Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 61502    https://doi.org/10.1007/s11467-022-1166-1
RESEARCH ARTICLE
Transfer of quantum entangled states between superconducting qubits and microwave field qubits
Tong Liu1, Bao-Qing Guo1, Yan-Hui Zhou1, Jun-Long Zhao1, Yu-Liang Fang1, Qi-Cheng Wu1, Chui-Ping Yang1,2()
1. Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China
2. Department of Physics, Hangzhou Normal University, Hangzhou 311121, China
 Download: PDF(2607 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, „qutrit” refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.

Keywords tranferring entangled states      superconducting qubits      microwave field qubits      coherent states      circuit QED     
Corresponding Author(s): Chui-Ping Yang   
Issue Date: 14 December 2022
 Cite this article:   
Tong Liu,Bao-Qing Guo,Yan-Hui Zhou, et al. Transfer of quantum entangled states between superconducting qubits and microwave field qubits[J]. Front. Phys. , 2022, 17(6): 61502.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1166-1
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/61502
1 C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum-interference-device qubits in cavity QED, Phys. Rev. A 67(4), 042311 (2003)
https://doi.org/10.1103/PhysRevA.67.042311
2 J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68(6), 064509 (2003)
https://doi.org/10.1103/PhysRevB.68.064509
3 A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for super-conducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)
https://doi.org/10.1103/PhysRevA.69.062320
4 J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
https://doi.org/10.1038/nature10122
5 S. Schmidt and J. Koch, Circuit QED lattices: Towards quantum simulation with superconducting circuits, Ann. Phys. 525(6), 395 (2013)
https://doi.org/10.1002/andp.201200261
6 X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
7 T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong coupling regime, Nat. Phys. 6(10), 772 (2010)
https://doi.org/10.1038/nphys1730
8 F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys. 13(1), 44 (2017)
https://doi.org/10.1038/nphys3906
9 Y. H. Lin, L. B. Nguyen, N. Grabon, J. S. Miguel, N. Pankratova, and V. E. Manucharyan, Demonstration of protection of a superconducting qubit from energy decay, Phys. Rev. Lett. 120, 150503 (2018)
https://doi.org/10.1103/PhysRevLett.120.150503
10 C. P. Yang, S. I. Chu, and S. Han, Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter, Phys. Rev. Lett. 92(11), 117902 (2004)
https://doi.org/10.1103/PhysRevLett.92.117902
11 Z. Kis and E. Paspalakis, Arbitrary rotation and entanglement of flux SQUID qubits, Phys. Rev. B 69(2), 024510 (2004)
https://doi.org/10.1103/PhysRevB.69.024510
12 F. W. Strauch and C. J. Williams, Theoretical analysis of perfect quantum state transfer with superconducting qubits, Phys. Rev. B 78(9), 094516 (2008)
https://doi.org/10.1103/PhysRevB.78.094516
13 C. P. Yang, Quantum information transfer with superconducting flux qubits coupled to a resonator, Phys. Rev. A 82(5), 054303 (2010)
https://doi.org/10.1103/PhysRevA.82.054303
14 F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Robust quantum state transfer via topological edge states in superconducting qubit chains, Phys. Rev. A 98(1), 012331 (2018)
https://doi.org/10.1103/PhysRevA.98.012331
15 M. A. Sillanpää, J. I. Park, and R. W. Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature 449(7161), 438 (2007)
https://doi.org/10.1038/nature06124
16 X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)
https://doi.org/10.1103/PhysRevApplied.10.054009
17 C. P. Yang and S. Han, Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED, Phys. Rev. A 70(6), 062323 (2004)
https://doi.org/10.1103/PhysRevA.70.062323
18 S. L. Zhu, Z. D. Wang, and P. Zanardi, Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity, Phys. Rev. Lett. 94(10), 100502 (2005)
https://doi.org/10.1103/PhysRevLett.94.100502
19 K. H. Song, Z. W. Zhou, and G. C. Guo, Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition, Phys. Rev. A 71(5), 052310 (2005)
https://doi.org/10.1103/PhysRevA.71.052310
20 T. Tanamoto, Y. Liu, S. Fujita, X. Hu, and F. Nori, Producing cluster states in charge qubits and flux qubits, Phys. Rev. Lett. 97(23), 230501 (2006)
https://doi.org/10.1103/PhysRevLett.97.230501
21 X. L. Zhang, K. L. Gao, and M. Feng, Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED, Phys. Rev. A 74(2), 024303 (2006)
https://doi.org/10.1103/PhysRevA.74.024303
22 J. Q. You, X. Wang, T. Tanamoto, and F. Nori, Efficient one-step generation of large cluster states with solid-state circuits, Phys. Rev. A 75(5), 052319 (2007)
https://doi.org/10.1103/PhysRevA.75.052319
23 Y. D. Wang, S. Chesi, D. Loss, and C. Bruder, One-step multiqubit Greenberger–Horne–Zeilinger state generation in a circuit QED system, Phys. Rev. B 81(10), 104524 (2010)
https://doi.org/10.1103/PhysRevB.81.104524
24 C. P. Yang, Preparation of n-qubit Greenberger–Horne–Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants, Phys. Rev. A 83(6), 062302 (2011)
https://doi.org/10.1103/PhysRevA.83.062302
25 W. Feng, P. Wang, X. Ding, L. Xu, and X. Q. Li, Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback, Phys. Rev. A 83(4), 042313 (2011)
https://doi.org/10.1103/PhysRevA.83.042313
26 S. Aldana, Y. D. Wang, and C. Bruder, Greenberger–Horne–Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)
https://doi.org/10.1103/PhysRevB.84.134519
27 T. Liu, Q. P. Su, S. J. Xiong, J. M. Liu, C. P. Yang, and F. Nori, Generation of a macroscopic entangled coherent state using quantum memories in circuit QED, Sci. Rep. 6(1), 32004 (2016)
https://doi.org/10.1038/srep32004
28 C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
https://doi.org/10.1088/1367-2630/18/1/013025
29 Y. H. Kang, Y. H. Chen, Z. C. Shi, J. Song, and Y. Xia, Fast preparation of W states with superconducting quantum interference devices by using dressed states, Phys. Rev. A 94(5), 052311 (2016)
30 X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
https://doi.org/10.1007/s11467-019-0888-1
31 T. Liu, Q. P. Su, Y. Zhang, Y. L. Fang, and C. P. Yang, Generation of quantum entangled states of multiple groups of qubits distributed in multiple cavities, Phys. Rev. A 101(1), 012337 (2020)
https://doi.org/10.1103/PhysRevA.101.012337
32 C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J. W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)
https://doi.org/10.1103/PhysRevLett.119.180511
33 M. Gong, M. C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, F. Chen, Y. Zhao, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, A. D. Castellano, H. Wang, C. Peng, C. Y. Lu, X. Zhu, and J. W. Pan, Genuine 12-qubit entanglement on a superconducting quantum processor, Phys. Rev. Lett. 122(11), 110501 (2019)
https://doi.org/10.1103/PhysRevLett.122.110501
34 C. Song, K. Xu, H. Li, Y. R. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D. W. Wang, H. Wang, and S. Y. Zhu, Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science 365(6453), 574 (2019)
https://doi.org/10.1126/science.aay0600
35 A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Belomestnykh, S. Posen, and A. Grassellino, Three-dimensional superconducting resonators at T < 20 mK with photon lifetimes up to τ = 2 s, Phys. Rev. Appl. 13(3), 034032 (2020)
https://doi.org/10.1103/PhysRevApplied.13.034032
36 M. Mariantoni, F. Deppe, A. Marx, R. Gross, F. K. Wilhelm, and E. Solano, Two-resonator circuit quantum electrodynamics: A superconducting quantum switch, Phys. Rev. B 78(10), 104508 (2008)
https://doi.org/10.1103/PhysRevB.78.104508
37 S. T. Merkel and F. K. Wilhelm, Generation and detection of NOON states in superconducting circuits, New J. Phys. 12(9), 093036 (2010)
https://doi.org/10.1088/1367-2630/12/9/093036
38 F. W. Strauch, K. Jacobs, and R. W. Simmonds, Arbitrary control of entanglement between two superconducting resonators, Phys. Rev. Lett. 105(5), 050501 (2010)
https://doi.org/10.1103/PhysRevLett.105.050501
39 Y. Hu and L. Tian, Deterministic generation of entangled photons in superconducting resonator arrays, Phys. Rev. Lett. 106(25), 257002 (2011)
https://doi.org/10.1103/PhysRevLett.106.257002
40 C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)
https://doi.org/10.1103/PhysRevA.86.022329
41 P. B. Li, S. Y. Gao, and F. L. Li, Engineering two-mode entangled states between two superconducting resonators by dissipation, Phys. Rev. A 86(1), 012318 (2012)
https://doi.org/10.1103/PhysRevA.86.012318
42 C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit, Phys. Rev. A 87(2), 022320 (2013)
https://doi.org/10.1103/PhysRevA.87.022320
43 S. J. Xiong, Z. Sun, J. M. Liu, T. Liu, and C. P. Yang, Efficient scheme for generation of photonic NOON states in circuit QED, Opt. Lett. 40(10), 2221 (2015)
https://doi.org/10.1364/OL.40.002221
44 R. Sharma and F. W. Strauch, Quantum state synthesis of superconducting resonators, Phys. Rev. A 93(1), 012342 (2016)
https://doi.org/10.1103/PhysRevA.93.012342
45 Z. Li, S. Ma, Z. P. Yang, A. P. Fang, P. Li, S. Y. Gao, and F. L. Li, Generation and replication of continuousvariable quadripartite cluster and Greenberger–Horne–Zeilinger states in four chains of superconducting transmission line resonators, Phys. Rev. A 93(4), 042305 (2016)
https://doi.org/10.1103/PhysRevA.93.042305
46 Y. J. Zhao, C. Q. Wang, X. B. Zhu, and Y. X. Liu, Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit, Sci. Rep. 6(1), 23646 (2016)
https://doi.org/10.1038/srep23646
47 Q. P. Su, H. H. Zhu, L. Yu, Y. Zhang, S. J. Xiong, J. M. Liu, and C. P. Yang, Generating double NOON states of photons in circuit QED, Phys. Rev. A 95(2), 022339 (2017)
https://doi.org/10.1103/PhysRevA.95.022339
48 C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
https://doi.org/10.1364/OL.43.005126
49 M. Li, M. Hua, M. Zhang, and F. G. Deng, Entangling two high-Q microwave resonators assisted by a resonator terminated with SQUIDs, New J. Phys. 21(7), 073025 (2019)
https://doi.org/10.1088/1367-2630/ab2e1c
50 T. Liu, Y. Zhang, B. Q. Guo, C. S. Yu, and W. N. Zhang, Creation of superposition of arbitrary states encoded in two high-Q cavities, Opt. Express 27(19), 27168 (2019)
https://doi.org/10.1364/OE.27.027168
51 Y. Zhang, T. Liu, J. Zhao, Y. Yu, and C. P. Yang, Generation of hybrid Greenberger–Horne–Zeilinger entangled states of particlelike and wavelike optical qubits in circuit QED, Phys. Rev. A 101(6), 062334 (2020)
https://doi.org/10.1103/PhysRevA.101.062334
52 M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, Generation of Fock states in a superconducting quantum circuit, Nature 454(7202), 310 (2008)
https://doi.org/10.1038/nature07136
53 B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Deterministically encoding quantum information using 100-Photon Schröinger cat states, Science 342(6158), 607 (2013)
https://doi.org/10.1126/science.1243289
54 C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, A Schrödinger cat living in two boxes, Science 352(6289), 1087 (2016)
https://doi.org/10.1126/science.aaf2941
55 H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, Deterministic entanglement of photons in two superconducting microwave resonators, Phys. Rev. Lett. 106(6), 060401 (2011)
https://doi.org/10.1103/PhysRevLett.106.060401
56 A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58(6), 4394 (1998)
https://doi.org/10.1103/PhysRevA.58.4394
57 D. P. DiVincenzo and P. W. Shor, Fault-tolerant error correction with efficient quantum codes, Phys. Rev. Lett. 77(15), 3260 (1996)
https://doi.org/10.1103/PhysRevLett.77.3260
58 V. Giovannetti, S. Lloyd, and L. Maccone, Quantumenhanced measurements: Beating the standard quantum limit, Science 306(5700), 1330 (2004)
https://doi.org/10.1126/science.1104149
59 X. Wang, Quantum teleportation of entangled coherent states, Phys. Rev. A 64(2), 022302 (2001)
https://doi.org/10.1103/PhysRevA.64.022302
60 H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A 65(4), 042305 (2002)
https://doi.org/10.1103/PhysRevA.65.042305
61 J. Joo, W. J. Munro, and T. P. Spiller, Quantum metrology with entangled coherent states, Phys. Rev. Lett. 107(8), 083601 (2011)
https://doi.org/10.1103/PhysRevLett.107.083601
62 P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantumsuperposition states as a bosonic code for amplitude damping, Phys. Rev. A 59(4), 2631 (1999)
https://doi.org/10.1103/PhysRevA.59.2631
63 Q. C. Wu, Y. H. Zhou, B. L. Ye, T. Liu, and C. P. Yang, Nonadiabatic quantum state engineering by time-dependent decoherence-free subspaces in open quantum systems, New J. Phys. 23(11), 113005 (2021)
https://doi.org/10.1088/1367-2630/ac309d
64 H. Jeong and N. B. An, Greenberger–Horne–Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting, Phys. Rev. A 74(2), 022104 (2006)
https://doi.org/10.1103/PhysRevA.74.022104
65 A. Blais, S. M. Girvin, and W. D. Oliver, Quantum information processing and quantum optics with circuit quantum electrodynamics, Nat. Phys. 16(3), 247 (2020)
https://doi.org/10.1038/s41567-020-0806-z
66 W. Cai, Y. Ma, W. Wang, C. L. Zou, and L. Sun, Bosonic quantum error correction codes in superconducting quantum circuits, Fundamental Research 1(1), 50 (2021)
https://doi.org/10.1016/j.fmre.2020.12.006
67 D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64(1), 012310 (2001)
https://doi.org/10.1103/PhysRevA.64.012310
68 N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature 536(7617), 441 (2016)
https://doi.org/10.1038/nature18949
69 M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang, and S. M. Girvin, New class of quantum error-correcting codes for a bosonic mode, Phys. Rev. X 6(3), 031006 (2016)
https://doi.org/10.1103/PhysRevX.6.031006
70 L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C. L. Zou, S. M. Girvin, L. M. Duan, and L. Sun, Quantum error correction and universal gate set operation on a binomial bosonic logical qubit, Nat. Phys. 15(5), 503 (2019)
https://doi.org/10.1038/s41567-018-0414-3
71 A. Sørensen and K. Mølmer, Quantum computation with ions in thermal motion, Phys. Rev. Lett. 82(9), 1971 (1999)
https://doi.org/10.1103/PhysRevLett.82.1971
72 S. B. Zheng and G. C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)
https://doi.org/10.1103/PhysRevLett.85.2392
73 D. F. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
https://doi.org/10.1139/p07-060
74 Y. Xu, Y. Ma, W. Cai, X. Mu, W. Dai, W. Wang, L. Hu, X. Li, J. Han, H. Wang, Y. Song, Z. B. Yang, S. B. Zheng, and L. Sun, Demonstration of controlled-phase gates between two error-correctable photonic qubits, Phys. Rev. Lett. 124(12), 120501 (2020)
https://doi.org/10.1103/PhysRevLett.124.120501
75 M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)
https://doi.org/10.1063/1.2929367
76 Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)
https://doi.org/10.1063/1.4802893
77 M. Scully and M. S. Zubairy, Quantum optics, Cambridge University Press, Cambridge, 1997, Chapter 2
https://doi.org/10.1017/CBO9780511813993
78 G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495(7440), 205 (2013)
https://doi.org/10.1038/nature11902
79 J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A 76(4), 042319 (2007)
https://doi.org/10.1103/PhysRevA.76.042319
80 I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, Demonstration of a singlephoton router in the microwave regime, Phys. Rev. Lett. 107(7), 073601 (2011)
https://doi.org/10.1103/PhysRevLett.107.073601
81 M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and A. A. Houck, Observation of a dissipative phase transition in a one-dimensional circuit QED lattice, Phys. Rev. X 7(1), 011016 (2017)
https://doi.org/10.1103/PhysRevX.7.011016
82 T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)
https://doi.org/10.1007/s11467-019-0949-5
83 J. B. Chang, M. R. Vissers, A. D. Córcoles, M. Sandberg, J. Gao, D. W. Abraham, J. M. Chow, J. M. Gambetta, M. Beth Rothwell, G. A. Keefe, M. Steffen, and D. P. Pappas, Improved superconducting qubit coherence using titanium nitride, Appl. Phys. Lett. 103(1), 012602 (2013)
https://doi.org/10.1063/1.4813269
84 A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzpatrick, Z. Leng, A. Premkumar, J. Bryon, S. Sussman, G. Cheng, et al., New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds, arXiv: 2003.00024 (2020)
85 A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, Planar superconducting resonators with internal quality factors above one million, Appl. Phys. Lett. 100(11), 113510 (2012)
https://doi.org/10.1063/1.3693409
86 P. W. Woods, G. Calusine, A. Melville, A. Sevi, E. Golden, D. K. Kim, D. Rosenberg, J. L. Yoder, and W. D. Oliver, Determining interface dielectric losses in superconducting coplanar waveguide resonators, Phys. Rev. Appl. 12(1), 014012 (2019)
https://doi.org/0.1103/PhysRevApplied.12.014012
[1] Qi-Ping Su, Yu Zhang, Liang Bin, Chui-Ping Yang. Efficient scheme for realizing a multiplex-controlled phase gate with photonic qubits in circuit quantum electrodynamics[J]. Front. Phys. , 2022, 17(5): 53505-.
[2] Qi-Ping Su, Hanyu Zhang, Chui-Ping Yang. Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED[J]. Front. Phys. , 2021, 16(6): 61501-.
[3] You-Ji Fan, Zhen-Fei Zheng, Yu Zhang, Dao-Ming Lu, Chui-Ping Yang. One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED[J]. Front. Phys. , 2019, 14(2): 21602-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed