Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (3) : 32501    https://doi.org/10.1007/s11467-020-1019-8
RESEARCH ARTICLE
Laser cooling with adiabatic passage for type-II transitions
Qian Liang1, Tao Chen1(), Wen-Hao Bu1, Yu-He Zhang1, Bo Yan1,2,3()
1. Interdisciplinary Center of Quantum Information, State Key Laboratory of Modern Optical Instrumentation, Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
2. Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing 210093, China
3. Key Laboratory of Quantum Optics, Chinese Academy of Sciences, Shanghai 200800, China
 Download: PDF(2453 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We extend the idea of laser cooling with adiabatic passage to multi-level type-II transitions. We find the cooling force can be significantly enhanced when a proper magnetic field is applied. That is because the magnetic field decomposes the multi-level system into several two-level sub-systems, hence the stimulated absorption and stimulated emission can occur in order, allowing for the multiple photon momentum transfer. We show that this scheme also works on the laser-coolable molecules with a better cooling effect compared to the conventional Doppler cooling. A reduced dependence on spontaneous emission based on our scheme is observed as well. Our results suggest this scheme is very feasible for laser cooling of polar molecules.

Keywords laser cooling of polar molecule      adiabatic passage      type-II transition      cold molecule      cold atom     
Corresponding Author(s): Tao Chen,Bo Yan   
Just Accepted Date: 20 October 2020   Issue Date: 14 December 2020
 Cite this article:   
Qian Liang,Tao Chen,Wen-Hao Bu, et al. Laser cooling with adiabatic passage for type-II transitions[J]. Front. Phys. , 2021, 16(3): 32501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-020-1019-8
https://academic.hep.com.cn/fop/EN/Y2021/V16/I3/32501
1 S. Chu, The manipulation of neutral particles, Rev. Mod. Phys. 70(3), 685 (1998)
https://doi.org/10.1103/RevModPhys.70.685
2 W. D. Phillips, Laser cooling and trapping of neutral atoms, Rev. Mod. Phys. 70(3), 721 (1998)
https://doi.org/10.1103/RevModPhys.70.721
3 C. N. Cohen-Tannoudji, Manipulating atoms with photons, Rev. Mod. Phys. 70(3), 707 (1998)
https://doi.org/10.1103/RevModPhys.70.707
4 E. A. Cornell and C. E. Wieman, Bose–Einstein condensation in a dilute gas, the first 70 years and some recent experiments, Rev. Mod. Phys. 74(3), 875 (2002)
https://doi.org/10.1103/RevModPhys.74.875
5 I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80(3), 885 (2008)
https://doi.org/10.1103/RevModPhys.80.885
6 A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, Optical atomic clocks, Rev. Mod. Phys. 87(2), 637 (2015)
https://doi.org/10.1103/RevModPhys.87.637
7 J. L. Bohn, A. M. Rey, and J. Ye, Cold molecules: Progress in quantum engineering of chemistry and quantum matter, Science 357(6355), 1002 (2017)
https://doi.org/10.1126/science.aam6299
8 M. S. Safronova, D. Budker, D. DeMille, D F J. Kimball, A. Derevianko, and C. W. Clark, Search for new physics with atoms and molecules, Rev. Mod. Phys. 90(2), 025008 (2018)
https://doi.org/10.1103/RevModPhys.90.025008
9 H. Metcalf, Strong optical forces on atoms in multifrequency light, Rev. Mod. Phys. 89(4), 041001 (2017)
https://doi.org/10.1103/RevModPhys.89.041001
10 T. Lu, X. Miao, and H. Metcalf, Bloch theorem on the Bloch sphere, Phys. Rev. A 71(6), 061405 (2005)
https://doi.org/10.1103/PhysRevA.71.061405
11 X. Miao, E. Wertz, M. G. Cohen, and H. Metcalf, Strong optical forces from adiabatic rapid passage, Phys. Rev. A 75(1), 011402 (2007)
https://doi.org/10.1103/PhysRevA.75.011402
12 A. M. Jayich, A. C. Vutha, M. T. Hummon, J. V. Porto, and W. C. Campbell, Continuous all-optical deceleration and single-photon cooling of molecular beams, Phys. Rev. A 89(2), 023425 (2014)
https://doi.org/10.1103/PhysRevA.89.023425
13 J. Söding, R. Grimm, Yu. B. Ovchinnikov, Ph. Bouyer, and Ch. Salomon, Short-distance atomic beam deceleration with a stimulated light force, Phys. Rev. Lett. 78(8), 1420 (1997)
https://doi.org/10.1103/PhysRevLett.78.1420
14 L. Yatsenko and H. Metcalf, Dressed-atom description of the bichromatic force, Phys. Rev. A 70(6), 063402 (2004)
https://doi.org/10.1103/PhysRevA.70.063402
15 M. Partlow, X. Miao, J. Bochmann, M. Cashen, and H. Metcalf, Bichromatic slowing and collimation to make an intense helium beam, Phys. Rev. Lett. 93(21), 213004 (2004)
https://doi.org/10.1103/PhysRevLett.93.213004
16 C. Corder, B. Arnold, and H. Metcalf, Laser cooling without spontaneous emission, Phys. Rev. Lett. 114(4), 043002 (2015)
https://doi.org/10.1103/PhysRevLett.114.043002
17 E. S. Shuman, J. F. Barry, and D. DeMille, Laser cooling of a diatomic molecule, Nature 467(7317), 820 (2010)
https://doi.org/10.1038/nature09443
18 M. T. Hummon, M. Yeo, B. K. Stuhl, A. L. Collopy, Y. Xia, and J. Ye, 2D magneto-optical trapping of diatomic molecules, Phys. Rev. Lett. 110(14), 143001 (2013)
https://doi.org/10.1103/PhysRevLett.110.143001
19 M. D. Di Rosa, Laser-cooling molecules, Europ. Phys. J. D 31, 395 (2004)
https://doi.org/10.1140/epjd/e2004-00167-2
20 T. Chen, W. Bu, and B. Yan, Structure, branching ratios, and a laser-cooling scheme for the 138BaF molecule, Phys. Rev. A 94(6), 063415 (2016)
https://doi.org/10.1103/PhysRevA.94.063415
21 B. K. Stuhl, B. C. Sawyer, D. Wang, and J. Ye, Magnetooptical trap for polar molecules, Phys. Rev. Lett. 101(24), 243002 (2008)
https://doi.org/10.1103/PhysRevLett.101.243002
22 T. Chen, W. Bu, and B. Yan, Radiative deflection of a BaF molecular beam via optical cycling, Phys. Rev. A 96(5), 053401 (2017)
https://doi.org/10.1103/PhysRevA.96.053401
23 I. Kozyryev, L. Baum, L. Aldridge, P. Yu, E. E. Eyler, and J. M. Doyle, Coherent bichromatic force deflection of molecules, Phys. Rev. Lett. 120(6), 063205 (2018)
https://doi.org/10.1103/PhysRevLett.120.063205
24 H. Metcalf and P. V. der Straten, Laser Cooling and Trapping, Springer, 1999
https://doi.org/10.1007/978-1-4612-1470-0
25 J. Dalibard and C. Cohen-Tannoudji, Laser cooling below the Doppler limit by polarization gradients: Simple theoretical models, J. Opt. Soc. Am. B 6(11), 2023 (1989)
https://doi.org/10.1364/JOSAB.6.002023
26 P. Ungar, D. Weiss, E. Riis, and S. Chu, Optical molasses and multilevel atoms: Theory, J. Opt. Soc. Am. B 6(11), 2058 (1989)
https://doi.org/10.1364/JOSAB.6.002058
27 S. A. Malinovskaya and G. Liu, Harmonic spectral modulation of an optical frequency comb to control the ultracold molecules formation, Chem. Phys. Lett. 664, 1 (2016)
https://doi.org/10.1016/j.cplett.2016.09.049
28 M. A. Norcia, J. R. K. Cline, J. P. Bartolotta, M. J. Holland, and J. K. Thompson, Narrow-line laser cooling by adiabatic transfer, New J. Phys. 20(2), 023021 (2018)
https://doi.org/10.1088/1367-2630/aaa950
29 J. A. Muniz, M. A. Norcia, J. R. K. Cline, and J. K. Thompson, A robust narrow-line magneto-optical trap using adiabatic transfer, arXiv: 1806.00838 (2018)
30 N. Petersen, F. Mühlbauer, L. Bougas, A. Sharma, D. Budker, and P. Windpassinger, Sawtooth-wave adiabaticpassage slowing of dysprosium, Phys. Rev. A 99(6), 063414 (2019)
https://doi.org/10.1103/PhysRevA.99.063414
31 J. P. Bartolotta and M. J. Holland, Sawtooth-wave adiabatic passage in a magneto-optical trap, Phys. Rev. A 101(5), 053434 (2020)
https://doi.org/10.1103/PhysRevA.101.053434
32 G. P. Greve, B. Wu, and J. K. Thompson, Laser cooling with adiabatic transfer on a Raman transition, New J. Phys. 21(7), 073045 (2019)
https://doi.org/10.1088/1367-2630/ab2f3c
33 J. P. Bartolotta, M. A. Norcia, J. R. K. Cline, J. K. Thompson, and M. J. Holland, Laser cooling by sawtoothwave adiabatic passage, Phys. Rev. A 98(2), 023404 (2018)
https://doi.org/10.1103/PhysRevA.98.023404
34 A. M. L. Oien, I. T. McKinnie, P. J. Manson, W. J. Sandle, and D. M. Warrington, Cooling mechanisms in the sodium type-II magneto-optical trap, Phys. Rev. A 55(6), 4621 (1997)
https://doi.org/10.1103/PhysRevA.55.4621
35 V. B. Tiwari, S. Singh, H. S. Rawat, and S. C. Mehendale, Cooling and trapping of 85Rb atoms in the ground hyperfine F= 2 state, Phys. Rev. A 78(6), 063421 (2008)
https://doi.org/10.1103/PhysRevA.78.063421
36 L. Anderegg, B. L. Augenbraun, E. Chae, B. Hemmerling, N. R. Hutzler, A. Ravi, A. Collopy, J. Ye, W. Ketterle, and J. M. Doyle, Radio frequency magneto-optical trapping of CaF with high density, Phys. Rev. Lett. 119(10), 103201 (2017)
https://doi.org/10.1103/PhysRevLett.119.103201
37 S. Truppe, H. J. Williams, M. Hambach, L. Caldwell, N. J. Fitch, E. A. Hinds, B. E. Sauer, and M. R. Tarbutt, Molecules cooled below the Doppler limit, Nat. Phys. 13(12), 1173 (2017)
https://doi.org/10.1038/nphys4241
38 M. Yeo, M. T. Hummon, A. L. Collopy, B. Yan, B. Hemmerling, E. Chae, J. M. Doyle, and J. Ye, Rotational state microwave mixing for laser cooling of complex diatomic molecules, Phys. Rev. Lett. 114(22), 223003 (2015)
https://doi.org/10.1103/PhysRevLett.114.223003
39 K. Mølmer, Y. Castin, and J. Dalibard, Monte Carlo wavefunction method in quantum optics, J. Opt. Soc. Am. B 10(3), 524 (1993)
https://doi.org/10.1364/JOSAB.10.000524
40 A. L. Collopy, M. T. Hummon, M. Yeo, B. Yan, and J. Ye, Prospects for a narrow line MOT in YO, New J. Phys. 17(5), 055008 (2015)
https://doi.org/10.1088/1367-2630/17/5/055008
41 A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Laser cooling below the onephoton recoil energy by velocity-selective coherent population trapping, Phys. Rev. Lett. 61(7), 826 (1988)
https://doi.org/10.1103/PhysRevLett.61.826
42 M. Kasevich and S. Chu, Laser cooling below a photon recoil with three-level atoms, Phys. Rev. Lett. 69(12), 1741 (1992)
https://doi.org/10.1103/PhysRevLett.69.1741
43 J. Brown and A. Carrington, Rotational Spectroscopy of Diatomic Molecules, Cambridge University Press, 2003
https://doi.org/10.1017/CBO9780511814808
[1] Zhi-Rong Zhong, Lei Chen, Jian-Qi Sheng, Li-Tuo Shen, Shi-Biao Zheng. Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system[J]. Front. Phys. , 2022, 17(1): 12501-.
[2] Ji-Zhou Wu, Yu-Qing Li, Wen-Liang Liu, Jie Ma, Lian-Tuan Xiao, Suo-Tang Jia. Light-induced frequency shifts for the lowest vibrational levels of ultracold Cs2 in the molecular pure long-range 0g state[J]. Front. Phys. , 2020, 15(2): 22602-.
[3] Yong Xu. Topological gapless matters in three-dimensional ultracold atomic gases[J]. Front. Phys. , 2019, 14(4): 43402-.
[4] Junbo Zhu (竺俊博),Zhu Chen (陈竹),Biao Wu (吴飙). Construction of maximally localized Wannier functions[J]. Front. Phys. , 2017, 12(5): 127102-.
[5] R. Horchani. Laser cooling of internal degrees of freedom of molecules[J]. Front. Phys. , 2016, 11(4): 113301-.
[6] Hongwei Xiong. Repulsive gravitational effect of a quantum wave packet and experimental scheme with superfluid helium[J]. Front. Phys. , 2015, 10(4): 100401-.
[7] Dan-wei Zhang (张丹伟), Zi-dan Wang (汪子丹), Shi-liang Zhu (朱诗亮). Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Front. Phys. , 2012, 7(1): 31-53.
[8] Andrey R. Kolovsky. Simulating cyclotron-Bloch dynamics of a charged particle in a 2D lattice by means of cold atoms in driven quasi-1D optical lattices[J]. Front. Phys. , 2012, 7(1): 3-7.
[9] Xiao-hong LI(李小红), Rui-zhou ZHANG(张瑞州), Xian-zhou ZHANG(张现周), . Coherent population transfer in four-level ladder systems by single frequency-chirped laser pulse[J]. Front. Phys. , 2009, 4(4): 481-486.
[10] Jin WANG (王谨), Lin ZHOU (周林), Run-bing LI (李润兵), Min LIU (刘敏), Ming-sheng ZHAN (詹明生). Cold atom interferometers and their applications in precision measurements[J]. Front. Phys. , 2009, 4(2): 179-189.
[11] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed