Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (1) : 12504    https://doi.org/10.1007/s11467-021-1099-0
RESEARCH ARTICLE
Machine learning identification of symmetrized base states of Rydberg atoms
Daryl Ryan Chong1, Minhyuk Kim2, Jaewook Ahn2, Heejeong Jeong1()
1. Department of Physics, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
2. Department of Physics, KAIST, Daejeon 34141, Korea
 Download: PDF(13066 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Studying the complex quantum dynamics of interacting many-body systems is one of the most challenging areas in modern physics. Here, we use machine learning (ML) models to identify the symmetrized base states of interacting Rydberg atoms of various atom numbers (up to six) and geometric configurations. To obtain the data set for training the ML classifiers, we generate Rydberg excitation probability profiles that simulate experimental data by utilizing Lindblad equations that incorporate laser intensities and phase noise. Then, we classify the data sets using support vector machines (SVMs) and random forest classifiers (RFCs). With these ML models, we achieve high accuracy of up to 100% for data sets containing only a few hundred samples, especially for the closed atom configurations such as the pentagonal (five atoms) and hexagonal (six atoms) systems. The results demonstrate that computationally cost-effective ML models can be used in the identification of Rydberg atom configurations.

Keywords Rydberg atoms      machine learning     
Corresponding Author(s): Heejeong Jeong   
Issue Date: 30 August 2021
 Cite this article:   
Daryl Ryan Chong,Minhyuk Kim,Jaewook Ahn, et al. Machine learning identification of symmetrized base states of Rydberg atoms[J]. Front. Phys. , 2022, 17(1): 12504.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1099-0
https://academic.hep.com.cn/fop/EN/Y2022/V17/I1/12504
1 D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, and A. Browaeys, Synthetic three-dimensional atomic structures assembled atom by atom, Nature 561(7721), 79 (2018)
https://doi.org/10.1038/s41586-018-0450-2
2 H. Sun, Y. Song, A. Byun, H. Jeong, and J. Ahn, Imaging three-dimensional single-atom arrays all at once, Opt. Express 29(3), 4082 (2021)
https://doi.org/10.1364/OE.415805
3 G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, and L. Zdeborová, Machine learning and the physical sciences, Rev. Mod. Phys.91(4), 045002 (2019)
https://doi.org/10.1103/RevModPhys.91.045002
4 J. Lee, A. Seko, K. Shitara, K. Nakayama, and I. Tanaka, Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques, Phys. Rev. B 93(11), 115104 (2016)
https://doi.org/10.1103/PhysRevB.93.115104
5 D. L. Deng, X. Li, and S. D. Das Sarma, Machine learning topological states, Phys. Rev. B 96(19), 195145 (2017)
https://doi.org/10.1103/PhysRevB.96.195145
6 K. Min, B. Choi, K. Park, and E. Cho, Machine learning assisted optimization of electrochemical properties for Nirich cathode materials, Sci. Rep. 8(1), 15778 (2018)
https://doi.org/10.1038/s41598-018-34201-4
7 G. Torlai, G. Mazzola, J. Carrasquilla, M. Troyer, R. Melko, and G. Carleo, Neural-network quantum state tomography, Nat. Phys. 14(5), 447 (2018)
https://doi.org/10.1038/s41567-018-0048-5
8 T. Weiss and O. Romero-Isart, Quantum motional state tomography with nonquadratic potentials and neural networks, Phys. Rev. Res. 1(3), 033157 (2019)
https://doi.org/10.1103/PhysRevResearch.1.033157
9 Y. Che, C. Gneiting, T. Liu, and F. Nori, Topological quantum phase transitions retrieved through unsupervised machine learning, Phys. Rev. B 102(13), 134213 (2020)
https://doi.org/10.1103/PhysRevB.102.134213
10 A. J. Barker, H. Style, K. Luksch, S. Sunami, D. Garrick, F. Hill, C. J. Foot, and E. Bentine, Applying machine learning optimization methods to the production of a quantum gas, Mach. Learn.: Sci. Technol. 1(1), 015007 (2020)
https://doi.org/10.1088/2632-2153/ab6432
11 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, and J. Vanderplas, Scikit-learn: Machine learning in python, J. Mach. Learn. Res.12, 2825 (2011)
12 M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Dipole blockade and quantum information processing in mesoscopic atomic ensembles, Phys. Rev. Lett. 87(3), 037901 (2001)
https://doi.org/10.1103/PhysRevLett.87.037901
13 M. Kim, Y. Song, J. Kim, and J. Ahn, Quantum Ising Hamiltonian programming in trio, quartet, and sextet qubit systems, PRX Quantum 1(2), 020323 (2020)
https://doi.org/10.1103/PRXQuantum.1.020323
14 E. Urban, T. A. Johnson, T. Henage, L. Isenhower, D. D. Yavuz, T. G. Walker, and M. Saffman, Observation of Rydberg blockade between two atoms, Nat. Phys. 5(2), 110 (2009)
https://doi.org/10.1038/nphys1178
15 A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Observation of collective excitation of two individual atoms in the Rydberg blockade regime, Nat. Phys. 5(2), 115 (2009)
https://doi.org/10.1038/nphys1183
16 A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras & Tensor Flow, O’Reilly Media, 2019
17 D. Cox and D. Hinkley, Theoretical Statistics, Chapman & Hall, 1974
https://doi.org/10.1007/978-1-4899-2887-0
18 R. Hoekstra, R. D. Morey, J. N. Rouder, and E. J. Wagenmakers, Robust misinterpretation of confidence intervals, Psychon. Bull. Rev.21(5), 1157 (2014)
https://doi.org/10.3758/s13423-013-0572-3
19 L. D. Brown, T. T. Cai, and A. DasGupta, Interval estimation for a binomial proportion, Stat. Sci. 16(2), 101 (2001)
https://doi.org/10.1214/ss/1009213286
[1] Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, Jie Song. Unselective ground-state blockade of Rydberg atoms for implementing quantum gates[J]. Front. Phys. , 2022, 17(2): 22501-.
[2] Yulou Ouyang, Cuiqian Yu, Gang Yan, Jie Chen. Machine learning approach for the prediction and optimization of thermal transport properties[J]. Front. Phys. , 2021, 16(4): 43200-.
[3] Wen Tong, Qun Wei, Hai-Yan Yan, Mei-Guang Zhang, Xuan-Min Zhu. Accelerating inverse crystal structure prediction by machine learning: A case study of carbon allotropes[J]. Front. Phys. , 2020, 15(6): 63501-.
[4] Ce Wang, Hui Zhai. Machine learning of frustrated classical spin models (II): Kernel principal component analysis[J]. Front. Phys. , 2018, 13(5): 130507-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed