Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (4) : 460-464    https://doi.org/10.1007/s11467-013-0397-6
RESEARCH ARTICLE
Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering
Hong-Yi Fan(),Sen-Yue Lou
Department of Physics, Ningbo University, Ningbo 315211, China
 Download: PDF(176 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

For two particles’ relative position and total momentum we have introduced the entangled state representation |η?, and its conjugate state |ξ?. In this work, for the first time, we study them via the integration over ket–bra operators in Q-ordering or P-ordering, where Q-ordering means all Qs are to the left of all Ps and P-ordering means all Ps are to the left of all Qs. In this way we newly derive P-ordered (or Q-ordered) expansion formulas of the two-mode squeezing operator which can show the squeezing effect on both the two-mode coordinate and momentum eigenstates. This tells that not only the integration over ket–bra operators within normally ordered, but also within Pordered (or Q-ordered) are feasible and useful in developing quantum mechanical representation and transformation theory.

Keywords integration over ket–bra operators      Q-ordering      P-ordering      entangled state representation     
Corresponding Author(s): Hong-Yi Fan   
Issue Date: 26 August 2014
 Cite this article:   
Hong-Yi Fan,Sen-Yue Lou. Studying bi-partite entangled state representations via the integration over ket–bra operators in Q-ordering or P-ordering[J]. Front. Phys. , 2014, 9(4): 460-464.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0397-6
https://academic.hep.com.cn/fop/EN/Y2014/V9/I4/460
1 A. Einstein, B. Podolsky, and N. Rosen, Can quantummechanical description of physical reality be considered complete? Phys. Rev., 1935, 47(10): 777
doi: 10.1103/PhysRev.47.777
2 H. Y. Fanand J. R. Klauder, Eigenvectors of two particles’ relative position and total momentum., Phys. Rev. A, 1994, 49(2): 704
doi: 10.1103/PhysRevA.49.704
3 H. Y. Fanand Y. Fan, Dual eigenkets of the Susskind–Glogower phase operator, Phys. Rev. A, 1996, 54(6): 5295
doi: 10.1103/PhysRevA.54.5295
4 P. A. M.Dirac, The Principles of Quantum Mechanics, Oxford: Clarendon Press, 1930
5 H. Y. Fanand J. Zhou, Coherent state and normal ordering method for transiting Hermite polynomials to Laguerre polynomials, Science China: Physics, Mechanics & Astronomy, 2012, 55(4): 605
doi: 10.1007/s11433-012-4677-x
6 H. Y. Fan, New fundamental quantum mechanical operatorordering identities for the coordinate and momentum operators, Science China: Physics, Mechanics & Astronomy, 2012, 55(5): 762
doi: 10.1007/s11433-012-4699-4
7 H. Y. Fanand S. Y. Lou, Science China: Physics, Mechanics and Astronomy, 2013 (to appear)
8 H. Weyl, Quantenmechanik und gruppentheorie, Z. Phys., 1927, 46(1-2): 1
doi: 10.1007/BF02055756
9 E. Wigner, On the quantum correction for thermodynamic equilibrium, Phys. Rev., 1932, 40(5): 749
doi: 10.1103/PhysRev.40.749
10 H. Y. Fan, S. Wang, and L. Y. Hu, Evolution of the singlemode squeezed vacuum state in amplitude dissipative channel, Front. Phys
doi: 10.1007/s11467-013-0367-z
11 H. Y. Fan, Squeezed states: Operators for two types of one- and two-mode squeezing transformations, Phys. Rev. A, 1990, 41(3): 1526
doi: 10.1103/PhysRevA.41.1526
12 H. Y. Fan, H. L. Lu, and Y. Fan, Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations, Ann. Phys., 2006, 321(2): 480
doi: 10.1016/j.aop.2005.09.011
13 H. Y. Fan, Operator ordering in quantum optics theory and the development of Dirac’s symbolic method, J. Opt. B, 2003, 5(4): R147
doi: 10.1088/1464-4266/5/4/201
14 H. Y. Fan, H. C. Yuan, and N. Q. Jiang, Deriving new operator identities by alternately using normally, antinormally, and Weyl ordered integration technique, Science China: Phys Mechanics & Astronomy, 2010, 53(9): 1626
doi: 10.1007/s11433-010-4071-5
[1] Xiang-Guo Meng, Ji-Suo Wang, Bao-Long Liang, Cheng-Xuan Han. Evolution of a two-mode squeezed vacuum for amplitude decay via continuous-variable entangled state approach[J]. Front. Phys. , 2018, 13(5): 130322-.
[2] Fang Jia,Shuang Xu,Cheng-Zhi Deng,Cun-Jin Liu,Li-Yun Hu. 3D entangled fractional squeezing transformation and its quantum mechanical correspondence[J]. Front. Phys. , 2016, 11(3): 110302-.
[3] Hong-Yi Fan,Jun-Hua Chen,Peng-Fei Zhang. On the entangled fractional squeezing transformation[J]. Front. Phys. , 2015, 10(2): 100302-.
[4] Hong-Yi Fan, Shuai Wang, Li-Yun Hu. Evolution of the single-mode squeezed vacuum state in amplitude dissipative channel[J]. Front. Phys. , 2014, 9(1): 74-81.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed