Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2021, Vol. 16 Issue (6) : 61501    https://doi.org/10.1007/s11467-021-1098-1
RESEARCH ARTICLE
Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED
Qi-Ping Su1, Hanyu Zhang1, Chui-Ping Yang1,2()
1. Department of Physics, Hangzhou Normal University, Hangzhou 311121, China
2. Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China
 Download: PDF(807 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto ncoherent-state (CS) qubits, by employing 2nmicrowave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2nmicrowave or optical cavities.

Keywords entangled state      single-photon-state qubit      coherent-state qubit      circuit QED     
Corresponding Author(s): Chui-Ping Yang   
Issue Date: 24 August 2021
 Cite this article:   
Qi-Ping Su,Hanyu Zhang,Chui-Ping Yang. Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED[J]. Front. Phys. , 2021, 16(6): 61501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1098-1
https://academic.hep.com.cn/fop/EN/Y2021/V16/I6/61501
1 T. C. Ralph and G. J. Pryde, Optical quantum computation, Prog. Opt.54, 209 (2010)
https://doi.org/10.1016/S0079-6638(10)05409-0
2 J. L. O’ Brien, A. Furusawa, and J. Vucković, Photonic quantum technologies, Nature Photon. 3, 687 (2009)
https://doi.org/10.1038/nphoton.2009.229
3 Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)
https://doi.org/10.1007/s11467-018-0876-x
4 E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature409(6816), 46 (2001)
https://doi.org/10.1038/35051009
5 P. Zhu, Q. Zheng, S. Xue, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, J. Wu, and P. Xu, Onchip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs, Front. Phys.15(6), 61501 (2020)
https://doi.org/10.1007/s11467-020-1010-4
6 H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A65(4), 042305 (2002)
https://doi.org/10.1103/PhysRevA.65.042305
7 M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16(4), 045014 (2014)
https://doi.org/10.1088/1367-2630/16/4/045014
8 J. K. Asbóth, P. Adam, M. Koniorczyk, and J. Janszky, Coherent-state qubits: Entanglement and decoherence, Eur. Phys. J. D 30(3), 403 (2004)
https://doi.org/10.1140/epjd/e2004-00094-2
9 U. L. Andersen, G. Leuchs, and C. Silberhorn, Continuousvariable quantum information processing, Laser Photonics Rev. 4(3), 337 (2010)
https://doi.org/10.1002/lpor.200910010
10 Z. R. Zhong, J. Q. Sheng, L. H. Lin, and S. B. Zheng, Quantum nonlocality for entanglement of quasiclassical states, Opt. Lett. 44(7), 1726 (2019)
https://doi.org/10.1364/OL.44.001726
11 R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nat. Commun. 8(1), 94 (2017)
https://doi.org/10.1038/s41467-017-00045-1
12 S. E. Nigg, Deterministic Hadamard gate for microwave cat-state qubits in circuit QED, Phys. Rev. A89(2), 022340 (2014)
https://doi.org/10.1103/PhysRevA.89.022340
13 Y. Zhang, X. Zhao, Z. F. Zheng, L. Yu, Q. P. Su, and C. P. Yang, Universal controlled phase gate with cat-state qubits in circuit QED, Phys. Rev. A96(5), 052317 (2017)
https://doi.org/10.1103/PhysRevA.96.052317
14 C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
https://doi.org/10.1364/OL.43.005126
15 Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
https://doi.org/10.1007/s11467-018-0875-y
16 T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)
https://doi.org/10.1007/s11467-019-0949-5
17 K. Park and H. Jeong, Entangled coherent states versus entangled photon pairs for practical quantum-information processing, Phys. Rev. A 82(6), 062325 (2010)
https://doi.org/10.1103/PhysRevA.82.062325
18 P. van Loock, Optical hybrid approaches to quantum information, Laser Photon. Rev. 5(2), 167 (2011)
https://doi.org/10.1002/lpor.201000005
19 S. W. Lee and H. Jeong, Near-deterministic quantum teleportation and resource efficient quantum computation using linear optics and hybrid qubits, Phys. Rev. A87(2), 022326 (2013)
https://doi.org/10.1103/PhysRevA.87.022326
20 C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum interferencedevice qubits in cavity QED, Phys. Rev. A67(4), 042311 (2003)
https://doi.org/10.1103/PhysRevA.67.042311
21 J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B68(6), 064509 (2003)
https://doi.org/10.1103/PhysRevB.68.064509
22 A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A69(6), 062320 (2004)
https://doi.org/10.1103/PhysRevA.69.062320
23 J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature453(7198), 1031 (2008)
https://doi.org/10.1038/nature07128
24 J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature474(7353), 589 (2011)
https://doi.org/10.1038/nature10122
25 Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 5(2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
26 X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep.718–719, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
27 X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
https://doi.org/10.1007/s11467-019-0888-1
28 J. Joo, C. W. Lee, S. Kono, and J. Kim, Logical measurement-based quantum computation in circuit-QED, Sci. Rep. 9(1), 16592 (2019)
https://doi.org/10.1038/s41598-019-52866-3
29 A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Ultrastrong coupling between light and matter, Nature Rev. Phys. 1(1), 19 (2019)
https://doi.org/10.1038/s42254-018-0006-2
30 S. B. Zheng and G. C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)
https://doi.org/10.1103/PhysRevLett.85.2392
31 D. F. V. James, and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
https://doi.org/10.1139/p07-060
32 C. P. Yang and S. Han,n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator, Phys. Rev. A 72(3), 032311 (2005)
https://doi.org/10.1103/PhysRevA.72.032311
33 P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B79(18), 180511 (2009)
https://doi.org/10.1103/PhysRevB.79.180511
34 M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’ Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4(7), 523 (2008)
https://doi.org/10.1038/nphys972
35 M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)
https://doi.org/10.1063/1.2929367
36 Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)
https://doi.org/10.1063/1.4802893
37 C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)
https://doi.org/10.1103/PhysRevA.86.022329
38 C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
https://doi.org/10.1088/1367-2630/18/1/013025
39 W. J. Shan, Y. Xia, Y. H. Chen, and J. Song, Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving, Quantum Inform. Process. 15(6), 2359 (2016)
https://doi.org/10.1007/s11128-016-1284-1
40 J. Heo, M. S. Kang, C. H. Hong, H. Yang, and S. G. Choi, Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication, Quantum Inform. Process. 16(1), 24 (2017)
https://doi.org/10.1007/s11128-016-1459-9
41 A. Zheng and J. Liu, Generation of an N-qubit Greenberger–Horne–Zeilinger state with distant atoms in bimodal cavities, J. Phys. B 44(16), 165501 (2011)
https://doi.org/10.1088/0953-4075/44/16/165501
42 P. Xu, D. Wang, L. Ye, and Y. Yu, Preparation and transmission of diversified multi-particle entanglements with spatially separate cavities, Eur. Phys. J. D69(6), 144 (2015)
https://doi.org/10.1140/epjd/e2015-60030-y
43 Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95(8), 087001 (2005)
https://doi.org/10.1103/PhysRevLett.95.087001
44 T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys. 6(10), 772 (2010)
https://doi.org/10.1038/nphys1730
45 F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and W. D. Oliver, The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7(1), 12964 (2016)
https://doi.org/10.1038/ncomms12964
46 J. Q. You, X. Hu, S. Ashhab, and F. Nori, Lowdecoherence flux qubit, Phys. Rev. B75(14), 140515 (2007)
https://doi.org/10.1103/PhysRevB.75.140515
47 M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, A quantum memory with near-millisecond coherence in circuit QED, Phys. Rev. B 94(1), 014506 (2016)
https://doi.org/10.1103/PhysRevB.94.014506
[1] Tong Liu, Zhen-Fei Zheng, Yu Zhang, Yu-Liang Fang, Chui-Ping Yang. Transferring entangled states of photonic cat-state qubits in circuit QED[J]. Front. Phys. , 2020, 15(2): 21603-.
[2] You-Ji Fan, Zhen-Fei Zheng, Yu Zhang, Dao-Ming Lu, Chui-Ping Yang. One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED[J]. Front. Phys. , 2019, 14(2): 21602-.
[3] Xiang-Guo Meng, Ji-Suo Wang, Bao-Long Liang, Cheng-Xuan Han. Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach[J]. Front. Phys. , 2018, 13(5): 130322-.
[4] Fang Jia,Shuang Xu,Cheng-Zhi Deng,Cun-Jin Liu,Li-Yun Hu. 3D entangled fractional squeezing transformation and its quantum mechanical correspondence[J]. Front. Phys. , 2016, 11(3): 110302-.
[5] Hong-Yi Fan,Jun-Hua Chen,Peng-Fei Zhang. On the entangled fractional squeezing transformation[J]. Front. Phys. , 2015, 10(2): 100302-.
[6] Hong-Yi Fan, Jun-Hua Chen. On the core of the fractional Fourier transform and its role in composing complex fractional Fourier transformations and Fresnel transformations[J]. Front. Phys. , 2015, 10(1): 100301-.
[7] Xiao-Fei Cai, Xu-Tao Yu, Li-Hui Shi, Zai-Chen Zhang. Partially entangled states bridge in quantum teleportation[J]. Front. Phys. , 2014, 9(5): 646-651.
[8] Hong-Yi Fan,Sen-Yue Lou. Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering[J]. Front. Phys. , 2014, 9(4): 460-464.
[9] Kai-Min Zheng, Shi-You Liu, Hao-Liang Zhang, Cun-Jin Liu, Li-Yun Hu. A generalized two-mode entangled state: Its generation, properties, and applications[J]. Front. Phys. , 2014, 9(4): 451-459.
[10] Hong-Yi Fan, Shuai Wang, Li-Yun Hu. Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel[J]. Front. Phys. , 2014, 9(1): 74-81.
[11] Hong-yi Fan, Li-yun Hu. Correspondence between quantum-optical transform and classical-optical transform explored by developing Dirac’s symbolic method[J]. Front. Phys. , 2012, 7(3): 261-310.
[12] NIU Yue-ping, QIAN Jun, FENG Xun-li, GONG Shang-qing. Enhancement of Kerr nonlinearity and its application to entangled state discrimination[J]. Front. Phys. , 2007, 2(4): 403-409.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed