Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (1) : 12503    https://doi.org/10.1007/s11467-021-1097-2
RESEARCH ARTICLE
Suppressing laser phase noise in an optomechanical system
Yexiong Zeng1, Biao Xiong2, Chong Li1()
1. School of Physics, Dalian University of Technology, Dalian 116024, China
2. College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China
 Download: PDF(5848 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a scheme to suppress the laser phase noise without increasing the optomechanical singlephoton coupling strength. In the scheme, the parametric amplification terms, created by Kerr and Duffing nonlinearities, can restrain laser phase noise and strengthen the effective optomechanical coupling, respectively. Interestingly, decreasing laser phase noise leads to increasing thermal noise, which is inhibited by bringing in a broadband-squeezed vacuum environment. To reflect the superiority of the scheme, we simulate quantum memory and stationary optomechanical entanglement as examples, and the corresponding numerical results demonstrate that the laser phase noise is extremely suppressed. Our method can pave the way for studying other quantum phenomena.

Keywords optomechanical system      quantum entanglement      quantum memory     
Corresponding Author(s): Chong Li   
Issue Date: 23 August 2021
 Cite this article:   
Yexiong Zeng,Biao Xiong,Chong Li. Suppressing laser phase noise in an optomechanical system[J]. Front. Phys. , 2022, 17(1): 12503.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1097-2
https://academic.hep.com.cn/fop/EN/Y2022/V17/I1/12503
1 M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Cavity optomechanics, Rev. Mod. Phys. 86(4), 1391 (2014)
https://doi.org/10.1103/RevModPhys.86.1391
2 T. J. Kippenberg and K. J. Vahala, Cavity optomechanics: Back-action at the mesoscale, Science321(5893), 1172 (2008)
https://doi.org/10.1126/science.1156032
3 A. Naik, O. Buu, M. D. LaHaye, A. D. Armour, A. A. Clerk, M. P. Blencowe, and K. C. Schwab, Cooling a nanomechanical resonator with quantum back-action, Nature443(7108), 193 (2006)
https://doi.org/10.1038/nature05027
4 J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, Strong and tunable nonlinear optomechanical coupling in a low-loss system, Nat. Phys. 6(9), 707 (2010)
https://doi.org/10.1038/nphys1707
5 Y. S. Park and H. Wang, Resolved-sideband and cryogenic cooling of an optomechanical resonator, Nat. Phys. 5(7), 489 (2009)
https://doi.org/10.1038/nphys1303
6 P. Rodgers, Mirror finish, Nat. Mater. 9(S1), S20 (2010)
https://doi.org/10.1038/nmat2660
7 M. R. Vanner, Selective linear or quadratic optomechanical coupling via measurement, Phys. Rev. X1(2), 021011 (2011)
https://doi.org/10.1103/PhysRevX.1.021011
8 V. Macrì, A. Ridolfo, O. Di Stefano, A. F. Kockum, F. Nori, and S. Savasta, Nonperturbative dynamical Casimir effect in optomechanical systems: Vacuum Casimir-Rabi splittings, Phys. Rev. X8(1), 011031 (2018)
https://doi.org/10.1103/PhysRevX.8.011031
9 T. K. Paraïso, M. Kalaee, L. Zang, H. Pfeifer, F. Marquardt, and O. Painter, Position-squared coupling in a tunable photonic crystal optomechanical cavity, Phys. Rev. X5(4), 041024 (2015)
https://doi.org/10.1103/PhysRevX.5.041024
10 M. Cirio, K. Debnath, N. Lambert, and F. Nori, Amplified optomechanical transduction of virtual radiation pressure, Phys. Rev. Lett.119(5), 053601 (2017)
https://doi.org/10.1103/PhysRevLett.119.053601
11 J. H. Liu, Y. B. Zhang, Y. F. Yu, and Z. M. Zhang, Photonphonon squeezing and entanglement in a cavity optomechanical system with a flying atom, Front. Phys.14(1), 12601 (2019)
https://doi.org/10.1007/s11467-018-0861-4
12 Z. R. Zhong, X. Wang, and W. Qin, Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure, Front. Phys.13(5), 130319 (2018)
https://doi.org/10.1007/s11467-018-0824-9
13 K. C. Schwab and M. L. Roukes, Putting mechanics into quantum mechanics, Phys. Today58(7), 36 (2005)
https://doi.org/10.1063/1.2012461
14 C. Reinhardt, T. Müller, A. Bourassa, and J. C. Sankey, Ultralow-noise SiN trampoline resonators for sensing and optomechanics, Phys. Rev. X6(2), 021001 (2016)
https://doi.org/10.1103/PhysRevX.6.021001
15 S. Forstner, S. Prams, J. Knittel, E. D. van Ooijen, J. D. Swaim, G. I. Harris, A. Szorkovszky, W. P. Bowen, and H. Rubinsztein-Dunlop, Cavity optomechanical magnetometer, Phys. Rev. Lett.108(12), 120801 (2012)
https://doi.org/10.1103/PhysRevLett.108.120801
16 Z. Zhang, J. Pei, Y.-P. Wang, and X. Wang, Measuring orbital angular momentum of vortex beams in optomechanics, Front. Phys.16(3), 32503 (2021)
https://doi.org/10.1007/s11467-020-1030-0
17 J. Q. Liao and L. Tian, Macroscopic quantum superposition in cavity optomechanics, Phys. Rev. Lett.116(16), 163602 (2016)
https://doi.org/10.1103/PhysRevLett.116.163602
18 J. Q. Liao, Q. Q. Wu, and F. Nori, Entangling two macroscopic mechanical mirrors in a two-cavity optomechanical system, Phys. Rev. A89(1), 014302 (2014)
https://doi.org/10.1103/PhysRevA.89.014302
19 E. E. Wollman, C. U. Lei, A. J. Weinstein, J. Suh, A. Kronwald, F. Marquardt, A. A. Clerk, and K. C. Schwab, Quantum squeezing of motion in a mechanical resonator, Science349(6251), 952 (2015)
https://doi.org/10.1126/science.aac5138
20 B. Xiong, X. Li, S. L. Chao, Z. Yang, W. Z. Zhang, W. Zhang, and L. Zhou, Strong mechanical squeezing in an optomechanical system based on Lyapunov control, Photon. Res.8(2), 151 (2020)
https://doi.org/10.1364/PRJ.8.000151
21 X. B. Yan, H. L. Lu, F. Gao, and L. Yang, Perfect optical nonreciprocity in a double-cavity optomechanical system, Front. Phys.14(5), 52601 (2019)
https://doi.org/10.1007/s11467-019-0922-3
22 A. A. Clerk, F. Marquardt, and J. G. E. Harris, Quantum measurement of phonon shot noise, Phys. Rev. Lett.104(21), 213603 (2010)
https://doi.org/10.1103/PhysRevLett.104.213603
23 P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, A quantum spin transducer based on nanoelectromechanical resonator arrays, Nat. Phys.6(8), 602 (2010)
https://doi.org/10.1038/nphys1679
24 X. W. Xu and Y. Li, Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems, Phys. Rev. A 91(5), 053854 (2015)
https://doi.org/10.1103/PhysRevA.91.053854
25 L. N. Song, Q. Zheng, X. W. Xu, C. Jiang, and Y. Li, Optimal unidirectional amplification induced by optical gain in optomechanical systems, Phys. Rev. A 100(4), 043835 (2019)
https://doi.org/10.1103/PhysRevA.100.043835
26 W. Li, P. Piergentili, J. Li, S. Zippilli, R. Natali, N. Malossi, G. Di Giuseppe, and D. Vitali, Noise robustness of synchronization of two nanomechanical resonators coupled to the same cavity field, Phys. Rev. A 101(1), 013802 (2020)
https://doi.org/10.1103/PhysRevA.101.013802
27 H. Jing, Ş. K. Özdemir, Z. Geng, J. Zhang, X. Y. Lü, B. Peng, L. Yang, and F. Nori, Optomechanically-induced transparency in parity-time-symmetric microresonators, Sci. Rep.5(1), 9663 (2015)
https://doi.org/10.1038/srep09663
28 H. Jing, Ş. K. Özdemir, H. Lü, and F. Nori, High-order exceptional points in optomechanics, Sci. Rep.7(1), 3386 (2017)
https://doi.org/10.1038/s41598-017-03546-7
29 Y. X. Zeng, J. Shen, M. S. Ding, and C. Li, Macroscopic Schrödinger cat state swapping in optomechanical system, Opt. Express 28(7), 9587 (2020)
https://doi.org/10.1364/OE.385814
30 Y. X. Zeng, T. Gebremariam, J. Shen, B. Xiong, and C. Li, Application of machine learning for predicting strong phonon blockade, Appl. Phys. Lett.118(16), 164003 (2021)
https://doi.org/10.1063/5.0035498
31 X. Y. Lü, W. M. Zhang, S. Ashhab, Y. Wu, and F. Nori, Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems, Sci. Rep.3(1), 2943 (2013)
https://doi.org/10.1038/srep02943
32 J. R. Johansson, G. Johansson, and F. Nori, Optomechanical-like coupling between superconducting resonators, Phys. Rev. A 90(5), 053833 (2014)
https://doi.org/10.1103/PhysRevA.90.053833
33 M. M. Zhao, Z. Qian, B. P. Hou, Y. Liu, and Y. H. Zhao, Optomechanical properties of a degenerate nonperiodic cavity chain, Front. Phys.14(2), 22601 (2019)
https://doi.org/10.1007/s11467-019-0898-z
34 M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, Robust stationary mechanical squeezing in a kicked quadratic optomechanical system, Phys. Rev. A89(2), 023849 (2014)
https://doi.org/10.1103/PhysRevA.89.023849
35 E. J. Kim, J. R. Johansson, and F. Nori, Circuit analog of quadratic optomechanics, Phys. Rev. A91(3), 033835 (2015)
https://doi.org/10.1103/PhysRevA.91.033835
36 W. Z. Zhang, L. B. Chen, J. Cheng, and Y. F. Jiang, Quantum-correlation-enhanced weak-field detection in an optomechanical system, Phys. Rev. A 99(6), 063811 (2019)
https://doi.org/10.1103/PhysRevA.99.063811
37 B. Xiong, X. Li, S. L. Chao, Z. Yang, R. Peng, and L. Zhou, Strong squeezing of duffing oscillator in a highly dissipative optomechanical cavity system, Ann. Phys. (Berlin)532(4), 1900596 (2020)
https://doi.org/10.1002/andp.201900596
38 B. Xiong, X. Li, S. L. Chao, and L. Zhou, Optomechanical quadrature squeezing in the non-Markovian regime, Opt. Lett.43(24), 6053 (2018)
https://doi.org/10.1364/OL.43.006053
39 D. G. Lai, X. Wang, W. Qin, B. P. Hou, F. Nori, and J. Q. Liao, Tunable optomechanically induced transparency by controlling the dark-mode effect, Phys. Rev. A 102(2), 023707 (2020)
https://doi.org/10.1103/PhysRevA.102.023707
40 H. Wang, X. Gu, Y. X. Liu, A. Miranowicz, and F. Nori, Tunable photon blockade in a hybrid system consisting of an optomechanical device coupled to a two-level system, Phys. Rev. A92(3), 033806 (2015)
https://doi.org/10.1103/PhysRevA.92.033806
41 J.Q. Liao, K. Jacobs, F. Nori, and R. W. Simmonds, Modulated electromechanics: Large enhancements of nonlinearities, New J. Phys.16, 072001 (2014)
https://doi.org/10.1088/1367-2630/16/7/072001
42 J. Q. Liao, J. F. Huang, L. Tian, L. M. Kuang, and C. P. Sun, Generalized ultrastrong optomechanical-like coupling, Phys. Rev. A101(6), 063802 (2020)
https://doi.org/10.1103/PhysRevA.101.063802
43 Y. C. Liu, Y. F. Xiao, X. Luan, and C. W. Wong, Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics, Phys. Rev. Lett.110(15), 153606 (2013)
https://doi.org/10.1103/PhysRevLett.110.153606
44 Y. C. Liu, Y. F. Xiao, X. Luan, Q. Gong, and C. W. Wong, Coupled cavities for motional ground-state cooling and strong optomechanical coupling, Phys. Rev. A 91(3), 033818 (2015)
https://doi.org/10.1103/PhysRevA.91.033818
45 M. Wang, X. Y. Lü, Y. D. Wang, J. Q. You, and Y. Wu, Macroscopic quantum entanglement in modulated optomechanics, Phys. Rev. A 94(5), 053807 (2016)
https://doi.org/10.1103/PhysRevA.94.053807
46 X. Y. Zhang, Y. Q. Guo, P. Pei, and X. X. Yi, Optomechanically induced absorption in parity–time-symmetric optomechanical systems, Phys. Rev. A95(6), 063825 (2017)
https://doi.org/10.1103/PhysRevA.95.063825
47 X. Y. Zhang, Y. H. Zhou, Y. Q. Guo, and X. X. Yi, Optomechanically induced transparency in optomechanics with both linear and quadratic coupling, Phys. Rev. A 98(5), 053802 (2018)
https://doi.org/10.1103/PhysRevA.98.053802
48 A. Schliesser, R. Rivière, G. Anetsberger, O. Arcizet, and T. J. Kippenberg, Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys. 4(5), 415 (2008)
https://doi.org/10.1038/nphys939
49 G. A. Phelps and P. Meystre, Laser phase noise effects on the dynamics of optomechanical resonators, Phys. Rev. A83(6), 063838 (2011)
https://doi.org/10.1103/PhysRevA.83.063838
50 A. Dalafi and M. H. Naderi, Dispersive interaction of a Bose-Einstein condensate with a movable mirror of an optomechanical cavity in the presence of laser phase noise, Phys. Rev. A 94, 063636 (2016)
https://doi.org/10.1103/PhysRevA.94.063636
51 L. Diósi, Laser linewidth hazard in optomechanical cooling, Phys. Rev. A 78(2), 021801 (2008)
https://doi.org/10.1103/PhysRevA.78.021801
52 Z. Q. Yin, Phase noise and laser-cooling limits of optomechanical oscillators, Phys. Rev. A80(3), 033821 (2009)
https://doi.org/10.1103/PhysRevA.80.033821
53 F. Farman and A. R. Bahrampour, Effects of optical parametric amplifier pump phase noise on the cooling of optomechanical resonators, J. Opt. Soc. Am. B30(7), 1898 (2013)
https://doi.org/10.1364/JOSAB.30.001898
54 P. Rabl, C. Genes, K. Hammerer, and M. Aspelmeyer, Phase-noise induced limitations on cooling and coherent evolution in optomechanical systems, Phys. Rev. A 80(6), 063819 (2009)
https://doi.org/10.1103/PhysRevA.80.063819
55 N. Meyer, A. R. Sommer, P. Mestres, J. Gieseler, V. Jain, L. Novotny, and R. Quidant, Resolved-sideband cooling of a levitated nanoparticle in the presence of laser phase noise, Phys. Rev. Lett.123(15), 153601 (2019)
https://doi.org/10.1103/PhysRevLett.123.153601
56 B. He, L. Yang, Q. Lin, and M. Xiao, Radiation pressure cooling as a quantum dynamical process, Phys. Rev. Lett.118(23), 233604 (2017)
https://doi.org/10.1103/PhysRevLett.118.233604
57 W. Wieczorek, S. G. Hofer, J. Hoelscher-Obermaier, R. Riedinger, K. Hammerer, and M. Aspelmeyer, Optimal state estimation for cavity optomechanical systems, Phys.Rev. Lett.114(22), 223601 (2015)
https://doi.org/10.1103/PhysRevLett.114.223601
58 A. Mehmood, S. Qamar, and S. Qamar, Effects of laser phase fluctuation on force sensing for a free particle in a dissipative optomechanical system, Phys. Rev. A 98(5), 053841 (2018)
https://doi.org/10.1103/PhysRevA.98.053841
59 A. Mehmood, S. Qamar, and S. Qamar, Force sensing in a dissipative optomechanical system in the presence of parametric amplifier’s pump phase noise, Phys. Scr.94(9), 095502 (2019)
https://doi.org/10.1088/1402-4896/ab1768
60 W. J. Gu, Y. Y. Wang, Z. Yi, W. X. Yang, and L. H. Sun, Force measurement in squeezed dissipative optomechanics in the presence of laser phase noise, Opt. Express 28(8), 12460 (2020)
https://doi.org/10.1364/OE.389854
61 A. Pontin, C. Biancofiore, E. Serra, A. Borrielli, F. S. Cataliotti, F. Marino, G. A. Prodi, M. Bonaldi, F. Marin, and D. Vitali, Frequency-noise cancellation in optomechanical systems for ponderomotive squeezing, Phys. Rev. A 89(3), 033810 (2014)
https://doi.org/10.1103/PhysRevA.89.033810
62 F. Farman and A. R. Bahrampour, Effect of laser phase noise on the fidelity of optomechanical quantum memory, Phys. Rev. A91(3), 033828 (2015)
https://doi.org/10.1103/PhysRevA.91.033828
63 M. Abdi, S. Barzanjeh, P. Tombesi, and D. Vitali, Effect of phase noise on the generation of stationary entanglement in cavity optomechanics, Phys. Rev. A 84(3), 032325 (2011)
https://doi.org/10.1103/PhysRevA.84.032325
64 R. Ghobadi, A. R. Bahrampour, and C. Simon, Optomechanical entanglement in the presence of laser phase noise, Phys. Rev. A 84(6), 063827 (2011)
https://doi.org/10.1103/PhysRevA.84.063827
65 R. Ahmed and S. Qamar, Effects of laser phase noise on optomechanical entanglement in the presence of a nonlinear Kerr downconverter, Phys. Scr.94(8), 085102 (2019)
https://doi.org/10.1088/1402-4896/ab0d99
66 X. B. Yan, Enhanced output entanglement with reservoir engineering, Phys. Rev. A96(5), 053831 (2017)
https://doi.org/10.1103/PhysRevA.96.053831
67 X. B. Yan, Z. J. Deng, X. D. Tian, and J. H. Wu, Entanglement optimization of filtered output fields in cavity optomechanics, Opt. Express 27(17), 24393 (2019)
https://doi.org/10.1364/OE.27.024393
68 D. Zhang and Q. Zheng, Effect of phase noise on the stationary entanglement of an optomechanical system with Kerr medium, Chin. Phys. Lett.30(2), 024213 (2013)
https://doi.org/10.1088/0256-307X/30/2/024213
69 D. Zhang, X. P. Zhang, and Q. Zheng, Enhancing stationary optomechanical entanglement with the Kerr medium, Chin. Phys. B 22(6), 064206 (2013)
https://doi.org/10.1088/1674-1056/22/6/064206
70 T. Kumar, A. B. Bhattacherjee, and Man Mohan, Dynamics of a movable micromirror in a nonlinear optical cavity, Phys. Rev. A 81(1), 013835 (2010)
https://doi.org/10.1103/PhysRevA.81.013835
71 S. Huang and A. Chen, Fano resonance and amplification in a quadratically coupled optomechanical system with a Kerr medium, Phys. Rev. A 101(2), 023841 (2020)
https://doi.org/10.1103/PhysRevA.101.023841
72 J. S. Zhang, M. C. Li, and A. X. Chen, Enhancing quadratic optomechanical coupling via a nonlinear medium and lasers, Phys. Rev. A 99(1), 013843 (2019)
https://doi.org/10.1103/PhysRevA.99.013843
73 X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity, Phys. Rev. A91(1), 013834 (2015)
https://doi.org/10.1103/PhysRevA.91.013834
74 V. Brasch, M. Geiselmann, T. Herr, G. Lihachev, M. H. P. Pfeiffer, M. L. Gorodetsky, and T. J. Kippenberg, Photonic chip-based optical frequency comb using soliton Cherenkov radiation, Science351(6271), 357 (2016)
https://doi.org/10.1126/science.aad4811
75 Z. R. Gong, H. Ian, Y. X. Liu, C. P. Sun, and F. Nori, Effective Hamiltonian approach to the Kerr nonlinearity in an optomechanical system, Phys. Rev. A 80(6), 065801 (2009)
https://doi.org/10.1103/PhysRevA.80.065801
76 R. W. Boyd, Nonlinear Optics, 3rd Ed., Academic Press, 2008
77 K. J. Vahala, Optical microcavities, Nature424(6950), 839 (2003)
https://doi.org/10.1038/nature01939
78 M. Asjad, S. Zippilli, and D. Vitali, Suppression of Stokes scattering and improved optomechanical cooling with squeezed light, Phys. Rev. A 94(5), 051801 (2016)
https://doi.org/10.1103/PhysRevA.94.051801
79 J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, Sideband cooling beyond the quantum backaction limit with squeezed light, Nature541(7636), 191 (2017)
https://doi.org/10.1038/nature20604
80 D. Felinto, C. W. Chou, J. Laurat, E. W. Schomburg, H. de Riedmatten, and H. J. Kimble, Conditional control of the quantum states of remote atomic memories for quantum networking, Nat. Phys.2(12), 844 (2006)
https://doi.org/10.1038/nphys450
81 V. Fiore, Y. Yang, M. C. Kuzyk, R. Barbour, L. Tian, and H. Wang, Storing optical information as a mechanical excitation in a silica optomechanical resonator, Phys. Rev. Lett.107(13), 133601 (2011)
https://doi.org/10.1103/PhysRevLett.107.133601
82 Y. D. Wang and A. A. Clerk, Using dark modes for highfidelity optomechanical quantum state transfer, New J.Phys.14(10), 105010 (2012)
https://doi.org/10.1088/1367-2630/14/10/105010
83 E. X. DeJesus and C. Kaufman, Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations, Phys. Rev. A 35(12), 5288 (1987)
https://doi.org/10.1103/PhysRevA.35.5288
84 S. Mahajan and A. Bhattacherjee, Controllable nonlinear effects in a hybrid optomechanical semiconductor microcavity containing a quantum dot and Kerr medium, J.Mod. Opt. 66(6), 652 (2019)
https://doi.org/10.1080/09500340.2018.1560510
85 V. Bhatt, P. Jha, and A. Bhattacherjee, Effect of second-order nonlinearity on quantum coherent oscillations in a quantum dot embedded in a doubly resonantsemiconductor micro-cavity, Optik (Stuttg.) 198, 163167 (2019)
https://doi.org/10.1016/j.ijleo.2019.163167
86 S. Mahajan, T. Kumar, A. Bhattacherjee, and ManMo-han, Ground-state cooling of a mechanical oscillator and detection of a weak force using a Bose-Einstein condensate, Phys. Rev. A 87(1), 013621 (2013)
https://doi.org/10.1103/PhysRevA.87.013621
87 G. Vidal and R. F. Werner, Computable measure of entanglement, Phys. Rev. A65(3), 032314 (2002)
https://doi.org/10.1103/PhysRevA.65.032314
88 X. Y. Lü, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett.114(9), 093602 (2015)
https://doi.org/10.1103/PhysRevLett.114.093602
89 T. S. Yin, X. Y. Lü, L. L. Zheng, M. Wang, S. Li, and Y. Wu, Nonlinear effects in modulated quantum optomechanics, Phys. Rev. A 95(5), 053861 (2017)
https://doi.org/10.1103/PhysRevA.95.053861
[1] Chengyuan Wang, Yun Chen, Zibin Jiang, Ya Yu, Mingtao Cao, Dong Wei, Hong Gao, Fuli Li. Experimental investigation of light storage of diffraction-free and quasi-diffraction-free beams in hot atomic gas cell[J]. Front. Phys. , 2022, 17(2): 22503-.
[2] Zhi-Rong Zhong, Lei Chen, Jian-Qi Sheng, Li-Tuo Shen, Shi-Biao Zheng. Multiphonon-resonance quantum Rabi model and adiabatic passage in a cavity-optomechanical system[J]. Front. Phys. , 2022, 17(1): 12501-.
[3] Xiao-Tao Mo, Zheng-Yuan Xue. Single-step multipartite entangled states generation from coupled circuit cavities[J]. Front. Phys. , 2019, 14(3): 31602-.
[4] Zhi-Rong Zhong, Xin Wang, Wei Qin. Towards quantum entanglement of micromirrors via a two-level atom and radiation pressure[J]. Front. Phys. , 2018, 13(5): 130319-.
[5] Cun-Jin Liu, Wei Ye, Wei-Dong Zhou, Hao-Liang Zhang, Jie-Hui Huang, Li-Yun Hu. Entanglement of coherent superposition of photon-subtraction squeezed vacuum[J]. Front. Phys. , 2017, 12(5): 120307-.
[6] Ming Li, Ming-Jing Zhao, Shao-Ming Fei, Zhi-Xi Wang. Experimental detection of quantum entanglement[J]. Front. Phys. , 2013, 8(4): 357-374.
[7] Bao-sen SHI (史保森), Chang ZHAI (翟畅), Fu-yuan WANG (王福源), Guang-can GUO (郭光灿). Preparation of narrow-band photons for atomic-based quantum memory with a type-I phase matched periodical poled KTP crystal[J]. Front Phys Chin, 2010, 5(2): 131-146.
[8] Yanhua Shih. The physics of 2≠1 + 1[J]. Front. Phys. , 2007, 2(2): 125-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed