Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 52501    https://doi.org/10.1007/s11467-021-1151-0
RESEARCH ARTICLE
Detecting a single atom in a cavity using the χ(2) nonlinear medium
Dong-Liang Chen1,2, Ye-Hong Chen3, Yang Liu1,2, Zhi-Cheng Shi1,2, Jie Song4, Yan Xia1,2()
1. Fujian Key Laboratory of Quantum Information and Quantum Optics (Fuzhou University), Fuzhou 350108, China
2. Department of Physics, Fuzhou University, Fuzhou 350108, China
3. Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
4. Department of Physics, Harbin Institute of Technology, Harbin 150001, China
 Download: PDF(654 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We propose a protocol for detecting a single atom in a cavity with the help of the χ(2) nonlinear medium. When the χ(2) nonlinear medium is driven by an external laser field, the cavity mode will be squeezed, and thus one can obtain an exponentially enhanced light-matter coupling. Such a strong coupling between the atom and the cavity field can significantly change the output photon flux, the quantum fluctuations, the quantum statistical property, and the photon number distributions of the cavity field. This provides practical strategies to determine the presence or absence of an atom in a cavity. The proposed protocol exhibits some advantages, such as controllable squeezing strength and exponential increase of atom-cavity coupling strength, which make the experimental phenomenon more obvious. We hope that this protocol can supplement the existing intracavity single-atom detection protocols and provide a promise for quantum sensing in different quantum systems.

Keywords single atom      nonlinear medium      cavity QED     
Corresponding Author(s): Yan Xia   
Issue Date: 28 March 2022
 Cite this article:   
Dong-Liang Chen,Ye-Hong Chen,Yang Liu, et al. Detecting a single atom in a cavity using the χ(2) nonlinear medium[J]. Front. Phys. , 2022, 17(5): 52501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1151-0
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/52501
1 S. M. Dutra , Cavity Quantum Electrodynamics: The Strange Theory of Light in a Box, John Wiley & Sons, New York, 2005
2 S. Haroche and J. M. Raimond , Exploring the Quantum: Atoms, Cavities, and Photons, Oxford University Press, Oxford, 2006
3 J. Weiner and P. T. Ho , Light-Matter Interaction: Fundamentals and Applications, Vol. 1, John Wiley & Sons, New York, 2008
4 M. O. Scully and M. S. Zubairy , Quantum Optics, Cambridge University Press, Cambridge, 1997
5 E. T. Jaynes and F. W. Cummings , Comparison of quantum and semiclassical radiation theories with application to the beam maser, Proc. IEEE 51 (1), 89 (1963)
https://doi.org/10.1109/PR%20OC.1963.1664
6 B. W. Shore and P. L. Knight , The Jaynes–Cummings model, J. Mod. Opt. 40 (7), 1195 (1993)
https://doi.org/10.1080/09500349314551321
7 M. Tavis and F. W. Cummings , Exact solution for an N-molecule — Radiation-field Hamiltonian, Phys. Rev. 170 (2), 379 (1968)
https://doi.org/10.1103/PhysRev.170.379
8 M. Brune , J. M. Raimond , and S. Haroche , Theory of the Rydberg-atom two-photon micromaser, Phys. Rev. A 35 (1), 154 (1987)
https://doi.org/10.1103/PhysRevA.35.154
9 S. C. Gou , Dynamics of the two-mode Jaynes–Cummings model modified by Stark shifts, Phys. Lett. A 147 (4), 218 (1990)
https://doi.org/10.1016/0375-9601(90)90635-2
10 N. Bogolubov , M. Rasulova , and I. Tishabaev , in: 2011 2nd International Conference on Photonics, 2011
11 A. S. Obada and A. Abdel-Hafez , Time evolution for a three-level atom in interaction with two modes, J. Mod. Opt. 34 (5), 665 (1987)
https://doi.org/10.1080/09500348714550681
12 Y. Wang , J. L. Wu , J. Song , Z. J. Zhang , Y. Y. Jiang , and Y. Xia , Enhancing atom-field interaction in the reduced multiphoton Tavis–Cummings model, Phys. Rev. A 101 (5), 053826 (2020)
https://doi.org/10.1103/PhysRevA.101.053826
13 D. Hagenmüller , S. Schütz , G. Pupillo , and J. Schachenmayer , Adiabatic elimination for ensembles of emitters in cavities with dissipative couplings, Phys. Rev. A 102 (1), 013714 (2020)
https://doi.org/10.1103/PhysRevA.102.013714
14 T. Yoshie , A. Scherer , J. Hendrickson , G. Khitrova , H. Gibbs , G. Rupper , C. Ell , O. Shchekin , and D. Deppe , Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432 (7014), 200 (2004)
https://doi.org/10.1038/nature03119
15 R. Loudon and P. Knight , Squeezed light, J. Mod. Opt. 34 (6-7), 709 (1987)
https://doi.org/10.1080/09500348714550721
16 J. R. Kukliński and J. L. Madajczyk , Strong squeezing in the Jaynes-Cummings model, Phys. Rev. A 37, 3175(R) (1988)
https://doi.org/10.1103/PhysRevA.37.3175
17 S. B. Zheng , Z. B. Yang , and Y. Xia , Generation of twomode squeezed states for two separated atomic ensembles via coupled cavities, Phys. Rev. A 81 (1), 015804 (2010)
https://doi.org/10.1103/PhysRevA.81.015804
18 K. M. Birnbaum , A. Boca , R. Miller , A. D. Boozer , T. E. Northup , and H. J. Kimble , Photon blockade in an optical cavity with one trapped atom, Nature 436 (7047), 87 (2005)
https://doi.org/10.1038/nature03804
19 K. M. Gheri and H. Ritsch , Single-atom quantum gate for light, Phys. Rev. A 56 (4), 3187 (1997)
https://doi.org/10.1103/PhysRevA.56.3187
20 T. Sleator and H. Weinfurter , Realizable universal quantum logic gates, Phys. Rev. Lett. 74 (20), 4087 (1995)
https://doi.org/10.1103/PhysRevLett.74.4087
21 S. B. Zheng and G. C. Guo , Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85 (11), 2392 (2000)
https://doi.org/10.1103/PhysRevLett.85.2392
22 C. C. Gerry , Preparation of multiatom entangled states through dispersive atom–cavity-field interactions, Phys. Rev. A 53 (4), 2857 (1996)
https://doi.org/10.1103/PhysRevA.53.2857
23 X. Q. Shao , Engineering steady entanglement for trapped ions at finite temperature by dissipation, Phys. Rev. A 98 (4), 042310 (2018)
https://doi.org/10.1103/PhysRevA.98.042310
24 Y. H. Chen , Y. Xia , Q. Q. Chen , and J. Song , Fast and noise-resistant implementation of quantum phase gates and creation of quantum entangled states, Phys. Rev. A 91 (1), 012325 (2015)
https://doi.org/10.1103/PhysRevA.91.012325
25 D. Ran , Z. C. Shi , J. Song , and Y. Xia , Speeding up adiabatic passage by adding Lyapunov control, Phys. Rev. A 96 (3), 033803 (2017)
https://doi.org/10.1103/PhysRevA.96.033803
26 X. Q. Shao , J. H. Wu , and X. X. Yi , Dissipative stabilization of quantum-feedback-based multipartite entanglement with Rydberg atoms, Phys. Rev. A 95 (2), 022317 (2017)
https://doi.org/10.1103/PhysRevA.95.022317
27 X. Q. Shao , J. B. You , T. Y. Zheng , C. H. Oh , and S. Zhang , Stationary three-dimensional entanglement via dissipative Rydberg pumping, Phys. Rev. A 89 (5), 052313 (2014)
https://doi.org/10.1103/PhysRevA.89.052313
28 X. Q. Shao , Selective Rydberg pumping via strong dipole blockade, Phys. Rev. A 102 (5), 053118 (2020)
https://doi.org/10.1103/PhysRevA.102.053118
29 A. Rauschenbeutel , G. Nogues , S. Osnaghi , P. Bertet , M. Brune , J. M. Raimond , and S. Haroche , Coherent operation of a tunable quantum phase gate in cavity QED, Phys. Rev. Lett. 83 (24), 5166 (1999)
https://doi.org/10.1103/PhysRevLett.83.5166
30 A. Imamoglu , D. D. Awschalom , G. Burkard , D. P. Di Vincenzo , D. Loss , M. Sherwin , and A. Small , Quantum information processing using quantum dot spins and cavity QED, Phys. Rev. Lett. 83 (20), 4204 (1999)
https://doi.org/10.1103/PhysRevLett.83.4204
31 C. P. Yang , S. I. Chu , and S. Han , Possible realization of entanglement, logical gates, and quantuminformation transfer with superconducting-quantuminterference-device qubits in cavity QED, Phys. Rev. A 67 (4), 042311 (2003)
https://doi.org/10.1103/PhysRevA.67.042311
32 Z. C. Shi , D. Ran , L. T. Shen , Y. Xia , and X. X. Yi , Quantum state engineering by periodical two-step modulation in an atomic system, Opt. Express 26 (26), 34789 (2018)
https://doi.org/10.1364/OE.26.034789
33 Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Heralded atomic nonadiabatic holonomic quantum computation with Rydberg blockade, Phys. Rev. A 102 (2), 022617 (2020)
https://doi.org/10.1103/PhysRevA.102.022617
34 Y. C. Zhang , G. Li , P. F. Zhang , J. M. Wang , and T. C. Zhang , Experimental progress in optical manipulation of single atoms for cavity QED, Front. Phys. 4 (2), 190 (2009)
https://doi.org/10.1007/s11467-009-0016-8
35 S. Liu , J. H. Shen , R. H. Zheng , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Optimized nonadiabatic holonomic quantum computation based on Förster resonance in Rydberg atoms, Front. Phys. 17 (2), 21502 (2022)
https://doi.org/10.1007/s11467-021-1108-3
36 X. X. Li , H. D. Yin , D. X. Li , and X. Q. Shao , Deterministic generation of maximally discordant mixed states by dissipation, Phys. Rev. A 101 (1), 012329 (2020)
https://doi.org/10.1103/PhysRevA.101.012329
37 S. Kuhr , W. Alt , D. Schrader , M. Müller , V. Gomer , and D. Meschede , Deterministic delivery of a single atom, Science 293 (5528), 278 (2001)
https://doi.org/10.1126/science.1062725
38 N. Schlosser , G. Reymond , I. Protsenko , and P. Grangier , Sub-poissonian loading of single atoms in a microscopic dipole trap, Nature 411 (6841), 1024 (2001)
https://doi.org/10.1038/35082512
39 B. Lev , K. Srinivasan , P. Barclay , O. Painter , and H. Mabuchi , Feasibility of detecting single atoms using photonic bandgap cavities, Nanotechnology 15 (10), S556 (2004)
https://doi.org/10.1088/0957-4484/15/10/010
40 D. Q. Bao , C. J. Zhu , Y. P. Yang , and G. S. Agarwal , Sensing single atoms in a cavity using a broadband squeezed light, Opt. Express 27 (11), 15540 (2019)
https://doi.org/10.1364/OE.27.015540
41 S. Barzanjeh , D. P. Di Vincenzo , and B. M. Terhal , Dispersive qubit measurement by interferometry with parametric amplifiers, Phys. Rev. B 90 (13), 134515 (2014)
https://doi.org/10.1103/PhysRevB.90.134515
42 J. Goldwin , M. Trupke , J. Kenner , A. Ratnapala , and E. Hinds , Fast cavity-enhanced atom detection with low noise and high fidelity, Nat. Commun. 2 (1), 418 (2011)
https://doi.org/10.1038/ncomms1428
43 A. Haase , B. Hessmo , and J. Schmiedmayer , Detecting magnetically guided atoms with an optical cavity, Opt. Lett. 31 (2), 268 (2006)
https://doi.org/10.1364/OL.31.000268
44 H. Ott , Single atom detection in ultracold quantum gases: A review of current progress, Rep. Prog. Phys. 79 (5), 054401 (2016)
https://doi.org/10.1088/0034-4885/79/5/054401
45 K. M. Fortier , S. Y. Kim , M. J. Gibbons , P. Ahmadi , and M. S. Chapman , Deterministic loading of individual atoms to a high-finesse optical cavity, Phys. Rev. Lett. 98 (23), 233601 (2007)
https://doi.org/10.1103/PhysRevLett.98.233601
46 P. Horak , B. G. Klappauf , A. Haase , R. Folman , J. Schmiedmayer , P. Domokos , and E. A. Hinds , Possibility of single-atom detection on a chip, Phys. Rev. A 67 (4), 043806 (2003)
https://doi.org/10.1103/PhysRevA.67.043806
47 I. Teper , Y. J. Lin , and V. Vuletić , Resonator-aided singleatom detection on a microfabricated chip, Phys. Rev. Lett. 97 (2), 023002 (2006)
https://doi.org/10.1103/PhysRevLett.97.023002
48 H. Mabuchi , Q. A. Turchette , M. S. Chapman , and H. J. Kimble , Real-time detection of individual atoms falling through a high-finesse optical cavity, Opt. Lett. 21 (17), 1393 (1996)
https://doi.org/10.1364/OL.21.001393
49 C. J. Hood , M. S. Chapman , T. W. Lynn , and H. J. Kimble , Real-time cavity QED with single atoms, Phys. Rev. Lett. 80 (19), 4157 (1998)
https://doi.org/10.1103/PhysRevLett.80.4157
50 T. Puppe , I. Schuster , A. Grothe , A. Kubanek , K. Murr , P. W. H. Pinkse , and G. Rempe , Trapping and observing single atoms in a blue-detuned intracavity dipole trap, Phys. Rev. Lett. 99 (1), 013002 (2007)
https://doi.org/10.1103/PhysRevLett.99.013002
51 N. Bloembergen and Y. R. Shen , Coupling between vibrations and light waves in Raman laser media, Phys. Rev. Lett. 12 (18), 504 (1964)
https://doi.org/10.1103/PhysRevLett.12.504
52 C. S. Wang , Theory of stimulated Raman scattering, Phys. Rev. 182 (2), 482 (1969)
https://doi.org/10.1103/PhysRev.182.482
53 J. A. Giordmaine and R. C. Miller , Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett. 14 (24), 973 (1965)
https://doi.org/10.1103/PhysRevLett.14.973
54 R. Baumgartner and R. Byer , Optical parametric amplification, IEEE J. Quantum Electron. 15 (6), 432 (1979)
https://doi.org/10.1109/JQ%20E.1979.1070043
55 S. Liu , D. Ran , Y. H. Kang , Z. C. Shi , J. Song , and Y. Xia , Accelerated and robust generation of W state by parametric amplification and inverse hamiltonian engineering, Ann. Phys. 532 (6), 2000002 (2020)
https://doi.org/10.1002/andp.202000002
56 W. Qin , Y. H. Chen , X. Wang , A. Miranowicz , and F. Nori , Strong spin squeezing induced by weak squeezing of light inside a cavity, Nanophotonics 9 (16), 4853 (2020)
https://doi.org/10.1515/nanoph-2020-0513
57 A. A. Nejad , H. R. Askari , and H. R. Baghshahi , Optical bistability in coupled optomechanical cavities in the presence of Kerr effect, Appl. Opt. 56 (10), 2816 (2017)
https://doi.org/10.1364/AO.56.002816
58 R. Y. Chiao , C. H. Townes , and B. P. Stoicheff , Stimulated Brillouin scattering and coherent generation of intense hypersonic waves, Phys. Rev. Lett. 12 (21), 592 (1964)
https://doi.org/10.1103/PhysRevLett.12.592
59 R. W. Boyd , Nonlinear Optics, Academic Press, New York, 2003
60 Y. X. Zeng , B. Xiong , and C. Li , Suppressing laser phase noise in an optomechanical system, Front. Phys. 17 (1), 12503 (2022)
https://doi.org/10.1007/s11467-021-1097-2
61 W. Qin , A. Miranowicz , P. B. Li , X. Y. Lü , J. Q. You , and F. Nori , Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification, Phys. Rev. Lett. 120 (9), 093601 (2018)
https://doi.org/10.1103/PhysRevLett.120.093601
62 C. Leroux , L. C. G. Govia , and A. A. Clerk , Enhancing cavity quantum electrodynamics via antisqueezing: Synthetic ultrastrong coupling, Phys. Rev. Lett. 120 (9), 093602 (2018)
https://doi.org/10.1103/PhysRevLett.120.093602
63 Y. H. Chen , W. Qin , X. Wang , A. Miranowicz , and F. Nori , Shortcuts to adiabaticity for the quantum rabi model: Efficient generation of giant entangled cat states via parametric amplification, Phys. Rev. Lett. 126 (2), 023602 (2021)
https://doi.org/10.1103/PhysRevLett.126.023602
64 S. Burd , R. Srinivas , H. Knaack , W. Ge , A. Wilson , D. Wineland , D. Leibfried , J. Bollinger , D. Allcock , and D. Slichter , Quantum amplification of boson-mediated interactions, Nat. Phys. 17 (8), 898 (2021)
https://doi.org/10.1038/s41567-021-01237-9
65 Y. H. Chen , W. Qin , and F. Nori , Fast and high-fidelity generation of steady-state entanglement using pulse modulation and parametric amplification, Phys. Rev. A 100 (1), 012339 (2019)
https://doi.org/10.1103/PhysRevA.100.012339
66 X. Y. Lü , Y. Wu , J. R. Johansson , H. Jing , J. Zhang , and F. Nori , Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett. 114 (9), 093602 (2015)
https://doi.org/10.1103/PhysRevLett.114.093602
67 M. A. Lemonde , N. Didier , and A. A. Clerk , Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification, Nat. Commun. 7 (1), 11338 (2016)
https://doi.org/10.1038/ncomms11338
68 W. Qin , V. Macrì , A. Miranowicz , S. Savasta , and F. Nori , Emission of photon pairs by mechanical stimulation of the squeezed vacuum, Phys. Rev. A 100 (6), 062501 (2019)
https://doi.org/10.1103/PhysRevA.100.062501
69 L. W. Wang and J. Shi , Quantum fluctuation and interference effect in a single atom–cavity QED system driven by a broadband squeezed vacuum, Chin. Opt. Lett. 18 (12), 122701 (2020)
https://doi.org/10.3788/CO%20L202018.122701
70 P. D. Drummond and Z. Ficek , Quantum squeezing, Vol. 27, Springer Science & Business Media, Berlin, 2013
71 G. S. Agarwal and S. Dutta Gupta , Steady states in cavity QED due to incoherent pumping, Phys. Rev. A 42 (3), 1737 (1990)
https://doi.org/10.1103/PhysRevA.42.1737
72 R. Poldy , B. C. Buchler , and J. D. Close , Single-atom detection with optical cavities, Phys. Rev. A 78 (1), 013640 (2008)
https://doi.org/10.1103/PhysRevA.78.013640
73 E. Wigner , On the quantum correction for thermodynamic equilibrium, Phys. Rev. 40 (5), 749 (1932)
https://doi.org/10.1103/PhysRev.40.749
74 C. Gerry , P. Knight , and P. L. Knight , Introductory Quantum Optics, Cambridge University Press, Cambridge, 2005
75 S. Ast , M. Mehmet , and R. Schnabel , High-bandwidth squeezed light at 1550 nm from a compact monolithic PP KTP cavity, Opt. Express 21 (11), 13572 (2013)
https://doi.org/10.1364/OE.21.013572
76 T. Serikawa , J. Yoshikawa , K. Makino , and A. Frusawa , Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator, Opt. Express 24 (25), 28383 (2016)
https://doi.org/10.1364/OE.24.028383
77 H. Vahlbruch , M. Mehmet , K. Danzmann , and R. Schnabel , Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency, Phys. Rev. Lett. 117 (11), 110801 (2016)
https://doi.org/10.1103/PhysRevLett.117.110801
78 R. Schnabel , Squeezed states of light and their applications in laser interferometers, Phys. Rep. 684, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.04.001
79 S. C. Burd , R. Srinivas , J. J. Bollinger , A. C. Wilson , D. J. Wineland , D. Leibfried , D. H. Slichter , and D. T. C. Allcock , Quantum amplification of mechanical oscillator motion, Science 364 (6446), 1163 (2019)
https://doi.org/10.1126/science.aaw2884
80 J. B. Clark , F. Lecocq , R. W. Simmonds , J. Aumentado , and J. D. Teufel , Sideband cooling beyond the quantum backaction limit with squeezed light, Nature 541 (7636), 191 (2017)
https://doi.org/10.1038/nature20604
81 H. Vahlbruch , D. Wilken , M. Mehmet , and B. Willke , Laser power stabilization beyond the shot noise limit using squeezed light, Phys. Rev. Lett. 121 (17), 173601 (2018)
https://doi.org/10.1103/PhysRevLett.121.173601
82 K. W. Murch , S. J. Weber , K. M. Beck , E. Ginossar , and I. Siddiqi , Reduction of the radiative decay of atomic coherence in squeezed vacuum, Nature 499 (7456), 62 (2013)
https://doi.org/10.1038/nature12264
[1] Yi-Xuan Wu, Zi-Yan Guan, Sai Li, Zheng-Yuan Xue. Fast quantum state transfer and entanglement for cavity-coupled many qubits via dark pathways[J]. Front. Phys. , 2022, 17(4): 42507-.
[2] Junwei Fu (傅俊伟), Shuandi Wang (王栓娣), Zihua Wang (王自华), Kang Liu (刘康), Huangjingwei Li (李黄经纬), Hui Liu (刘恢), Junhua Hu (胡俊华), Xiaowen Xu (徐效文), Hongmei Li (李红梅), Min Liu (刘敏). Graphitic carbon nitride based single-atom photocatalysts[J]. Front. Phys. , 2020, 15(3): 33201-.
[3] Dongyang Yu, Jian-Song Pan, Xiong-Jun Liu, Wei Zhang, Wei Yi. Topological superradiant state in Fermi gases with cavity induced spin–orbit coupling[J]. Front. Phys. , 2018, 13(1): 136701-.
[4] Zhi-Hui Wang, Gang Li, Ya-Li Tian, Tian-Cai Zhang. Quantum state manipulation of single-Cesium-atom qubit in a micro-optical trap[J]. Front. Phys. , 2014, 9(5): 634-639.
[5] Jin-Jin Du (杜金锦), Wen-Fang Li (李文芳), Peng-Fei Zhang (张鹏飞), Gang Li (李刚), Jun-Min Wang (王军民), Tian-Cai Zhang (张天才). Experimental progress in the measurement and control of single atom trajectory[J]. Front. Phys. , 2012, 7(4): 435-443.
[6] Jun HE, Bao-dong YANG, Yong-jie CHENG, Tian-cai ZHANG, Jun-min WANG. Extending the trapping lifetime of single atom in a microscopic far-off-resonance optical dipole trap[J]. Front. Phys. , 2011, 6(3): 262-270.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed