|
|
Transfer of quantum entangled states between superconducting qubits and microwave field qubits |
Tong Liu1, Bao-Qing Guo1, Yan-Hui Zhou1, Jun-Long Zhao1, Yu-Liang Fang1, Qi-Cheng Wu1, Chui-Ping Yang1,2( ) |
1. Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China 2. Department of Physics, Hangzhou Normal University, Hangzhou 311121, China |
|
|
Abstract Transferring entangled states between matter qubits and microwave-field (or optical-field) qubits is of fundamental interest in quantum mechanics and necessary in hybrid quantum information processing and quantum communication. We here propose a way for transferring entangled states between superconducting qubits (matter qubits) and microwave-field qubits. This proposal is realized by a system consisting of multiple superconducting qutrits and microwave cavities. Here, „qutrit” refers to a three-level quantum system with the two lowest levels encoding a qubit while the third level acting as an auxiliary state. In contrast, the microwave-field qubits are encoded with coherent states of microwave cavities. Because the third energy level of each qutrit is not populated during the operation, decoherence from the higher energy levels is greatly suppressed. The entangled states can be deterministically transferred because measurement on the states is not needed. The operation time is independent of the number of superconducting qubits or microwave-field qubits. In addition, the architecture of the circuit system is quite simple because only a coupler qutrit and an auxiliary cavity are required. As an example, our numerical simulations show that high-fidelity transfer of entangled states from two superconducting qubits to two microwave-field qubits is feasible with present circuit QED technology. This proposal is quite general and can be extended to transfer entangled states between other matter qubits (e.g., atoms, quantum dots, and NV centers) and microwave- or optical-field qubits encoded with coherent states.
|
Keywords
tranferring entangled states
superconducting qubits
microwave field qubits
coherent states
circuit QED
|
Corresponding Author(s):
Chui-Ping Yang
|
Issue Date: 14 December 2022
|
|
1 |
C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum-interference-device qubits in cavity QED, Phys. Rev. A 67(4), 042311 (2003)
https://doi.org/10.1103/PhysRevA.67.042311
|
2 |
J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B 68(6), 064509 (2003)
https://doi.org/10.1103/PhysRevB.68.064509
|
3 |
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for super-conducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69(6), 062320 (2004)
https://doi.org/10.1103/PhysRevA.69.062320
|
4 |
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature 474(7353), 589 (2011)
https://doi.org/10.1038/nature10122
|
5 |
S. Schmidt and J. Koch, Circuit QED lattices: Towards quantum simulation with superconducting circuits, Ann. Phys. 525(6), 395 (2013)
https://doi.org/10.1002/andp.201200261
|
6 |
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep. 718–719, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
|
7 |
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong coupling regime, Nat. Phys. 6(10), 772 (2010)
https://doi.org/10.1038/nphys1730
|
8 |
F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito, and K. Semba, Superconducting qubit-oscillator circuit beyond the ultrastrong-coupling regime, Nat. Phys. 13(1), 44 (2017)
https://doi.org/10.1038/nphys3906
|
9 |
Y. H. Lin, L. B. Nguyen, N. Grabon, J. S. Miguel, N. Pankratova, and V. E. Manucharyan, Demonstration of protection of a superconducting qubit from energy decay, Phys. Rev. Lett. 120, 150503 (2018)
https://doi.org/10.1103/PhysRevLett.120.150503
|
10 |
C. P. Yang, S. I. Chu, and S. Han, Quantum information transfer and entanglement with SQUID qubits in cavity QED: A dark-state scheme with tolerance for nonuniform device parameter, Phys. Rev. Lett. 92(11), 117902 (2004)
https://doi.org/10.1103/PhysRevLett.92.117902
|
11 |
Z. Kis and E. Paspalakis, Arbitrary rotation and entanglement of flux SQUID qubits, Phys. Rev. B 69(2), 024510 (2004)
https://doi.org/10.1103/PhysRevB.69.024510
|
12 |
F. W. Strauch and C. J. Williams, Theoretical analysis of perfect quantum state transfer with superconducting qubits, Phys. Rev. B 78(9), 094516 (2008)
https://doi.org/10.1103/PhysRevB.78.094516
|
13 |
C. P. Yang, Quantum information transfer with superconducting flux qubits coupled to a resonator, Phys. Rev. A 82(5), 054303 (2010)
https://doi.org/10.1103/PhysRevA.82.054303
|
14 |
F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Robust quantum state transfer via topological edge states in superconducting qubit chains, Phys. Rev. A 98(1), 012331 (2018)
https://doi.org/10.1103/PhysRevA.98.012331
|
15 |
M. A. Sillanpää, J. I. Park, and R. W. Simmonds, Coherent quantum state storage and transfer between two phase qubits via a resonant cavity, Nature 449(7161), 438 (2007)
https://doi.org/10.1038/nature06124
|
16 |
X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang, Y. P. Song, Z. Y. Xue, Z. Q. Yin, and L. Sun, Perfect quantum state transfer in a superconducting qubit chain with parametrically tunable couplings, Phys. Rev. Appl. 10(5), 054009 (2018)
https://doi.org/10.1103/PhysRevApplied.10.054009
|
17 |
C. P. Yang and S. Han, Preparation of Greenberger–Horne–Zeilinger entangled states with multiple superconducting quantum-interference device qubits or atoms in cavity QED, Phys. Rev. A 70(6), 062323 (2004)
https://doi.org/10.1103/PhysRevA.70.062323
|
18 |
S. L. Zhu, Z. D. Wang, and P. Zanardi, Geometric quantum computation and multiqubit entanglement with superconducting qubits inside a cavity, Phys. Rev. Lett. 94(10), 100502 (2005)
https://doi.org/10.1103/PhysRevLett.94.100502
|
19 |
K. H. Song, Z. W. Zhou, and G. C. Guo, Quantum logic gate operation and entanglement with superconducting quantum interference devices in a cavity via a Raman transition, Phys. Rev. A 71(5), 052310 (2005)
https://doi.org/10.1103/PhysRevA.71.052310
|
20 |
T. Tanamoto, Y. Liu, S. Fujita, X. Hu, and F. Nori, Producing cluster states in charge qubits and flux qubits, Phys. Rev. Lett. 97(23), 230501 (2006)
https://doi.org/10.1103/PhysRevLett.97.230501
|
21 |
X. L. Zhang, K. L. Gao, and M. Feng, Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED, Phys. Rev. A 74(2), 024303 (2006)
https://doi.org/10.1103/PhysRevA.74.024303
|
22 |
J. Q. You, X. Wang, T. Tanamoto, and F. Nori, Efficient one-step generation of large cluster states with solid-state circuits, Phys. Rev. A 75(5), 052319 (2007)
https://doi.org/10.1103/PhysRevA.75.052319
|
23 |
Y. D. Wang, S. Chesi, D. Loss, and C. Bruder, One-step multiqubit Greenberger–Horne–Zeilinger state generation in a circuit QED system, Phys. Rev. B 81(10), 104524 (2010)
https://doi.org/10.1103/PhysRevB.81.104524
|
24 |
C. P. Yang, Preparation of n-qubit Greenberger–Horne–Zeilinger entangled states in cavity QED: An approach with tolerance to nonidentical qubit-cavity coupling constants, Phys. Rev. A 83(6), 062302 (2011)
https://doi.org/10.1103/PhysRevA.83.062302
|
25 |
W. Feng, P. Wang, X. Ding, L. Xu, and X. Q. Li, Generating and stabilizing the Greenberger–Horne–Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback, Phys. Rev. A 83(4), 042313 (2011)
https://doi.org/10.1103/PhysRevA.83.042313
|
26 |
S. Aldana, Y. D. Wang, and C. Bruder, Greenberger–Horne–Zeilinger generation protocol for N superconducting transmon qubits capacitively coupled to a quantum bus, Phys. Rev. B 84(13), 134519 (2011)
https://doi.org/10.1103/PhysRevB.84.134519
|
27 |
T. Liu, Q. P. Su, S. J. Xiong, J. M. Liu, C. P. Yang, and F. Nori, Generation of a macroscopic entangled coherent state using quantum memories in circuit QED, Sci. Rep. 6(1), 32004 (2016)
https://doi.org/10.1038/srep32004
|
28 |
C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
https://doi.org/10.1088/1367-2630/18/1/013025
|
29 |
Y. H. Kang, Y. H. Chen, Z. C. Shi, J. Song, and Y. Xia, Fast preparation of W states with superconducting quantum interference devices by using dressed states, Phys. Rev. A 94(5), 052311 (2016)
|
30 |
X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
https://doi.org/10.1007/s11467-019-0888-1
|
31 |
T. Liu, Q. P. Su, Y. Zhang, Y. L. Fang, and C. P. Yang, Generation of quantum entangled states of multiple groups of qubits distributed in multiple cavities, Phys. Rev. A 101(1), 012337 (2020)
https://doi.org/10.1103/PhysRevA.101.012337
|
32 |
C. Song, K. Xu, W. Liu, C. Yang, S. B. Zheng, H. Deng, Q. Xie, K. Huang, Q. Guo, L. Zhang, P. Zhang, D. Xu, D. Zheng, X. Zhu, H. Wang, Y. A. Chen, C. Y. Lu, S. Han, and J. W. Pan, 10-qubit entanglement and parallel logic operations with a superconducting circuit, Phys. Rev. Lett. 119(18), 180511 (2017)
https://doi.org/10.1103/PhysRevLett.119.180511
|
33 |
M. Gong, M. C. Chen, Y. Zheng, S. Wang, C. Zha, H. Deng, Z. Yan, H. Rong, Y. Wu, S. Li, F. Chen, Y. Zhao, F. Liang, J. Lin, Y. Xu, C. Guo, L. Sun, A. D. Castellano, H. Wang, C. Peng, C. Y. Lu, X. Zhu, and J. W. Pan, Genuine 12-qubit entanglement on a superconducting quantum processor, Phys. Rev. Lett. 122(11), 110501 (2019)
https://doi.org/10.1103/PhysRevLett.122.110501
|
34 |
C. Song, K. Xu, H. Li, Y. R. Zhang, X. Zhang, W. Liu, Q. Guo, Z. Wang, W. Ren, J. Hao, H. Feng, H. Fan, D. Zheng, D. W. Wang, H. Wang, and S. Y. Zhu, Generation of multicomponent atomic Schrödinger cat states of up to 20 qubits, Science 365(6453), 574 (2019)
https://doi.org/10.1126/science.aay0600
|
35 |
A. Romanenko, R. Pilipenko, S. Zorzetti, D. Frolov, M. Awida, S. Belomestnykh, S. Posen, and A. Grassellino, Three-dimensional superconducting resonators at T < 20 mK with photon lifetimes up to τ = 2 s, Phys. Rev. Appl. 13(3), 034032 (2020)
https://doi.org/10.1103/PhysRevApplied.13.034032
|
36 |
M. Mariantoni, F. Deppe, A. Marx, R. Gross, F. K. Wilhelm, and E. Solano, Two-resonator circuit quantum electrodynamics: A superconducting quantum switch, Phys. Rev. B 78(10), 104508 (2008)
https://doi.org/10.1103/PhysRevB.78.104508
|
37 |
S. T. Merkel and F. K. Wilhelm, Generation and detection of NOON states in superconducting circuits, New J. Phys. 12(9), 093036 (2010)
https://doi.org/10.1088/1367-2630/12/9/093036
|
38 |
F. W. Strauch, K. Jacobs, and R. W. Simmonds, Arbitrary control of entanglement between two superconducting resonators, Phys. Rev. Lett. 105(5), 050501 (2010)
https://doi.org/10.1103/PhysRevLett.105.050501
|
39 |
Y. Hu and L. Tian, Deterministic generation of entangled photons in superconducting resonator arrays, Phys. Rev. Lett. 106(25), 257002 (2011)
https://doi.org/10.1103/PhysRevLett.106.257002
|
40 |
C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)
https://doi.org/10.1103/PhysRevA.86.022329
|
41 |
P. B. Li, S. Y. Gao, and F. L. Li, Engineering two-mode entangled states between two superconducting resonators by dissipation, Phys. Rev. A 86(1), 012318 (2012)
https://doi.org/10.1103/PhysRevA.86.012318
|
42 |
C. P. Yang, Q. P. Su, S. B. Zheng, and S. Han, Generating entanglement between microwave photons and qubits in multiple cavities coupled by a superconducting qutrit, Phys. Rev. A 87(2), 022320 (2013)
https://doi.org/10.1103/PhysRevA.87.022320
|
43 |
S. J. Xiong, Z. Sun, J. M. Liu, T. Liu, and C. P. Yang, Efficient scheme for generation of photonic NOON states in circuit QED, Opt. Lett. 40(10), 2221 (2015)
https://doi.org/10.1364/OL.40.002221
|
44 |
R. Sharma and F. W. Strauch, Quantum state synthesis of superconducting resonators, Phys. Rev. A 93(1), 012342 (2016)
https://doi.org/10.1103/PhysRevA.93.012342
|
45 |
Z. Li, S. Ma, Z. P. Yang, A. P. Fang, P. Li, S. Y. Gao, and F. L. Li, Generation and replication of continuousvariable quadripartite cluster and Greenberger–Horne–Zeilinger states in four chains of superconducting transmission line resonators, Phys. Rev. A 93(4), 042305 (2016)
https://doi.org/10.1103/PhysRevA.93.042305
|
46 |
Y. J. Zhao, C. Q. Wang, X. B. Zhu, and Y. X. Liu, Engineering entangled microwave photon states through multiphoton interactions between two cavity fields and a superconducting qubit, Sci. Rep. 6(1), 23646 (2016)
https://doi.org/10.1038/srep23646
|
47 |
Q. P. Su, H. H. Zhu, L. Yu, Y. Zhang, S. J. Xiong, J. M. Liu, and C. P. Yang, Generating double NOON states of photons in circuit QED, Phys. Rev. A 95(2), 022339 (2017)
https://doi.org/10.1103/PhysRevA.95.022339
|
48 |
C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
https://doi.org/10.1364/OL.43.005126
|
49 |
M. Li, M. Hua, M. Zhang, and F. G. Deng, Entangling two high-Q microwave resonators assisted by a resonator terminated with SQUIDs, New J. Phys. 21(7), 073025 (2019)
https://doi.org/10.1088/1367-2630/ab2e1c
|
50 |
T. Liu, Y. Zhang, B. Q. Guo, C. S. Yu, and W. N. Zhang, Creation of superposition of arbitrary states encoded in two high-Q cavities, Opt. Express 27(19), 27168 (2019)
https://doi.org/10.1364/OE.27.027168
|
51 |
Y. Zhang, T. Liu, J. Zhao, Y. Yu, and C. P. Yang, Generation of hybrid Greenberger–Horne–Zeilinger entangled states of particlelike and wavelike optical qubits in circuit QED, Phys. Rev. A 101(6), 062334 (2020)
https://doi.org/10.1103/PhysRevA.101.062334
|
52 |
M. Hofheinz, E. M. Weig, M. Ansmann, R. C. Bialczak, E. Lucero, M. Neeley, A. D. O’Connell, H. Wang, J. M. Martinis, and A. N. Cleland, Generation of Fock states in a superconducting quantum circuit, Nature 454(7202), 310 (2008)
https://doi.org/10.1038/nature07136
|
53 |
B. Vlastakis, G. Kirchmair, Z. Leghtas, S. E. Nigg, L. Frunzio, S. M. Girvin, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Deterministically encoding quantum information using 100-Photon Schröinger cat states, Science 342(6158), 607 (2013)
https://doi.org/10.1126/science.1243289
|
54 |
C. Wang, Y. Y. Gao, P. Reinhold, R. W. Heeres, N. Ofek, K. Chou, C. Axline, M. Reagor, J. Blumoff, K. M. Sliwa, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, A Schrödinger cat living in two boxes, Science 352(6289), 1087 (2016)
https://doi.org/10.1126/science.aaf2941
|
55 |
H. Wang, M. Mariantoni, R. C. Bialczak, M. Lenander, E. Lucero, M. Neeley, A. D. O’Connell, D. Sank, M. Weides, J. Wenner, T. Yamamoto, Y. Yin, J. Zhao, J. M. Martinis, and A. N. Cleland, Deterministic entanglement of photons in two superconducting microwave resonators, Phys. Rev. Lett. 106(6), 060401 (2011)
https://doi.org/10.1103/PhysRevLett.106.060401
|
56 |
A. Karlsson and M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58(6), 4394 (1998)
https://doi.org/10.1103/PhysRevA.58.4394
|
57 |
D. P. DiVincenzo and P. W. Shor, Fault-tolerant error correction with efficient quantum codes, Phys. Rev. Lett. 77(15), 3260 (1996)
https://doi.org/10.1103/PhysRevLett.77.3260
|
58 |
V. Giovannetti, S. Lloyd, and L. Maccone, Quantumenhanced measurements: Beating the standard quantum limit, Science 306(5700), 1330 (2004)
https://doi.org/10.1126/science.1104149
|
59 |
X. Wang, Quantum teleportation of entangled coherent states, Phys. Rev. A 64(2), 022302 (2001)
https://doi.org/10.1103/PhysRevA.64.022302
|
60 |
H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A 65(4), 042305 (2002)
https://doi.org/10.1103/PhysRevA.65.042305
|
61 |
J. Joo, W. J. Munro, and T. P. Spiller, Quantum metrology with entangled coherent states, Phys. Rev. Lett. 107(8), 083601 (2011)
https://doi.org/10.1103/PhysRevLett.107.083601
|
62 |
P. T. Cochrane, G. J. Milburn, and W. J. Munro, Macroscopically distinct quantumsuperposition states as a bosonic code for amplitude damping, Phys. Rev. A 59(4), 2631 (1999)
https://doi.org/10.1103/PhysRevA.59.2631
|
63 |
Q. C. Wu, Y. H. Zhou, B. L. Ye, T. Liu, and C. P. Yang, Nonadiabatic quantum state engineering by time-dependent decoherence-free subspaces in open quantum systems, New J. Phys. 23(11), 113005 (2021)
https://doi.org/10.1088/1367-2630/ac309d
|
64 |
H. Jeong and N. B. An, Greenberger–Horne–Zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting, Phys. Rev. A 74(2), 022104 (2006)
https://doi.org/10.1103/PhysRevA.74.022104
|
65 |
A. Blais, S. M. Girvin, and W. D. Oliver, Quantum information processing and quantum optics with circuit quantum electrodynamics, Nat. Phys. 16(3), 247 (2020)
https://doi.org/10.1038/s41567-020-0806-z
|
66 |
W. Cai, Y. Ma, W. Wang, C. L. Zou, and L. Sun, Bosonic quantum error correction codes in superconducting quantum circuits, Fundamental Research 1(1), 50 (2021)
https://doi.org/10.1016/j.fmre.2020.12.006
|
67 |
D. Gottesman, A. Kitaev, and J. Preskill, Encoding a qubit in an oscillator, Phys. Rev. A 64(1), 012310 (2001)
https://doi.org/10.1103/PhysRevA.64.012310
|
68 |
N. Ofek, A. Petrenko, R. Heeres, P. Reinhold, Z. Leghtas, B. Vlastakis, Y. Liu, L. Frunzio, S. M. Girvin, L. Jiang, M. Mirrahimi, M. H. Devoret, and R. J. Schoelkopf, Extending the lifetime of a quantum bit with error correction in superconducting circuits, Nature 536(7617), 441 (2016)
https://doi.org/10.1038/nature18949
|
69 |
M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert, J. Salmilehto, L. Jiang, and S. M. Girvin, New class of quantum error-correcting codes for a bosonic mode, Phys. Rev. X 6(3), 031006 (2016)
https://doi.org/10.1103/PhysRevX.6.031006
|
70 |
L. Hu, Y. Ma, W. Cai, X. Mu, Y. Xu, W. Wang, Y. Wu, H. Wang, Y. P. Song, C. L. Zou, S. M. Girvin, L. M. Duan, and L. Sun, Quantum error correction and universal gate set operation on a binomial bosonic logical qubit, Nat. Phys. 15(5), 503 (2019)
https://doi.org/10.1038/s41567-018-0414-3
|
71 |
A. Sørensen and K. Mølmer, Quantum computation with ions in thermal motion, Phys. Rev. Lett. 82(9), 1971 (1999)
https://doi.org/10.1103/PhysRevLett.82.1971
|
72 |
S. B. Zheng and G. C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)
https://doi.org/10.1103/PhysRevLett.85.2392
|
73 |
D. F. James and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
https://doi.org/10.1139/p07-060
|
74 |
Y. Xu, Y. Ma, W. Cai, X. Mu, W. Dai, W. Wang, L. Hu, X. Li, J. Han, H. Wang, Y. Song, Z. B. Yang, S. B. Zheng, and L. Sun, Demonstration of controlled-phase gates between two error-correctable photonic qubits, Phys. Rev. Lett. 124(12), 120501 (2020)
https://doi.org/10.1103/PhysRevLett.124.120501
|
75 |
M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)
https://doi.org/10.1063/1.2929367
|
76 |
Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)
https://doi.org/10.1063/1.4802893
|
77 |
M. Scully and M. S. Zubairy, Quantum optics, Cambridge University Press, Cambridge, 1997, Chapter 2
https://doi.org/10.1017/CBO9780511813993
|
78 |
G. Kirchmair, B. Vlastakis, Z. Leghtas, S. E. Nigg, H. Paik, E. Ginossar, M. Mirrahimi, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Observation of quantum state collapse and revival due to the single-photon Kerr effect, Nature 495(7440), 205 (2013)
https://doi.org/10.1038/nature11902
|
79 |
J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A 76(4), 042319 (2007)
https://doi.org/10.1103/PhysRevA.76.042319
|
80 |
I. C. Hoi, C. M. Wilson, G. Johansson, T. Palomaki, B. Peropadre, and P. Delsing, Demonstration of a singlephoton router in the microwave regime, Phys. Rev. Lett. 107(7), 073601 (2011)
https://doi.org/10.1103/PhysRevLett.107.073601
|
81 |
M. Fitzpatrick, N. M. Sundaresan, A. C. Y. Li, J. Koch, and A. A. Houck, Observation of a dissipative phase transition in a one-dimensional circuit QED lattice, Phys. Rev. X 7(1), 011016 (2017)
https://doi.org/10.1103/PhysRevX.7.011016
|
82 |
T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)
https://doi.org/10.1007/s11467-019-0949-5
|
83 |
J. B. Chang, M. R. Vissers, A. D. Córcoles, M. Sandberg, J. Gao, D. W. Abraham, J. M. Chow, J. M. Gambetta, M. Beth Rothwell, G. A. Keefe, M. Steffen, and D. P. Pappas, Improved superconducting qubit coherence using titanium nitride, Appl. Phys. Lett. 103(1), 012602 (2013)
https://doi.org/10.1063/1.4813269
|
84 |
A. P. M. Place, L. V. H. Rodgers, P. Mundada, B. M. Smitham, M. Fitzpatrick, Z. Leng, A. Premkumar, J. Bryon, S. Sussman, G. Cheng, et al., New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds, arXiv: 2003.00024 (2020)
|
85 |
A. Megrant, C. Neill, R. Barends, B. Chiaro, Y. Chen, L. Feigl, J. Kelly, E. Lucero, M. Mariantoni, P. J. J. O’Malley, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Y. Yin, J. Zhao, C. J. Palmstrøm, J. M. Martinis, and A. N. Cleland, Planar superconducting resonators with internal quality factors above one million, Appl. Phys. Lett. 100(11), 113510 (2012)
https://doi.org/10.1063/1.3693409
|
86 |
P. W. Woods, G. Calusine, A. Melville, A. Sevi, E. Golden, D. K. Kim, D. Rosenberg, J. L. Yoder, and W. D. Oliver, Determining interface dielectric losses in superconducting coplanar waveguide resonators, Phys. Rev. Appl. 12(1), 014012 (2019)
https://doi.org/0.1103/PhysRevApplied.12.014012
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|