Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 62501    https://doi.org/10.1007/s11467-022-1179-9
RESEARCH ARTICLE
Digital coding transmissive metasurface for multi-OAM-beam
Si Jia Li1,2,3(), Zhuo Yue Li1, Guo Shai Huang1, Xiao Bin Liu1, Rui Qi Li2, Xiang Yu Cao1,3
1. Information and Navigation College, Air Force Engineering University, Xi’an 710077, China
2. State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
3. Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi'an 710051, China
 Download: PDF(15789 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Orbital angular momentum (OAM) is a phenomenon of vortex phase distribution in free space, which has attracted enormous attention in theoretical research and practical application of wireless communication systems due to its characteristic of infinitely orthogonal modes. However, traditional methods generating OAM beams are bound to complex structure, large device, multiple layers, complex feed networks, and limited beams in microwave range. Here, a digital coding transmissive metasurface (DCTMS) with a single layer substrate and the bi-symmetrical arrow is proposed and designed to generate multi-OAM-beam based on Pancharatnam−Berry (PB) phase principle. The 3-bit phase response can be realized by encoding the geometric phase into rotation angle of unit cell for DCTMS. Additionally, the phase compensation of the metasurface is introduced to achieve the beam focusing and the conversion from spherical wave to plane wave. According to the digital convolution theorem, the far-field patterns and near-field distributions of multi-OAM-beam withl= −2 modes are adequately demonstrated by DCTMS prototypes. The OAM efficiency and the purity are calculated to demonstrate the excellent multi-OAM-beam. The simulated and experimental results illustrate their performance of OAM beams. The designed DCTMS has profound application in multi-platform wireless communication systems and the multi-channel imaging systems.

Keywords transmissive metasurface      orbital angular momentum      Pancharatnam−Berry phase      multi-beam      phase compensation     
Corresponding Author(s): Si Jia Li   
Issue Date: 28 July 2022
 Cite this article:   
Si Jia Li,Zhuo Yue Li,Guo Shai Huang, et al. Digital coding transmissive metasurface for multi-OAM-beam[J]. Front. Phys. , 2022, 17(6): 62501.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1179-9
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/62501
Fig.1  Schematic of proposed DCTMS. (a) The visualized illustration of multi-OAM-beam of DCTMS with 40×40 coding unit cells. The single-OAM-beam, dual-OAM-beam and quad-OAM-beam with l =?2 mode are demonstrated by DCMTS with a linearly polarized horn antenna.(b) Perspective view of unit cell for DCTMS. (c) Bi-symmetrical arrow patches on the unit cell of DCTMS. (d) Bi-symmetrical arrow patches with rotating angle φ in u?v axis. (e) Schematic of 3bit digital coding elements for DCTMS.
Fig.2  The simulated results of PB phase for unit cell of DCTMS. (a) Amplitude and phase of transmissive coefficients with x- and y-polarized incident waves. (b) Amplitude of transmissive coefficients with different rotating angles for elements in LHCP and RHCP incident waves. (c, d) Phase of transmissive coefficients with different coding particles in LHCP and RHCP incidences.
Fig.3  Multi-OAM-beam with ?2 mode for DCTMS. (a) Coding patterns of single-OAM-beam. (b) Coding patterns of dual-OAM-beam. (c) Coding patterns of quad-OAM-beam. (d) The coordinate system of DCTMS with horn antenna.
Fig.4  Simulated magnitude and phase distributions of OAM beams. (a) Simulated magnitude and phase distributions of single-beam for OAM in spherical coordinate system. (b) Simulated magnitude and phase distributions of dual-beam for OAM in spherical coordinate system. (c) Simulated magnitude and phase distributions of quad-beam for OAM in spherical coordinate system.
Fig.5  The simulated results of near electric fields in 9.3 GHz. (a) Schematic of detection plane for quad-OAM-beam. (b, d, f) Simulated magnitude distributions of near electric fields in the perpendicular plane for one beam of DCTMS with single-OAM-beam, dual-OAM-beam and quad-OAM-beam. (c, e, g) Simulated phase distributions of near electric fields in the perpendicular plane for one beam of DCTMS with single-OAM-beam, dual-OAM-beam and quad-OAM-beam.
Fig.6  Prototype of DCTMS for measurement environment in a microwave anechoic chamber. (a) The far-field measurement environment. (b) Near-field measurement environment.
Fig.7  Multi-OAM-beam with ?2 mode for DCTMS. (a) Simulated far-field patterns of single-OAM-beam. (b) Simulated far-field patterns of dual-OAM-beam. (c) Simulated far-field patterns of quad-OAM-beam.
Fig.8  Experimental and simulated results of DCTMS at 9.3 GHz. (a) Experimental and simulated far-field radiation patterns of single-OAM-beam. (b) Experimental and simulated far-field radiation patterns of dual-OAM-beam. (c, d) Experimental and simulated far-field radiation patterns of quad-OAM-beam when the azimuth angles areφ = 45° and φ = 135° respectively. (e, g, i) Experimental near-field magnitude distributions of single-OAM-beam, dual-OAM-beam and quad-OAM-beam with ?2 mode at 9.3 GHz. (f, h, j) Experimental near-field phase distributions of single-OAM-beam, dual-OAM-beam and quad-OAM-beam with ?2 mode at 9.3 GHz.
Fig.9  Experimental and simulated spectrums of OAM purity and OAM efficiency for proposed trasnsmissive metasurface with different beams at 9.3GHz. (a) Spectrums of OAM purity for DCTMS with single-OAM-beam. (b) Spectrums of OAM purity for DCTMS with dual-OAM-beam. (c) Spectrums of OAM purity for DCTMS with quad-OAM-beam. (d) The OAM efficiency of single-OAM-beam, dual-OAM-beam and quad-OAM-beam.
Ref. Type Substrate layers Working frequency Incident polarization Number of incidences Generated polarization Number of beams Mode Efficiency OAM purity
[35] RMS single microwave LP 1 LP 2 1/2
[36] RMS three terahertz RHCP-GB 1 CP 4 1/2/3/4
[37] RMS single microwave LP 1 CP 4 2
[39] TMS dual microwave LHCP 1 CP 1 +2+10/+20 80% >93%>50%
[44] RMS single microwave LP 2 LHCP/RHCP 4 ±2/±1
[41] TMS single terahertz LP-/OAM- GB 2 LP 4 ±2/±1
[43] TMS four microwave LP/LHCP/RHCP 3 LP/LHCP/RHCP 1 1/1.5/2/2.5/3 >60% >83%
[45] TMS dual microwave LP 1 LP 1 +2/?2 >71%
This work TMS single microwave LP 1 RHCP 1 ?2 88% >93%
2 ?2 83% >83%
4 ?2 73% >70%
Tab.1  Function comparison between our design with others in the literature.
1 Zheng P. , Dai Q. , Li Z. , Ye Z. , Xiong J. , Liu H. , Zheng G. , Zhang S. . Metasurface-based key for computational imaging encryption. Sci. Adv., 2021, 7( 21): eabg0363
https://doi.org/10.1126/sciadv.abg0363
2 Fang X. , Ren H. , Gu M. . Orbital angular momentum holography for high-security encryption. Nat. Photonics, 2020, 14( 2): 102
https://doi.org/10.1038/s41566-019-0560-x
3 Sroor H. , Huang Y. , Sephton B. , Naidoo D. , Valles A. , Ginis V. , Qiu C. , Ambrosio A. , Capasso F. , Forbes A. , Feder. Capasso , A. Forbes . High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photonics, 2020, 14( 8): 498
https://doi.org/10.1038/s41566-020-0623-z
4 Li S. , Li Z. , Han B. , Huang G. , Liu X. , Yang H. , Cao X. . Multifunctional Coding Metasurface with Left and Right Circularly Polarized and Multiple Beams. Front. Mater., 2022, 9 : 854062
https://doi.org/10.3389/fmats.2022.854062
5 Feng P. Qu S. Yang S., OAM-generating transmitarray antenna with circular phased array antenna feed, IEEE Trans. Antenn. Propag. 68(6), 4540 ( 2020)
6 Zhou Q. , Liu M. , Zhu W. , Chen L. , Ren Y. , Lezec H. , Xu T. . Generation of perfect vortex beams by dielectric geometric metasurface for visible light. Laser Photonics Rev., 2021, 15( 12): 2100390
https://doi.org/10.1002/lpor.202100390
7 Wang J. , Chen S. , Liu J. . Orbital angular momentum communications based on standard multi-mode fiber. APL Photonics, 2021, 6( 6): 060804
https://doi.org/10.1063/5.0049022
8 Xiao Q. , Ma Q. , Yan T. , W. Wu L. , Liu C. , X. Wang Z. , Wan X. , Cheng Q. , J. Cui T. . Orbital−angular−momentum-encrypted holography based on coding information metasurface. Adv. Opt. Mater., 2021, 9( 11): 2002155
https://doi.org/10.1002/adom.202002155
9 Chen W. Zhu A. Sisler J. Bharwani Z. Capasso F., A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures, Nat. Commun. 10(1), 1 ( 2019)
10 Ou K. , Yu F. , Li G. , Wang W. , E. Miroshnichenko A. , Lu W. . Mid-infrared polarization-controlled broadband achromatic metadevice. Sci. Adv., 2020, 6( 37): eabc0711
https://doi.org/10.1126/sciadv.abc0711
11 Li S. , Li Y. , Zhang L. , Luo Z. , Han B. , Li R. , Cao X. , Cheng Q. , Cui T. . Programmable controls to scattering properties of a radiation array. Laser Photonics Rev., 2021, 15( 2): 2000449
https://doi.org/10.1002/lpor.202000449
12 J. Li S. , W. Han B. , Y. Li Z. , B. Liu X. , S. Huang G. , Q. Li R. , Y. Cao X. . Transmissive coding metasurface with dual-circularly polarized multi-beam. Opt. Express, 2022, 30( 15): 26362
https://doi.org/10.1364/OE.466036
13 Li S. , Cui T. , Li Y. , Zhang C. , Li R. , Cao X. , Guo Z. . Multifunctional and multiband fractal metasurface based on inter‐metamolecular coupling interaction. Adv. Theory Simul., 2019, 2( 8): 1900105
https://doi.org/10.1002/adts.201900105
14 Tanaka Y. , Albella P. , Rahmani M. , Giannini V. , A. Maier S. , Shimura T. . Plasmonic linear nanomotor using lateral optical forces. Sci. Adv., 2020, 6( 45): eabc3726
https://doi.org/10.1126/sciadv.abc3726
15 Han B. , Li S. , Li Z. , Huang G. , Tian J. , Cao X. . Asymmetric transmission for dual-circularly and linearly polarized waves based on a chiral metasurface. Opt. Express, 2021, 29( 13): 19643
https://doi.org/10.1364/OE.425787
16 Li Z. , Liu W. , Cheng H. , Y. Choi D. , Chen S. , Tian J. . Spin‐selective full‐dimensional manipulation of optical waves with chiral mirror. Adv. Mater., 2020, 32( 26): 1907983
https://doi.org/10.1002/adma.201907983
17 Song Q. , Khadir S. , Vézian S. , Damilano B. , D. Mierry P. , Chenot S. , Genevet P. . Bandwidth-unlimited polarization-maintaining metasurfaces. Sci. Adv., 2021, 7( 5): eabe1112
https://doi.org/10.1126/sciadv.abe1112
18 Dorrah A. , Rubin N. , Zai A. , Tamagnone M. , Capasso F. . Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 2021, 15( 4): 287
https://doi.org/10.1038/s41566-020-00750-2
19 Li S. , Li Y. , Li H. , Wang Z. , Zhang C. , Guo Z. , Li R. , Cao X. , Cui T. . A thin self‐feeding Janus metasurface for manipulating incident waves and emitting radiation waves simultaneously. Ann. Phys., 2020, 532( 5): 2000020
https://doi.org/10.1002/andp.202000020
20 Lv H. , Huang Q. , Yi X. , Hou J. , Shi X. . Low-profile transmitting metasurface using single dielectric substrate for OAM generation. IEEE Antennas Wirel. Propag. Lett., 2020, 19( 5): 881
https://doi.org/10.1109/LAWP.2020.2983400
21 Zhang Z. , Zhang Y. , Wu T. , Chen S. , Li W. , Guan J. . Broadband RCS reduction by a quaternionic metasurface. Materials (Basel), 2021, 14( 11): 2787
https://doi.org/10.3390/ma14112787
22 Arute F. , Arya K. , Babbush R. , Bacon D. , C. Bardin J. , Barends R. , M. Martinis J. . Quantum supremacy using a programmable superconducting processor. Nature, 2019, 574( 7779): 505
https://doi.org/10.1038/s41586-019-1666-5
23 Leitis A. , Heßler A. , Wahl S. , Wuttig M. , Taubner T. , Tittl A. , Altug H. . All‐dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater., 2020, 30( 19): 1910259
https://doi.org/10.1002/adfm.201910259
24 Zhang X. , Jiang W. , Jiang H. , Wang Q. , Tian H. , Bai L. , Cui T. . An optically driven digital metasurface for programming electromagnetic functions. Nat. Electron., 2020, 3( 3): 165
https://doi.org/10.1038/s41928-020-0380-5
25 Zhao J. , Yang X. , Dai J. , Cheng Q. , Li X. , Qi N. , Cui T. . Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev., 2019, 6( 2): 231
https://doi.org/10.1093/nsr/nwy135
26 Zhang L. , Wang Z. , Shao R. , Shen J. , Chen X. , Wan X. , Cui T. . Dynamically realizing arbitrary multi-bit programmable phases using a 2-bit time-domain coding metasurface. IEEE Trans. Antenn. Propag., 2020, 68( 4): 2984
https://doi.org/10.1109/TAP.2019.2955219
27 Xu P. , Jiang W. , Cai X. , Bai S. , Cui T. . An integrated coding-metasurface-based array antenna. IEEE Trans. Antenn. Propag., 2020, 68( 2): 891
https://doi.org/10.1109/TAP.2019.2944529
28 Li H. , Li Y. , Shen J. , Cui T. . Low‐profile electromagnetic holography by using coding Fabry–Perot type metasurface with in‐plane feeding. Adv. Opt. Mater., 2020, 8( 9): 1902057
https://doi.org/10.1002/adom.201902057
29 Li Z. , Li S. , Han B. , Huang G. , Guo Z. , Cao X. . Quad‐band transmissive metasurface with linear to dual‐circular polarization conversion simultaneously. Adv. Theory Simul., 2021, 4( 8): 2100117
https://doi.org/10.1002/adts.202100117
30 Tal M. , B. Haim D. , Ellenbogen T. . Geometric phase opens new frontiers in nonlinear frequency conversion of light. Front. Phys., 2022, 17( 1): 12302
https://doi.org/10.1007/s11467-021-1123-4
31 Karnieli A. , Li Y. , Arie A. . The geometric phase in nonlinear frequency conversionn. Front. Phys., 2022, 17( 1): 12301
https://doi.org/10.1007/s11467-021-1102-9
32 Tian Y. , Jing X. , Gan H. , Li C. , Hong Z. . Free control of far-field scattering angle of transmission terahertz wave using multilayer split-ring resonators’ metasurfaces. Front. Phys., 2020, 15( 6): 62502
https://doi.org/10.1007/s11467-020-1013-1
33 Ahmed H. , Kim H. , Zhang Y. , Intaravanne Y. , Jang J. , Rho J. , Chen S. , Chen X. . Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 2022, 11( 5): 941
https://doi.org/10.1515/nanoph-2021-0746
34 Bai Y. , Lv H. , Fu X. , Yang Y. . Vortex beam: generation and detection of orbital angular momentum. Chin. Opt. Lett., 2022, 20( 1): 012601
https://doi.org/10.3788/COL202220.012601
35 Yu S. , Li L. , Shi G. , Zhu C. , Shi Y. . Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett., 2016, 108( 24): 241901
https://doi.org/10.1063/1.4953786
36 Yue F. , Wen D. , Zhang C. , D. Gerardot B. , Wang W. , Zhang S. , Chen X. . Multichannel polarization‐controllable superpositions of orbital angular momentum states. Adv. Mater., 2017, 29( 15): 1603838
https://doi.org/10.1002/adma.201603838
37 Zhang L. , Liu S. , Li L. , Cui T. . Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by Pancharatnam−Berry coding metasurfaces. ACS Appl. Mater. Interfaces, 2017, 9( 14): 36447
https://doi.org/10.1021/acsami.7b12468
38 Bai X. , Zhang F. , Sun L. , Cao A. , He C. , Zhang J. , Zhu W. . Dynamic millimeter-wave OAM beam generation through programmable metasurface. Nanophotonics, 2022, 11( 7): 1389
https://doi.org/10.1515/nanoph-2021-0790
39 Wang Y. , Zhang K. , Yuan Y. , Ding X. , Ratni B. , N. Burokur S. , Wu Q. . Planar vortex beam generator for circularly polarized incidence based on FSS. IEEE Trans. Antenn. Propag., 2020, 68( 3): 2938666
https://doi.org/10.1109/TAP.2019.2938666
40 Bai X. , Kong F. , Sun Y. , Wang G. , Qian J. , Li X. , Cao A. , He C. , Liang X. , Jin R. , Zhu W. . High‐efficiency transmissive programmable metasurface for multimode OAM generation. Adv. Opt. Mater., 2020, 8( 17): 2000570
https://doi.org/10.1002/adom.202000570
41 Zhao H. , Quan B. , Wang X. , Gu C. , Li J. , Zhang Y. . Demonstration of orbital angular momentum multiplexing and demultiplexing based on a metasurface in the terahertz band. ACS Photonics, 2018, 5( 5): 1726
https://doi.org/10.1021/acsphotonics.7b01149
42 Yuan Y. , Zhang K. , Ratni B. , Song Q. , Ding X. , Wu Q. , Genevet P. . Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces. Nat. Commun., 2020, 11( 1): 1
https://doi.org/10.1038/s41467-020-17773-6
43 Zhang K. , Yuan Y. , Ding X. , Li H. , Ratni B. , Wu Q. , Tan J. . Polarization‐engineered noninterleaved metasurface for integer and fractional orbital angular momentum multiplexing. Laser Photonics Rev., 2020, 15( 1): 2000351
https://doi.org/10.1002/lpor.202000351
44 Ding G. , Chen K. , Zhang N. , Zhao J. , Jiang T. , Feng Y. . Independent wavefront tailoring in full polarization channels by helicity-decoupled metasurface. Ann. Phys., 2022, 534( 4): 2100546
https://doi.org/10.1002/andp.202100546
45 Pan Y. , Lan F. , Zhang Y. , Zeng H. , Wang L. , Song T. , Yang Z. . Dual-band multifunctional coding metasurface with a mingled anisotropic aperture for polarized manipulation in full space. Photon. Res., 2022, 10( 2): 416
https://doi.org/10.1364/PRJ.444773
[1] fop-21179-OF-lisijia_suppl_1 Download
[1] Hai-Yun Wang, Zhao-Hui Yang, Kun Liu, Ya-Hong Chen, Lin Liu, Fei Wang, Yang-Jian Cai. Generalized high-order twisted partially coherent beams and their propagation characteristics[J]. Front. Phys. , 2022, 17(5): 52506-.
[2] Zhucheng Zhang, Jiancheng Pei, Yi-Ping Wang, Xiaoguang Wang. Measuring orbital angular momentum of vortex beams in optomechanics[J]. Front. Phys. , 2021, 16(3): 32503-.
[3] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed