Carlo wavefunction method in quantum optics, J. Opt. Soc. Am. B 10(3), 524 (1993)
https://doi.org/10.1364/JOSAB.10.000524
|
40 |
A. L. Collopy, M. T. Hummon, M. Yeo, B. Yan, and J. Ye, Prospects for a narrow line MOT in YO, New J. Phys. 17(5), 055008 (2015)
https://doi.org/10.1088/1367-2630/17/5/055008
|
41 |
A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser cooling below the onephoton recoil energy by velocity-selective coherent population trapping, Phys. Rev. Lett. 61(7), 826 (1988)
https://doi.org/10.1103/PhysRevLett.61.826
|
42 |
M. Kasevich and S. Chu, Laser cooling below a photon recoil with three-level atoms, Phys. Rev. Lett. 69(12), 1741 (1992)
https://doi.org/10.1103/PhysRevLett.69.1741
|
43 |
J. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cambridge University Press, 2003
https://doi.org/10.1017/CBO9780511814808
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|