Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (5) : 52505    https://doi.org/10.1007/s11467-022-1174-1
RESEARCH ARTICLE
A driven three-dimensional electric lattice for polar molecules
Hengjiao Guo, Yabing Ji, Qing Liu, Tao Yang, Shunyong Hou(), Jianping Yin()
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
 Download: PDF(2676 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three-dimensional (3D) driven optical lattices have attained great attention for their wide applications in the quest to engineer new and exotic quantum phases. Here we propose a 3D driven electric lattice (3D-DEL) for cold polar molecules as a natural extension. Our 3D electric lattice is composed of a series of thin metal plates in which two-dimensional square hole arrays are distributed. When suitable modulated voltages are applied to these metal plates, a 3D potential well array for polar molecules can be generated and can move smoothly back and forth in the lattice. Thus, it can drive cold polar molecules confined in the 3D electric lattice. Theoretical analyses and trajectory calculations using two types of molecules, ND3 and PbF, are performed to justify the possibility of our scheme. The 3D-DEL offers a platform for investigating cold molecules in periodic driven potentials, such as quantum computing science, quantum information processing, and some other possible applications amenable to the driven optical lattices.

Keywords 3D driven electric lattice      cold polar molecules     
Corresponding Author(s): Shunyong Hou,Jianping Yin   
Issue Date: 15 July 2022
 Cite this article:   
Hengjiao Guo,Yabing Ji,Qing Liu, et al. A driven three-dimensional electric lattice for polar molecules[J]. Front. Phys. , 2022, 17(5): 52505.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1174-1
https://academic.hep.com.cn/fop/EN/Y2022/V17/I5/52505
Fig.1  Schematic view of the 3D-DEL in a cold molecular experiment. A molecular beam is generated by a pulse valve, and then is coupled into the 3D-DEL by a hexapole. After being manipulated by the 3D-DEL, the molecules can be detected by laser-induced fluorescence.
Fig.2  (a) The operation principle of the electric fields in the 3D-driven electric lattice. (b) The electric field distribution of the 3D lattice in the transverse (x?y plane) directions through the electric field minima of the lattice sites.
Fig.3  Stark shift of the |J,K?=|1,1? level of ND3 ammonia molecules in an electric field of up to 80 kV/cm.
Fig.4  The phase space separatrices (a) and effective potential wells (b) for the ND3 molecules in the moving electric lattice along the longitudinal direction, with the acceleration of the lattice being a=0μm?μs?2 and a=0.82μm?μs?2.
Fig.5  (a) The 2D view of the molecular distribution at the end of the lattice with a longitudinal velocity being close to zero in the x?y plane. (b) The longitudinal separatrix for the lattice with the acceleration of 0.82μm?μs?2 (solid red line), together with the decelerated ND3 molecules in the lattice (black dots).
Fig.6  (a) The Stark shift of PbF in low-lying rotational states (N,NM), where N is the rotational number and NM is the projection of N on the electric field axis. (b) Simulated time-of-flight profiles for ND3 and PbF molecules.
Fig.7  Time dependence of molecular density of trapping process for ND3 molecules and PbF molecules respectively in the 3D-DEL.
Fig.8  Shuttling back and forth arrays of ND3 molecules in our 3D-DEL. The velocities of the lattice are indicated in each case.
1 Chu S. . Nobel Lecture: The manipulation of neutral particles. Rev. Mod. Phys., 1998, 70( 3): 685
https://doi.org/10.1103/RevModPhys.70.685
2 N. Cohen-Tannoudji C. . Nobel Lecture: Manipulating atoms with photons. Rev. Mod. Phys., 1998, 70( 3): 707
https://doi.org/10.1103/RevModPhys.70.707
3 D. Phillips W. . Nobel Lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 1998, 70( 3): 721
https://doi.org/10.1103/RevModPhys.70.721
4 Liang Q. , Chen T. , H. Bu W. , H. Zhang Y. , Yan B. . Laser cooling with adiabatic passage for type-II transitions. Front. Phys., 2021, 16( 3): 32501
https://doi.org/10.1007/s11467-020-1019-8
5 Yan K. , Gu R. , Wu D. , Wei J. , Xia Y. , Yin J. . Simulation of EOM-based frequency-chirped laser slowing of MgF radicals. Front. Phys., 2022, 17( 4): 42502
https://doi.org/10.1007/s11467-021-1137-y
6 Bloch I. . Ultracold quantum gases in optical lattices. Nat. Phys., 2005, 1( 1): 23
https://doi.org/10.1038/nphys138
7 Bloch I. , Dalibard J. , Zwerger W. . Many-body physics with ultracold gases. Rev. Mod. Phys., 2008, 80( 3): 885
https://doi.org/10.1103/RevModPhys.80.885
8 S. Bakr W. I. Gillen J. Peng A. S. Fölling, and M. Greiner, A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice, Nature 462(7269), 74 ( 2009)
9 Takamoto M. , L. Hong F. , Higashi R. , Katori H. . An optical lattice clock. Nature, 2005, 435( 7040): 321
https://doi.org/10.1038/nature03541
10 Calarco T. , A. Hinds E. , Jaksch D. , Schmiedmayer J. , I. Cirac J. , Zoller P. . Quantum gates with neutral atoms: Controlling collisional interactions in time-dependent traps. Phys. Rev. A, 2000, 61( 2): 022304
https://doi.org/10.1103/PhysRevA.61.022304
11 Monroe C. . Quantum information processing with atoms and photons. Nature, 2002, 416( 6877): 238
https://doi.org/10.1038/416238a
12 S. Rudner M. , H. Lindner N. , Berg E. , Levin M. . Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X, 2013, 3( 3): 031005
https://doi.org/10.1103/PhysRevX.3.031005
13 Bastidas V. , Emary C. , Regler B. , Brandes T. . Nonequilibrium quantum phase transitions in the Dicke model. Phys. Rev. Lett., 2012, 108( 4): 043003
https://doi.org/10.1103/PhysRevLett.108.043003
14 Choi S. , A. Abanin D. , D. Lukin M. . Dynamically induced many-body localization. Phys. Rev. B, 2018, 97( 10): 100301
https://doi.org/10.1103/PhysRevB.97.100301
15 S. Bhakuni D. , Nehra R. , Sharma A. . Drive-induced many-body localization and coherent destruction of Stark many-body localization. Phys. Rev. B, 2020, 102( 2): 024201
https://doi.org/10.1103/PhysRevB.102.024201
16 Eckardt A. . Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys., 2017, 89( 1): 011004
https://doi.org/10.1103/RevModPhys.89.011004
17 Lignier H. , Sias C. , Ciampini D. , Singh Y. , Zenesini A. , Morsch O. , Arimondo E. . Dynamical control of matter-wave tunneling in periodic potentials. Phys. Rev. Lett., 2007, 99( 22): 220403
https://doi.org/10.1103/PhysRevLett.99.220403
18 Eckardt A. , Holthaus M. , Lignier H. , Zenesini A. , Ciampini D. , Morsch O. , Arimondo E. . Exploring dynamic localization with a Bose−Einstein condensate. Phys. Rev. A, 2009, 79( 1): 013611
https://doi.org/10.1103/PhysRevA.79.013611
19 E. Creffield C. , Sols F. , Ciampini D. , Morsch O. , Arimondo E. . Expansion of matter waves in static and driven periodic potentials. Phys. Rev. A, 2010, 82( 3): 035601
https://doi.org/10.1103/PhysRevA.82.035601
20 W. Clark L. , Feng L. , Chin C. . Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition. Science, 2016, 354( 6312): 606
https://doi.org/10.1126/science.aaf9657
21 Feng L. , W. Clark L. , Gaj A. , Chin C. . Coherent inflationary dynamics for Bose–Einstein condensates crossing a quantum critical point. Nat. Phys., 2018, 14( 3): 269
https://doi.org/10.1038/s41567-017-0011-x
22 V. Gorshkov A. , R. Manmana S. , Chen G. , Demler E. , D. Lukin M. , M. Rey A. . Quantum magnetism with polar alkali-metal dimers. Phys. Rev. A, 2011, 84( 3): 033619
https://doi.org/10.1103/PhysRevA.84.033619
23 Levinsen J. , R. Cooper N. , V. Shlyapnikov G. . Topological px+ ipy superfluid phase of fermionic polar molecules. Phys. Rev. A, 2011, 84( 1): 013603
https://doi.org/10.1103/PhysRevA.84.013603
24 A. Baranov M. , Dalmonte M. , Pupillo G. , Zoller P. . Condensed matter theory of dipolar quantum gases. Chem. Rev., 2012, 112( 9): 5012
https://doi.org/10.1021/cr2003568
25 Wall M. Hazzard K. M. Rey A., Quantum magnetism with ultracold molecules, in: From Atomic to Mesoscale: The Role of Quantum Coherence in Systems of Various Complexities, World Scientific, 2015, page 3
26 Y. Yao N. P. Zaletel M. M. Stamper-Kurn D. A. Vishwanath, A quantum dipolar spin liquid, Nat. Phys. 14(4), 405 ( 2018)
27 Kozyryev I. , R. Hutzler N. . Precision measurement of time-reversal symmetry violation with laser-cooled polyatomic molecules. Phys. Rev. Lett., 2017, 119( 13): 133002
https://doi.org/10.1103/PhysRevLett.119.133002
28 Kondov S. , H. Lee C. , Leung K. , Liedl C. , Majewska I. , Moszynski R. , Zelevinsky T. . Molecular lattice clock with long vibrational coherence. Nat. Phys., 2019, 15( 11): 1118
https://doi.org/10.1038/s41567-019-0632-3
29 Lim J. , Almond J. , Trigatzis M. , Devlin J. , Fitch N. , Sauer B. , Tarbutt M. , Hinds E. . Laser cooled YbF molecules for measuring the electron’s electric dipole moment. Phys. Rev. Lett., 2018, 120( 12): 123201
https://doi.org/10.1103/PhysRevLett.120.123201
30 Ospelkaus S. , K. Ni K. , Wang D. , De Miranda M. , Neyenhuis B. , Quéméner G. , Julienne P. , Bohn J. , Jin D. , Ye J. . Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science, 2010, 327( 5967): 853
https://doi.org/10.1126/science.1184121
31 Klein A. , Shagam Y. , Skomorowski W. , S. Żuchowski P. , Pawlak M. , Janssen L. , Moiseyev N. , Y. van de Meerakker S. , van der Avoird A. , P. Koch C. , Narevicius E. . Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances. Nat. Phys., 2017, 13( 1): 35
https://doi.org/10.1038/nphys3904
32 G. Hu M. , Liu Y. , D. Grimes D. , W. Lin Y. , H. Gheorghe A. , Vexiau R. , Bouloufa-Maafa N. , Dulieu O. , Rosenband T. , K. Ni K. . Direct observation of bimolecular reactions of ultracold KRb molecules. Science, 2019, 366( 6469): 1111
https://doi.org/10.1126/science.aay9531
33 Liu Y. , Luo L. . Molecular collisions: From near-cold to ultra-cold. Front. Phys., 2021, 16( 4): 42300
https://doi.org/10.1007/s11467-020-1037-6
34 DeMille D. . Quantum computation with trapped polar molecules. Phys. Rev. Lett., 2002, 88( 6): 067901
https://doi.org/10.1103/PhysRevLett.88.067901
35 K. Ni K. , Rosenband T. , D. Grimes D. . Dipolar exchange quantum logic gate with polar molecules. Chem. Sci., 2018, 9( 33): 6830
https://doi.org/10.1039/C8SC02355G
36 R. Hudson E. , C. Campbell W. . Dipolar quantum logic for freely rotating trapped molecular ions. Phys. Rev. A, 2018, 98( 4): 040302
https://doi.org/10.1103/PhysRevA.98.040302
37 V. Albert V. , P. Covey J. , Preskill J. . Robust encoding of a qubit in a molecule. Phys. Rev. X, 2020, 10( 3): 031050
https://doi.org/10.1103/PhysRevX.10.031050
38 Osterwalder A. , A. Meek S. , Hammer G. , Haak H. , Meijer G. . Deceleration of neutral molecules in macroscopic traveling traps. Phys. Rev. A, 2010, 81( 5): 051401
https://doi.org/10.1103/PhysRevA.81.051401
39 A. Meek S., S. A. Meek, Ph. D. thesis, Freie Universität, 2010
40 Y. van de Meerakker S. , L. Bethlem H. , Vanhaecke N. , Meijer G. . Manipulation and control of molecular beams. Chem. Rev., 2012, 112( 9): 4828
https://doi.org/10.1021/cr200349r
41 L. Bethlem H. , M. Crompvoets F. , T. Jongma R. , Y. van de Meerakker S. , Meijer G. . Deceleration and trapping of ammonia using time-varying electric fields. Phys. Rev. A, 2002, 65( 5): 053416
https://doi.org/10.1103/PhysRevA.65.053416
42 Y. Buhmann S. , Tarbutt M. , Scheel S. , Hinds E. . Surface-induced heating of cold polar molecules. Phys. Rev. A, 2008, 78( 5): 052901
https://doi.org/10.1103/PhysRevA.78.052901
43 A. Meek S. , Santambrogio G. , G. Sartakov B. , Conrad H. , Meijer G. . Suppression of nonadiabatic losses of molecules from chip-based microtraps. Phys. Rev. A, 2011, 83( 3): 033413
https://doi.org/10.1103/PhysRevA.83.033413
44 M. H. Crompvoets F. , T. Jongma R. , L. Bethlem H. , J. A. van Roij A. , Meijer G. . Longitudinal focusing and cooling of a molecular beam. Phys. Rev. Lett., 2002, 89( 9): 093004
https://doi.org/10.1103/PhysRevLett.89.093004
45 J. Hudson J. , M. Kara D. , Smallman I. , E. Sauer B. , R. Tarbutt M. , A. Hinds E. . Improved measurement of the shape of the electron. Nature, 2011, 473( 7348): 493
https://doi.org/10.1038/nature10104
46 DeMille D. , B. Cahn S. , Murphree D. , A. Rahmlow D. , G. Kozlov M. . Using molecules to measure nuclear spin-dependent parity violation. Phys. Rev. Lett., 2008, 100( 2): 023003
https://doi.org/10.1103/PhysRevLett.100.023003
47 Darquié B. , Stoeffler C. , Shelkovnikov A. , Daussy C. , Amy‐Klein A. , Chardonnet C. , Zrig S. , Guy L. , Crassous J. , Soulard P. , Asselin P. , R. Huet T. , Schwerdtfeger P. , Bast R. , Saue T. . Progress toward the first observation of parity violation in chiral molecules by high‐resolution laser spectroscopy. Chirality, 2010, 22( 10): 870
https://doi.org/10.1002/chir.20911
48 Baklanov K. , Petrov A. , Titov A. , Kozlov M. . Progress toward the electron electric-dipole-moment search: Theoretical study of the PbF molecule. Phys. Rev. A, 2010, 82( 6): 060501
https://doi.org/10.1103/PhysRevA.82.060501
49 Aggarwal P. , Yin Y. , Esajas K. , Bethlem H. , Boeschoten A. , Borschevsky A. , Hoekstra S. , Jungmann K. , Marshall V. , Meijknecht T. , C. Mooij M. , G. E. Timmermans R. , Touwen A. , Ubachs W. , Willmann L. . Deceleration and trapping of SrF molecules. Phys. Rev. Lett., 2021, 127( 17): 173201
https://doi.org/10.1103/PhysRevLett.127.173201
50 Struck J. , Ölschläger C. , Weinberg M. , Hauke P. , Simonet J. , Eckardt A. , Lewenstein M. , Sengstock K. , Windpassinger P. . Tunable gauge potential for neutral and spinless particles in driven optical lattices. Phys. Rev. Lett., 2012, 108( 22): 225304
https://doi.org/10.1103/PhysRevLett.108.225304
51 Soba A. , Tierno P. , M. Fischer T. , Saguès F. . Dynamics of a paramagnetic colloidal particle driven on a magnetic-bubble lattice. Phys. Rev. E, 2008, 77( 6): 060401
https://doi.org/10.1103/PhysRevE.77.060401
52 G. Englert B. , Mielenz M. , Sommer C. , Bayerl J. , Motsch M. , W. Pinkse P. , Rempe G. , Zeppenfeld M. . Storage and adiabatic cooling of polar molecules in a microstructured trap. Phys. Rev. Lett., 2011, 107( 26): 263003
https://doi.org/10.1103/PhysRevLett.107.263003
53 Zeppenfeld M. , G. Englert B. , Glöckner R. , Prehn A. , Mielenz M. , Sommer C. , D. van Buuren L. , Motsch M. , Rempe G. . Sisyphus cooling of electrically trapped polyatomic molecules. Nature, 2012, 491( 7425): 570
https://doi.org/10.1038/nature11595
54 Märkle J. , Allen A. , Federsel P. , Jetter B. , Günther A. , Fortágh J. , Proukakis N. , Judd T. . Evaporative cooling of cold atoms at surfaces. Phys. Rev. A, 2014, 90( 2): 023614
https://doi.org/10.1103/PhysRevA.90.023614
55 Schäfer F. , Fukuhara T. , Sugawa S. , Takasu Y. , Takahashi Y. . Tools for quantum simulation with ultracold atoms in optical lattices. Nat. Rev. Phys., 2020, 2( 8): 411
https://doi.org/10.1038/s42254-020-0195-3
[1] Sheng-Qiang Li(李胜强), Jian-Ping Yin (印建平). A versatile electrostatic trap with open optical access[J]. Front. Phys. , 2018, 13(2): 133701-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed