|
|
Transferring quantum entangled states between multiple single-photon-state qubits and coherent-state qubits in circuit QED |
Qi-Ping Su1, Hanyu Zhang1, Chui-Ping Yang1,2( ) |
1. Department of Physics, Hangzhou Normal University, Hangzhou 311121, China 2. Quantum Information Research Center, Shangrao Normal University, Shangrao 334001, China |
|
|
Abstract We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto ncoherent-state (CS) qubits, by employing 2nmicrowave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2nmicrowave or optical cavities.
|
Keywords
entangled state
single-photon-state qubit
coherent-state qubit
circuit QED
|
Corresponding Author(s):
Chui-Ping Yang
|
Issue Date: 24 August 2021
|
|
1 |
T. C. Ralph and G. J. Pryde, Optical quantum computation, Prog. Opt.54, 209 (2010)
https://doi.org/10.1016/S0079-6638(10)05409-0
|
2 |
J. L. O’ Brien, A. Furusawa, and J. Vucković, Photonic quantum technologies, Nature Photon. 3, 687 (2009)
https://doi.org/10.1038/nphoton.2009.229
|
3 |
Q. Dong, A. J. Torres-Arenas, G. H. Sun, W. C. Qiang, and S. H. Dong, Entanglement measures of a new type pseudo-pure state in accelerated frames, Front. Phys. 14(2), 21603 (2019)
https://doi.org/10.1007/s11467-018-0876-x
|
4 |
E. Knill, R. Laflamme, and G. J. Milburn, A scheme for efficient quantum computation with linear optics, Nature409(6816), 46 (2001)
https://doi.org/10.1038/35051009
|
5 |
P. Zhu, Q. Zheng, S. Xue, C. Wu, X. Yu, Y. Wang, Y. Liu, X. Qiang, J. Wu, and P. Xu, Onchip multiphoton Greenberger–Horne–Zeilinger state based on integrated frequency combs, Front. Phys.15(6), 61501 (2020)
https://doi.org/10.1007/s11467-020-1010-4
|
6 |
H. Jeong and M. S. Kim, Efficient quantum computation using coherent states, Phys. Rev. A65(4), 042305 (2002)
https://doi.org/10.1103/PhysRevA.65.042305
|
7 |
M. Mirrahimi, Z. Leghtas, V. V. Albert, S. Touzard, R. J. Schoelkopf, L. Jiang, and M. H. Devoret, Dynamically protected cat-qubits: A new paradigm for universal quantum computation, New J. Phys. 16(4), 045014 (2014)
https://doi.org/10.1088/1367-2630/16/4/045014
|
8 |
J. K. Asbóth, P. Adam, M. Koniorczyk, and J. Janszky, Coherent-state qubits: Entanglement and decoherence, Eur. Phys. J. D 30(3), 403 (2004)
https://doi.org/10.1140/epjd/e2004-00094-2
|
9 |
U. L. Andersen, G. Leuchs, and C. Silberhorn, Continuousvariable quantum information processing, Laser Photonics Rev. 4(3), 337 (2010)
https://doi.org/10.1002/lpor.200910010
|
10 |
Z. R. Zhong, J. Q. Sheng, L. H. Lin, and S. B. Zheng, Quantum nonlocality for entanglement of quasiclassical states, Opt. Lett. 44(7), 1726 (2019)
https://doi.org/10.1364/OL.44.001726
|
11 |
R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, Implementing a universal gate set on a logical qubit encoded in an oscillator, Nat. Commun. 8(1), 94 (2017)
https://doi.org/10.1038/s41467-017-00045-1
|
12 |
S. E. Nigg, Deterministic Hadamard gate for microwave cat-state qubits in circuit QED, Phys. Rev. A89(2), 022340 (2014)
https://doi.org/10.1103/PhysRevA.89.022340
|
13 |
Y. Zhang, X. Zhao, Z. F. Zheng, L. Yu, Q. P. Su, and C. P. Yang, Universal controlled phase gate with cat-state qubits in circuit QED, Phys. Rev. A96(5), 052317 (2017)
https://doi.org/10.1103/PhysRevA.96.052317
|
14 |
C. P. Yang and Z. F. Zheng, Deterministic generation of Greenberger–Horne–Zeilinger entangled states of cat-state qubits in circuit QED, Opt. Lett. 43(20), 5126 (2018)
https://doi.org/10.1364/OL.43.005126
|
15 |
Y. J. Fan, Z. F. Zheng, Y. Zhang, D. M. Lu, and C. P. Yang, One-step implementation of a multi-target-qubit controlled phase gate with cat-state qubits in circuit QED, Front. Phys. 14(2), 21602 (2019)
https://doi.org/10.1007/s11467-018-0875-y
|
16 |
T. Liu, Z. F. Zheng, Y. Zhang, Y. L. Fang, and C. P. Yang, Transferring entangled states of photonic cat-state qubits in circuit QED, Front. Phys. 15(2), 21603 (2020)
https://doi.org/10.1007/s11467-019-0949-5
|
17 |
K. Park and H. Jeong, Entangled coherent states versus entangled photon pairs for practical quantum-information processing, Phys. Rev. A 82(6), 062325 (2010)
https://doi.org/10.1103/PhysRevA.82.062325
|
18 |
P. van Loock, Optical hybrid approaches to quantum information, Laser Photon. Rev. 5(2), 167 (2011)
https://doi.org/10.1002/lpor.201000005
|
19 |
S. W. Lee and H. Jeong, Near-deterministic quantum teleportation and resource efficient quantum computation using linear optics and hybrid qubits, Phys. Rev. A87(2), 022326 (2013)
https://doi.org/10.1103/PhysRevA.87.022326
|
20 |
C. P. Yang, S. I. Chu, and S. Han, Possible realization of entanglement, logical gates, and quantum information transfer with superconducting-quantum interferencedevice qubits in cavity QED, Phys. Rev. A67(4), 042311 (2003)
https://doi.org/10.1103/PhysRevA.67.042311
|
21 |
J. Q. You and F. Nori, Quantum information processing with superconducting qubits in a microwave field, Phys. Rev. B68(6), 064509 (2003)
https://doi.org/10.1103/PhysRevB.68.064509
|
22 |
A. Blais, R. S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A69(6), 062320 (2004)
https://doi.org/10.1103/PhysRevA.69.062320
|
23 |
J. Clarke and F. K. Wilhelm, Superconducting quantum bits, Nature453(7198), 1031 (2008)
https://doi.org/10.1038/nature07128
|
24 |
J. Q. You and F. Nori, Atomic physics and quantum optics using superconducting circuits, Nature474(7353), 589 (2011)
https://doi.org/10.1038/nature10122
|
25 |
Z. L. Xiang, S. Ashhab, J. Q. You, and F. Nori, Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Mod. Phys. 5(2), 623 (2013)
https://doi.org/10.1103/RevModPhys.85.623
|
26 |
X. Gu, A. F. Kockum, A. Miranowicz, Y. X. Liu, and F. Nori, Microwave photonics with superconducting quantum circuits, Phys. Rep.718–719, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.10.002
|
27 |
X. T. Mo and Z. Y. Xue, Single-step multipartite entangled states generation from coupled circuit cavities, Front. Phys. 14(3), 31602 (2019)
https://doi.org/10.1007/s11467-019-0888-1
|
28 |
J. Joo, C. W. Lee, S. Kono, and J. Kim, Logical measurement-based quantum computation in circuit-QED, Sci. Rep. 9(1), 16592 (2019)
https://doi.org/10.1038/s41598-019-52866-3
|
29 |
A. F. Kockum, A. Miranowicz, S. De Liberato, S. Savasta, and F. Nori, Ultrastrong coupling between light and matter, Nature Rev. Phys. 1(1), 19 (2019)
https://doi.org/10.1038/s42254-018-0006-2
|
30 |
S. B. Zheng and G. C. Guo, Efficient scheme for two-atom entanglement and quantum information processing in cavity QED, Phys. Rev. Lett. 85(11), 2392 (2000)
https://doi.org/10.1103/PhysRevLett.85.2392
|
31 |
D. F. V. James, and J. Jerke, Effective Hamiltonian theory and its applications in quantum information, Can. J. Phys. 85(6), 625 (2007)
https://doi.org/10.1139/p07-060
|
32 |
C. P. Yang and S. Han,n-qubit-controlled phase gate with superconducting quantum interference devices coupled to a resonator, Phys. Rev. A 72(3), 032311 (2005)
https://doi.org/10.1103/PhysRevA.72.032311
|
33 |
P. J. Leek, S. Filipp, P. Maurer, M. Baur, R. Bianchetti, J. M. Fink, M. Goppl, L. Steffen, and A. Wallraff, Using sideband transitions for two-qubit operations in superconducting circuits, Phys. Rev. B79(18), 180511 (2009)
https://doi.org/10.1103/PhysRevB.79.180511
|
34 |
M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, N. Katz, E. Lucero, A. O’ Connell, H. Wang, A. N. Cleland, and J. M. Martinis, Process tomography of quantum memory in a Josephson-phase qubit coupled to a two-level state, Nat. Phys. 4(7), 523 (2008)
https://doi.org/10.1038/nphys972
|
35 |
M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Johansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning the field in a microwave resonator faster than the photon lifetime, Appl. Phys. Lett. 92(20), 203501 (2008)
https://doi.org/10.1063/1.2929367
|
36 |
Z. L. Wang, Y. P. Zhong, L. J. He, H. Wang, J. M. Martinis, A. N. Cleland, and Q. W. Xie, Quantum state characterization of a fast tunable superconducting resonator, Appl. Phys. Lett. 102(16), 163503 (2013)
https://doi.org/10.1063/1.4802893
|
37 |
C. P. Yang, Q. P. Su, and S. Han, Generation of Greenberger–Horne–Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction, Phys. Rev. A 86(2), 022329 (2012)
https://doi.org/10.1103/PhysRevA.86.022329
|
38 |
C. P. Yang, Q. P. Su, S. B. Zheng, and F. Nori, Entangling superconducting qubits in a multi-cavity system, New J. Phys. 18(1), 013025 (2016)
https://doi.org/10.1088/1367-2630/18/1/013025
|
39 |
W. J. Shan, Y. Xia, Y. H. Chen, and J. Song, Fast generation of N-atom Greenberger–Horne–Zeilinger state in separate coupled cavities via transitionless quantum driving, Quantum Inform. Process. 15(6), 2359 (2016)
https://doi.org/10.1007/s11128-016-1284-1
|
40 |
J. Heo, M. S. Kang, C. H. Hong, H. Yang, and S. G. Choi, Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication, Quantum Inform. Process. 16(1), 24 (2017)
https://doi.org/10.1007/s11128-016-1459-9
|
41 |
A. Zheng and J. Liu, Generation of an N-qubit Greenberger–Horne–Zeilinger state with distant atoms in bimodal cavities, J. Phys. B 44(16), 165501 (2011)
https://doi.org/10.1088/0953-4075/44/16/165501
|
42 |
P. Xu, D. Wang, L. Ye, and Y. Yu, Preparation and transmission of diversified multi-particle entanglements with spatially separate cavities, Eur. Phys. J. D69(6), 144 (2015)
https://doi.org/10.1140/epjd/e2015-60030-y
|
43 |
Y. X. Liu, J. Q. You, L. F. Wei, C. P. Sun, and F. Nori, Optical selection rules and phase dependent adiabatic state control in a superconducting quantum circuit, Phys. Rev. Lett. 95(8), 087001 (2005)
https://doi.org/10.1103/PhysRevLett.95.087001
|
44 |
T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J. Schwarz, J. J. Garcia Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, and R. Gross, Circuit quantum electrodynamics in the ultrastrong-coupling regime, Nat. Phys. 6(10), 772 (2010)
https://doi.org/10.1038/nphys1730
|
45 |
F. Yan, S. Gustavsson, A. Kamal, J. Birenbaum, A. P. Sears, D. Hover, T. J. Gudmundsen, D. Rosenberg, G. Samach, S. Weber, J. L. Yoder, T. P. Orlando, J. Clarke, A. J. Kerman, and W. D. Oliver, The flux qubit revisited to enhance coherence and reproducibility, Nat. Commun. 7(1), 12964 (2016)
https://doi.org/10.1038/ncomms12964
|
46 |
J. Q. You, X. Hu, S. Ashhab, and F. Nori, Lowdecoherence flux qubit, Phys. Rev. B75(14), 140515 (2007)
https://doi.org/10.1103/PhysRevB.75.140515
|
47 |
M. Reagor, W. Pfaff, C. Axline, R. W. Heeres, N. Ofek, K. Sliwa, E. Holland, C. Wang, J. Blumoff, K. Chou, M. J. Hatridge, L. Frunzio, M. H. Devoret, L. Jiang, and R. J. Schoelkopf, A quantum memory with near-millisecond coherence in circuit QED, Phys. Rev. B 94(1), 014506 (2016)
https://doi.org/10.1103/PhysRevB.94.014506
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|