|
|
Detecting a single atom in a cavity using the χ(2) nonlinear medium |
Dong-Liang Chen1,2, Ye-Hong Chen3, Yang Liu1,2, Zhi-Cheng Shi1,2, Jie Song4, Yan Xia1,2( ) |
1. Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou 350108, China 2. Department of Physics, Fuzhou University, Fuzhou 350108, China 3. Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan 4. Department of Physics, Harbin Institute of Technology, Harbin 150001, China |
|
|
Abstract We propose a protocol for detecting a single atom in a cavity with the help of the χ(2) nonlinear medium. When the χ(2) nonlinear medium is driven by an external laser field, the cavity mode will be squeezed, and thus one can obtain an exponentially enhanced light-matter coupling. Such a strong coupling between the atom and the cavity field can significantly change the output photon flux, the quantum fluctuations, the quantum statistical property, and the photon number distributions of the cavity field. This provides practical strategies to determine the presence or absence of an atom in a cavity. The proposed protocol exhibits some advantages, such as controllable squeezing strength and exponential increase of atom-cavity coupling strength, which make the experimental phenomenon more obvious. We hope that this protocol can supplement the existing intracavity single-atom detection protocols and provide a promise for quantum sensing in different quantum systems.
|
Keywords
single atom
nonlinear medium
cavity QED
|
Corresponding Author(s):
Yan Xia
|
Issue Date: 28 March 2022
|
|
1 |
S. M. Dutra , Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box, John Wiley & Sons, New York, 2005
|
2 |
S. Haroche and J. M. Raimond , Exploring the Quantum: Atoms, Cavities, and Photons, Oxford University Press, Oxford, 2006
|
3 |
J. Weiner and P. T. Ho , Light-Matter Interaction: Fundamentals and Applications, Vol. 1, John Wiley & Sons, New York, 2008
|
4 |
M. O. Scully and M. S. Zubairy , Quantum Optics, Cambridge University Press, Cambridge, 1997
|
5 |
E. T. Jaynes and F. W. Cummings , Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51 (1), 89 (1963)
https://doi.org/10.1109/PR%20OC.1963.1664
|
6 |
B. W. Shore and P. L. Knight , The Jaynes–Cummings model, J. Mod. Opt. 40 (7), 1195 (1993)
https://doi.org/10.1080/09500349314551321
|
7 |
M. Tavis and F. W. Cummings , Exact solution for an N-molecule — Radiation-field Hamiltonian, Phys. Rev. 170 (2), 379 (1968)
https://doi.org/10.1103/PhysRev.170.379
|
8 |
M. Brune , J. M. Raimond , and S. Haroche , Theory of the Rydberg-atom two-photon micromaser, Phys. Rev. A 35 (1), 154 (1987)
https://doi.org/10.1103/PhysRevA.35.154
|
9 |
S. C. Gou , Dynamics of the two-mode Jaynes–Cummings model modified by Stark shifts, Phys. Lett. A 147 (4), 218 (1990)
https://doi.org/10.1016/0375-9601(90)90635-2
|
10 |
N. Bogolubov , M. Rasulova , and I. Tishabaev , in: 2011 2nd International Conference on Photonics, 2011
|
11 |
A. S. Obada and A. Abdel-Hafez , Time evolution for a three-level atom in interaction with two modes, J. Mod. Opt. 34 (5), 665 (1987)
https://doi.org/10.1080/09500348714550681
|
12 |
Y. Wang , J. L. Wu , J. Song , Z. J. Zhang , Y. Y. Jiang , and Y. Xia , Enhancing atom-field interaction in the reduced multiphoton Tavis–Cummings model, Phys. Rev. A 101 (5), 053826 (2020)
https://doi.org/10.1103/PhysRevA.101.053826
|
13 |
D. Hagenmüller , S. Schütz , G. Pupillo , and J. Schachenmayer , Adiabatic elimination for ensembles of emitters in cavities with dissipative couplings, Phys. Rev. A 102 (1), 013714 (2020)
https://doi.org/10.1103/PhysRevA.102.013714
|
14 |
T. Yoshie , A. Scherer , J. Hendrickson , G. Khitrova , H. Gibbs , G. Rupper , C. Ell , O. Shchekin , and D. Deppe , Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432 (7014), 200 (2004)
https://doi.org/10.1038/nature03119
|
15 |
R. Loudon and P. Knight , Squeezed light, J. Mod. Opt. 34 (6-7), 709 (1987)
https://doi.org/10.1080/09500348714550721
|
16 |
J. R. Kukliński and J. L. Madajczyk , Strong squeezing in the Jaynes-Cummings model, Phys. Rev. A 37, 3175(R) (1988)
https://doi.org/10.1103/PhysRevA.37.3175
|
17 |
S. B. Zheng , Z. B. Yang , and Y. Xia , Generation of twomode squeezed states for two separated atomic ensembles via coupled cavities, Phys. Rev. A 81 (1), 015804 (2010)
https://doi.org/10.1103/PhysRevA.81.015804
|
18 |
K. M. Birnbaum , A. Boca , R. Miller , A. D. Boozer , T. E. Northup , and H. J. Kimble , Photon blockade in an optical cavity with one trapped atom, Nature 436 (7047), 87 (2005)
https://doi.org/10.1038/nature03804
|
19 |
K. M. Gheri and H. Ritsch , Single-atom quantum gate for light, Phys. Rev. A 56 (4), 3187 (1997)
https://doi.org/10.1103/PhysRevA.56.3187
|
20 |
T. Sleator and H. Weinfurter , Realizable universal quantum logic gates, Phys. Rev. Lett. 74 (20), 4087 (1995)
https://doi.org/10.1103/PhysRevLett.74.4087
|
21 |
S. B. Zheng and G. C. Guo , Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85 (11), 2392 (2000)
https://doi.org/10.1103/PhysRevLett.85.2392
|
22 |
C. C. Gerry , Preparation of multiatom entangled states through dispersive atom–cavity-field interactions, Phys. Rev. A 53 (4), 2857 (1996)
https://doi.org/10.1103/PhysRevA.53.2857
|
23 |
X. Q. Shao , Engineering steady entanglement for trapped ions at finite temperature by dissipation, Phys. Rev. A 98 (4), 042310 (2018)
https://doi.org/10.1103/PhysRevA.98.042310
|
24 |
Y. H. Chen , Y. Xia , Q. Q. Chen , and J. Song , Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states, Phys. Rev. A 91 (1), 012325 (2015)
https://doi.org/10.1103/PhysRevA.91.012325
|
25 |
D. Ran , Z. C. Shi , J. Song , and Y. Xia , Speeding up adiabatic passage by adding Lyapunov control, Phys. Rev. A 96 (3), 033803 (2017)
https://doi.org/10.1103/PhysRevA.96.033803
|
26 |
X. Q. Shao , J. H. Wu , and X. X. Yi , Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms, Phys. Rev. A 95 (2), 022317 (2017)
https://doi.org/10.1103/PhysRevA.95.022317
|
27 |
X. Q. Shao , J. B. You , T. Y. Zheng , C. H. Oh , and S. Zhang , Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89 (5), 052313 (2014)
https://doi.org/10.1103/PhysRevA.89.052313
|
28 |
X. Q. Shao , Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102 (5), 053118 (2020)
https://doi.org/10.1103/PhysRevA.102.053118
|
29 |
A. Rauschenbeutel , G. Nogues , S. Osnaghi , P. Bertet , M. Brune , J. M. Raimond , and S. Haroche , Coherent operation of a tunable quantum phase gate in cavity QED, Phys. Rev. Lett. 83 (24), 5166 (1999)
https://doi.org/10.1103/PhysRevLett.83.5166
|
30 |
A. Imamoglu , D. D. Awschalom , G. Burkard , D. P. Di Vincenzo , D. Loss , M. Sherwin , and A. Small , Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett. 83 (20), 4204 (1999)
https://doi.org/10.1103/PhysRevLett.83.4204
|
31 |
C. P. Yang , S. I. Chu , and S. Han , Possible realization of entanglement, logical gates, and quantuminformation transfer with superconducting-quantuminterference-device qubits in cavity QED, Phys. Rev. A 67 (4), 042311 (2003)
https://doi.org/10.1103/PhysRevA.67.042311
|
32 |
Z. C. Shi , D. Ran , L. T. Shen , Y. Xia , and X. X. Yi , Quantum state engineering by periodical two-step modulation in an atomic system, Opt. Express 26 (26), 34789 (2018)
https://doi.org/10.1364/OE.26.034789
|
33 |
Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102 (2), 022617 (2020)
https://doi.org/10.1103/PhysRevA.102.022617
|
34 |
Y. C. Zhang , G. Li , P. F. Zhang , J. M. Wang , and T. C. Zhang , Experimental progress in optical manipulation of single atoms for cavity QED, Front. Phys. 4 (2), 190 (2009)
https://doi.org/10.1007/s11467-009-0016-8
|
35 |
S. Liu , J. H. Shen , R. H. Zheng , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms, Front. Phys. 17 (2), 21502 (2022)
https://doi.org/10.1007/s11467-021-1108-3
|
36 |
X. X. Li , H. D. Yin , D. X. Li , and X. Q. Shao , Deterministic generation of maximally discordant mixed states by dissipation, Phys. Rev. A 101 (1), 012329 (2020)
https://doi.org/10.1103/PhysRevA.101.012329
|
37 |
S. Kuhr , W. Alt , D. Schrader , M. Müller , V. Gomer , and D. Meschede , Deterministic delivery of a single atom, Science 293 (5528), 278 (2001)
https://doi.org/10.1126/science.1062725
|
38 |
N. Schlosser , G. Reymond , I. Protsenko , and P. Grangier , Sub-poissonian loading of single atoms in a microscopic dipole trap, Nature 411 (6841), 1024 (2001)
https://doi.org/10.1038/35082512
|
39 |
B. Lev , K. Srinivasan , P. Barclay , O. Painter , and H. Mabuchi , Feasibility of detecting single atoms using photonic bandgap cavities, Nanotechnology 15 (10), S556 (2004)
https://doi.org/10.1088/0957-4484/15/10/010
|
40 |
D. Q. Bao , C. J. Zhu , Y. P. Yang , and G. S. Agarwal , Sensing single atoms in a cavity using a broadband squeezed light, Opt. Express 27 (11), 15540 (2019)
https://doi.org/10.1364/OE.27.015540
|
41 |
S. Barzanjeh , D. P. Di Vincenzo , and B. M. Terhal , Dispersive qubit measurement by interferometry with parametric amplifiers, Phys. Rev. B 90 (13), 134515 (2014)
https://doi.org/10.1103/PhysRevB.90.134515
|
42 |
J. Goldwin , M. Trupke , J. Kenner , A. Ratnapala , and E. Hinds , Fast cavity-enhanced atom detection with low noise and high fidelity, Nat. Commun. 2 (1), 418 (2011)
https://doi.org/10.1038/ncomms1428
|
43 |
A. Haase , B. Hessmo , and J. Schmiedmayer , Detecting magnetically guided atoms with an optical cavity, Opt. Lett. 31 (2), 268 (2006)
https://doi.org/10.1364/OL.31.000268
|
44 |
H. Ott , Single atom detection in ultracold quantum gases: A review of current progress, Rep. Prog. Phys. 79 (5), 054401 (2016)
https://doi.org/10.1088/0034-4885/79/5/054401
|
45 |
K. M. Fortier , S. Y. Kim , M. J. Gibbons , P. Ahmadi , and M. S. Chapman , Deterministic loading of individual atoms to a high-finesse optical cavity, Phys. Rev. Lett. 98 (23), 233601 (2007)
https://doi.org/10.1103/PhysRevLett.98.233601
|
46 |
P. Horak , B. G. Klappauf , A. Haase , R. Folman , J. Schmiedmayer , P. Domokos , and E. A. Hinds , Possibility of single-atom detection on a chip, Phys. Rev. A 67 (4), 043806 (2003)
https://doi.org/10.1103/PhysRevA.67.043806
|
47 |
I. Teper , Y. J. Lin , and V. Vuletić , Resonator-aided singleatom detection on a microfabricated chip, Phys. Rev. Lett. 97 (2), 023002 (2006)
https://doi.org/10.1103/PhysRevLett.97.023002
|
48 |
H. Mabuchi , Q. A. Turchette , M. S. Chapman , and H. J. Kimble , Real-time detection of individual atoms falling through a high-finesse optical cavity, Opt. Lett. 21 (17), 1393 (1996)
https://doi.org/10.1364/OL.21.001393
|
49 |
C. J. Hood , M. S. Chapman , T. W. Lynn , and H. J. Kimble , Real-time cavity QED with single atoms, Phys. Rev. Lett. 80 (19), 4157 (1998)
https://doi.org/10.1103/PhysRevLett.80.4157
|
50 |
T. Puppe , I. Schuster , A. Grothe , A. Kubanek , K. Murr , P. W. H. Pinkse , and G. Rempe , Trapping and observing single atoms in a blue-detuned intracavity dipole trap, Phys. Rev. Lett. 99 (1), 013002 (2007)
https://doi.org/10.1103/PhysRevLett.99.013002
|
51 |
N. Bloembergen and Y. R. Shen , Coupling between vibrations and light waves in Raman laser media, Phys. Rev. Lett. 12 (18), 504 (1964)
https://doi.org/10.1103/PhysRevLett.12.504
|
52 |
C. S. Wang , Theory of stimulated Raman scattering, Phys. Rev. 182 (2), 482 (1969)
https://doi.org/10.1103/PhysRev.182.482
|
53 |
J. A. Giordmaine and R. C. Miller , Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett. 14 (24), 973 (1965)
https://doi.org/10.1103/PhysRevLett.14.973
|
54 |
R. Baumgartner and R. Byer , Optical parametric amplification, IEEE J. Quantum Electron. 15 (6), 432 (1979)
https://doi.org/10.1109/JQ%20E.1979.1070043
|
55 |
S. Liu , D. Ran , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Accelerated and robust generation of W state by parametric amplification and inverse hamiltonian engineering, Ann. Phys. 532 (6), 2000002 (2020)
https://doi.org/10.1002/andp.202000002
|
56 |
W. Qin , Y. H. Chen , X. Wang , A. Miranowicz , and F. Nori , Strong spin squeezing induced by weak squeezing of light inside a cavity, Nanophotonics 9 (16), 4853 (2020)
https://doi.org/10.1515/nanoph-2020-0513
|
57 |
A. A. Nejad , H. R. Askari , and H. R. Baghshahi , Optical bistability in coupled optomechanical cavities in the presence of Kerr effect, Appl. Opt. 56 (10), 2816 (2017)
https://doi.org/10.1364/AO.56.002816
|
58 |
R. Y. Chiao , C. H. Townes , and B. P. Stoicheff , Stimulated Brillouin scattering and coherent generation of intense hypersonic waves, Phys. Rev. Lett. 12 (21), 592 (1964)
https://doi.org/10.1103/PhysRevLett.12.592
|
59 |
R. W. Boyd , Nonlinear Optics, Academic Press, New York, 2003
|
60 |
Y. X. Zeng , B. Xiong , and C. Li , Suppressing laser phase noise in an optomechanical system, Front. Phys. 17 (1), 12503 (2022)
https://doi.org/10.1007/s11467-021-1097-2
|
61 |
W. Qin , A. Miranowicz , P. B. Li , X. Y. Lü , J. Q. You , and F. Nori , Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification, Phys. Rev. Lett. 120 (9), 093601 (2018)
https://doi.org/10.1103/PhysRevLett.120.093601
|
62 |
C. Leroux , L. C. G. Govia , and A. A. Clerk , Enhancing cavity quantum electrodynamics via antisqueezing: Synthetic ultrastrong coupling, Phys. Rev. Lett. 120 (9), 093602 (2018)
https://doi.org/10.1103/PhysRevLett.120.093602
|
63 |
Y. H. Chen , W. Qin , X. Wang , A. Miranowicz , and F. Nori , Shortcuts to adiabaticity for the quantum rabi model: Efficient generation of giant entangled cat states via parametric amplification, Phys. Rev. Lett. 126 (2), 023602 (2021)
https://doi.org/10.1103/PhysRevLett.126.023602
|
64 |
S. Burd , R. Srinivas , H. Knaack , W. Ge , A. Wilson , D. Wineland , D. Leibfried , J. Bollinger , D. Allcock , and D. Slichter , Quantum amplification of boson-mediated interactions, Nat. Phys. 17 (8), 898 (2021)
https://doi.org/10.1038/s41567-021-01237-9
|
65 |
Y. H. Chen , W. Qin , and F. Nori , Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification, Phys. Rev. A 100 (1), 012339 (2019)
https://doi.org/10.1103/PhysRevA.100.012339
|
66 |
X. Y. Lü , Y. Wu , J. R. Johansson , H. Jing , J. Zhang , and F. Nori , Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114 (9), 093602 (2015)
https://doi.org/10.1103/PhysRevLett.114.093602
|
67 |
M. A. Lemonde , N. Didier , and A. A. Clerk , Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification, Nat. Commun. 7 (1), 11338 (2016)
https://doi.org/10.1038/ncomms11338
|
68 |
W. Qin , V. Macrì , A. Miranowicz , S. Savasta , and F. Nori , Emission of photon pairs by mechanical stimulation of the squeezed vacuum, Phys. Rev. A 100 (6), 062501 (2019)
https://doi.org/10.1103/PhysRevA.100.062501
|
69 |
L. W. Wang and J. Shi , Quantum fluctuation and interference effect in a single atom–cavity QED system driven by a broadband squeezed vacuum, Chin. Opt. Lett. 18 (12), 122701 (2020)
https://doi.org/10.3788/CO%20L202018.122701
|
70 |
P. D. Drummond and Z. Ficek , Quantum squeezing, Vol. 27, Springer Science & Business Media, Berlin, 2013
|
71 |
G. S. Agarwal and S. Dutta Gupta , Steady states in cavity QED due to incoherent pumping, Phys. Rev. A 42 (3), 1737 (1990)
https://doi.org/10.1103/PhysRevA.42.1737
|
72 |
R. Poldy , B. C. Buchler , and J. D. Close , Single-atom detection with optical cavities, Phys. Rev. A 78 (1), 013640 (2008)
https://doi.org/10.1103/PhysRevA.78.013640
|
73 |
E. Wigner , On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (5), 749 (1932)
https://doi.org/10.1103/PhysRev.40.749
|
74 |
C. Gerry , P. Knight , and P. L. Knight , Introductory Quantum Optics, Cambridge University Press, Cambridge, 2005
|
75 |
S. Ast , M. Mehmet , and R. Schnabel , High-bandwidth squeezed light at 1550 nm from a compact monolithic PP KTP cavity, Opt. Express 21 (11), 13572 (2013)
https://doi.org/10.1364/OE.21.013572
|
76 |
T. Serikawa , J. Yoshikawa , K. Makino , and A. Frusawa , Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator, Opt. Express 24 (25), 28383 (2016)
https://doi.org/10.1364/OE.24.028383
|
77 |
H. Vahlbruch , M. Mehmet , K. Danzmann , and R. Schnabel , Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency, Phys. Rev. Lett. 117 (11), 110801 (2016)
https://doi.org/10.1103/PhysRevLett.117.110801
|
78 |
R. Schnabel , Squeezed states of light and their applications in laser interferometers, Phys. Rep. 684, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.04.001
|
79 |
S. C. Burd , R. Srinivas , J. J. Bollinger , A. C. Wilson , D. J. Wineland , D. Leibfried , D. H. Slichter , and D. T. C. Allcock , Quantum amplification of mechanical oscillator motion, Science 364 (6446), 1163 (2019)
https://doi.org/10.1126/science.aaw2884
|
80 |
J. B. Clark , F. Lecocq , R. W. Simmonds , J. Aumentado , and J. D. Teufel , Sideband cooling beyond the quantum backaction limit with squeezed light, Nature 541 (7636), 191 (2017)
https://doi.org/10.1038/nature20604
|
81 |
H. Vahlbruch , D. Wilken , M. Mehmet , and B. Willke , Laser power stabilization beyond the shot noise limit using squeezed light, Phys. Rev. Lett. 121 (17), 173601 (2018)
https://doi.org/10.1103/PhysRevLett.121.173601
|
82 |
K. W. Murch , S. J. Weber , K. M. Beck , E. Ginossar , and I. Siddiqi , Reduction of the radiative decay of atomic coherence in squeezed vacuum, Nature 499 (7456), 62 (2013)
https://doi.org/10.1038/nature12264
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|