Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (6) : 63500    https://doi.org/10.1007/s11467-022-1200-3
RESEARCH ARTICLE
Influence of the tangential velocity on the compressible Kelvin−Helmholtz instability with nonequilibrium effects
Yaofeng Li1, Huilin Lai1(), Chuandong Lin2(), Demei Li1
1. College of Mathematics and Statistics, FJKLMAA, Center for Applied Mathematics of Fujian Province (FJNU), Fujian Normal University, Fuzhou 350117, China
2. Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
 Download: PDF(33784 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Kelvin−Helmholtz (KH) instability is a fundamental fluid instability that widely exists in nature and engineering. To better understand the dynamic process of the KH instability, the influence of the tangential velocity on the compressible KH instability is investigated by using the discrete Boltzmann method based on the nonequilibrium statistical physics. Both hydrodynamic and thermodynamic nonequilibrium (TNE) effects are probed and analyzed. It is found that, on the whole, the global density gradients, the TNE strength and area firstly increase and decrease afterwards. Both the global density gradient and heat flux intensity in the vertical direction are almost constant in the initial stage before a vortex forms. Moreover, with the increase of the tangential velocity, the KH instability evolves faster, hence the global density gradients, the TNE strength and area increase in the initial stage and achieve their peak earlier, and their maxima are higher for a larger tangential velocity. Physically, there are several competitive mechanisms in the evolution of the KH instability. (i) The physical gradients increase and the TNE effects are strengthened as the interface is elongated. The local physical gradients decrease and the local TNE intensity is weakened on account of the dissipation and/or diffusion. (ii) The global heat flux intensity is promoted when the physical gradients increase. As the contact area expands, the heat exchange is enhanced and the global heat flux intensity increases. (iii) The global TNE intensity reduces with the decreasing of physical gradients and increase with the increasing of TNE area. (iv) The nonequilibrium area increases as the fluid interface is elongated and is widened because of the dissipation and/or diffusion.

Keywords Kelvin−Helmholtz instability      thermodynamic nonequilibrium effect      viscous stress      discrete Boltzmann method     
Corresponding Author(s): Huilin Lai,Chuandong Lin   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 06 September 2022
 Cite this article:   
Yaofeng Li,Huilin Lai,Chuandong Lin, et al. Influence of the tangential velocity on the compressible Kelvin−Helmholtz instability with nonequilibrium effects[J]. Front. Phys. , 2022, 17(6): 63500.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1200-3
https://academic.hep.com.cn/fop/EN/Y2022/V17/I6/63500
Fig.1  Sketch of D2V16 discrete velocity model.
Fig.2  The position of the sound wave versus time: (a) under different temperatures; (b) under different specific heat ratios. The symbols represent the simulation results, and the solid lines denote theoretical solutions.
Fig.3  (a) Temperature profiles of the thermal Couette flow. The squares, circles, and triangles represent simulation results with γ=7 /5, 9/7, and 11 /9, respectively. (b) Horizontal velocity profiles of the thermal Couette flow with γ =7/5. The squares, circles, upper triangles, lower triangles and diamonds denote simulation results at time instants t=0.0, 1.0, 4.0, 8.0, 20.0, and 60.0, respectively. The solid lines represent theoretical solutions.
Fig.4  Profiles of (a) the density, (b) pressure, (c) horizontal velocity and (d) temperature in the Sod shock tube. The symbols indicate the DBM results, and the solid lines stand for the Riemann solutions.
Fig.5  The initial configuration of the compressible KH instability.
Fig.6  Density and velocity fields in the case of u0=0.25 at times t=0.0, 0.5, 1.0, 1.5, 2.0, and 6.0, respectively.
Fig.7  Evolution of the whole energies in the KH process. The lines with squares, circles and upper triangles are for the internal, kinetic and total energies, respectively.
Fig.8  (a) Evolution of the global average density gradient in the x direction | xρ ¯ | under different tangential velocities u0. (b) The relationship among | xρ ¯|max (defined as the maximum of | xρ ¯ |), t(| xρ ¯ |ma x) (defined as the time corresponding to the peak of | xρ ¯ |) and u0, where the symbols indicate the DBM results, the blue solid line |xρ ¯|max= 19.78exp?(5.94u 0)+ 27.87, and the red solid line t(| xρ ¯|max)=5.26exp?( 8.43u0)+1.03.
Fig.9  (a) Evolution of the global average density gradient in the y direction | yρ ¯ | under different tangential velocities u0. (b) The relationship among | yρ ¯|max, t(| yρ ¯ |ma x) and u0, where the symbols indicate the DBM results, the blue solid line |yρ ¯|max= 42.67exp?(4.34u 0)+ 58.49, and the red solid line t(| yρ ¯|max)=5.61exp?( 8.26u0)+1.08.
Fig.10  (a) Evolution of the global average density gradient | ρ ¯ | under different tangential velocities u0. (b) The relationship among |ρ ¯|max, t(| ρ ¯|max) and u0, where the symbols indicate the DBM results, the blue solid line | ρ ¯|max=48.35 exp ( 4.55u0)+68.03, and the red solid line t(| ρ ¯|max)=5.27exp?( 7.94u0)+1.05.
Fig.11  (a) The simulation results and fitting functions of | ρ ¯ | with various tangential velocities u0 at three different times: | ρ ¯ | (t=0.1 )=15.29+0.12u0 +0.56u0 2, |ρ ¯ |( t=0.5)=16.138.93u0+ 25.50u02, and | ρ ¯ | (t=0.8 )=(0.231.12 u0+4.66 u023.59u0 3)× 10 2. (b) The relationship between t(| ρ ¯ | ) (the time corresponding to | ρ ¯ |) and u0 at three different values: t(| ρ ¯|=20)= 2.60exp?(7.96u 0)+ 0.51, t(| ρ ¯|=25)= 3.65exp?(8.94u 0)+ 0.61, and t(| ρ ¯ | =35)=6.34exp?(10.71 u0) +0.77.
Fig.12  (a) Evolution of the global average viscous stress tensor strength D ¯ 2 under different tangential velocities u0. (b) The relationship among D ¯ 2max, t(D ¯ 2max) and u0, where the symbols indicate the DBM results, the blue solid line D ¯2max=( 0.04+2.45 u0)×103, and the red solid line t(D ¯ 2max)=3.41 exp?(6.87u0)+0.85.
Fig.13  The simulation results and fitting functions of the global average viscous stress tensor strength D ¯ 2 with various tangential velocities u0 at three different times: D ¯2(t=0.2)= (0.02+1.00u0 )×10 3, D ¯2(t=0.5)= (0.01+0.93u0+ 1.02u02)× 10 3, and D ¯2(t=0.8 )=(0.090.42 u0+9.09 u028.17u0 3)× 10 3.
Fig.14  Evolution of the global average heat flux strength: (a) in the x direction D ¯ 3,1x, (b) in the y direction D ¯ 3,1y and (c) D ¯3 ,1, with different tangential velocities u0. (d) The relationship among D ¯ 3,1max, t( D ¯ 3,1max ) and u0, where the symbols indicate the DBM results, the blue solid line D ¯3,1max= [0.82 exp?(5.05u0)+1.10 ]×10 2, and the red solid line t(D ¯ 3,1ma x)= 5.30exp?(8.03 u0) +1.05.
Fig.15  (a) The simulation results and fitting functions of the global average heat flux strength D ¯3,1 with various tangential velocities u0 at three different times: D ¯3 ,1(t=0.1)=( 26.400.09u0+0.44 u02)×10 4, D ¯3 ,1(t=0.5)=( 2.700.63u0+1.73 u02)×10 3, and D ¯ 3,1(t=0.8 )=(0.041.59 u0+6.29 u024.61u0 3)× 10 2. (b) The relationship between t(D ¯3, 1) and u0 at three different values: t( D ¯ 3,1=0.0035)=3.02exp ?(8.78u0)+0.59, t(D ¯ 3,1=0.0045)= 4.33exp?(9.70u 0)+ 0.70, and t(D ¯3, 1=0.0055)=5.84exp ?(10.53u0)+ 0.78.
Fig.16  (a) Evolution of the global average TNE strength D ¯ under different tangential velocities u0. (b) The relationship among D ¯ max, t( D ¯ max) and u0, where the symbols indicate the DBM results, the blue solid line D ¯m ax=[4.53exp?( 3.06u0)+ 5.40 ]×10 2, and the red solid line t(D ¯ max)=4.81exp ?(7.30u0)+0.99.
Fig.17  The simulation results and fitting functions of the global average TNE strength D ¯ with various tangential velocities u0 at three different times: D ¯(t= 0.2)=(0.83+ 1.32 u0)×102, D ¯(t= 0.5)=(0.83+1.12 u0+1.66 u02)×10 2, and D ¯( t=0.8)=(0.12 0.51u0+3.07u022.51 u03)×10 1.
Fig.18  Contours of the nonequilibrium strength in the case of u0=0.25 at times t=0.02, 0.5, 1.0, 1.5, 2.0, and 6.0, respectively.
Fig.19  (a) Evolution of the proportion of the nonequilibrium region Sr under different tangential velocities u0. (b) The relationship among Srmax, t(Srmax) and u0, where the symbols indicate the DBM results, the blue solid line S rm ax=[2.76exp?( 6.07u0)+3.66]×10 1, and the red solid line t(Srmax)=5.18exp?( 8.09u0)+1.08.
Fig.20  The simulation results and fitting functions of the proportion of the nonequilibrium region Sr with various tangential velocities u0 at three different times: Sr(t=0.2 )= [0.38exp?( 4.54u0)+1.06]×10 1, Sr(t=0.5)=( 0.76+1.11u 0)× 10 1, and Sr(t= 0.8)=[3.43exp? (3.17 u0)+3.56] ×102.
Fig.21  The proportion of the nonequilibrium region Sr versus the time t, with four different threshold values θ in the case of u0=0.25. The black line, red line, green line, and blue line correspond to threshold values θ =0.04, 0.05, 0.06, and 0.07, respectively.
  Fig. B1 Grid convergence test of simulations of the KH instability: the global average TNE intensity D ¯ versus the time t, with five different mesh grids. The lines with squares, circles, diamonds, upper and lower triangles correspond to mesh grids Nx×Ny=200×200, 400 ×400, 600 ×600, 800 ×800, and 1000 ×1000, respectively.
1 Chandrasekhar S., Hydrodynamic and Hydromagnetic Stability, Oxford University Press, London, 1961
2 K. Batchelor C., An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, 2000
3 Luce H., Kantha L., Yabuki M., Hashiguchi H.. Atmospheric Kelvin−Helmholtz billows captured by the MU radar, lidars and a fish-eye camera. Earth Planets Space , 2018, 70( 1): 162
https://doi.org/10.1186/s40623-018-0935-0
4 F. Wang L., H. Ye W., T. He X., F. Wu J., F. Fan Z., Xue C., Y. Guo H., Y. Miao W., T. Yuan Y., Q. Dong J., Jia G., Zhang J., J. Li Y., Liu J., Wang M., K. Ding Y., Y. Zhang W.. Theoretical and simulation research of hydrodynamic instabilities in inertial-confinement fusion implosions. Sci. China: Phys. Mech. Astron. , 2017, 60( 5): 055201
https://doi.org/10.1007/s11433-017-9016-x
5 V. Coelho R., Mendoza M., M. Doria M., J. Herrmann H.. Kelvin−Helmholtz instability of the Dirac fluid of charge carriers on graphene. Phys. Rev. B , 2017, 96( 18): 184307
https://doi.org/10.1103/PhysRevB.96.184307
6 V. Mishin V., M. Tomozov V.. Kelvin−Helmholtz instability in the solar atmosphere, solar wind and geomagnetosphere. Sol. Phys. , 2016, 291( 11): 3165
https://doi.org/10.1007/s11207-016-0891-4
7 Petrarolo A., Kobald M., Schlechtriem S.. Understanding Kelvin−Helmholtz instability in paraffin-based hybrid rocket fuels. Exp. Fluids , 2018, 59( 4): 62
https://doi.org/10.1007/s00348-018-2516-1
8 K. Azadboni R., Heidari A., X. Wen J.. Numerical studies of flame acceleration and onset of detonation in homogenous and inhomogeneous mixture. J. Loss Prev. Process Ind. , 2020, 64 : 104063
https://doi.org/10.1016/j.jlp.2020.104063
9 Y. Zhang X., P. Li S., Y. Yang B., F. Wang N.. Flow structures of over-expanded supersonic gaseous jets for deep-water propulsion. Ocean Eng. , 2020, 213 : 107611
https://doi.org/10.1016/j.oceaneng.2020.107611
10 F. Xiao X., B. Zhao G., X. Zhou W., Martynenko S.. Large-eddy simulation of transpiration cooling in turbulent channel with porous wall. Appl. Therm. Eng. , 2018, 145 : 618
https://doi.org/10.1016/j.applthermaleng.2018.09.056
11 Huang W., Du Z., Yan L., Xia Z.. Supersonic mixing in airbreathing propulsion systems for hypersonic flights. Prog. Aerosp. Sci. , 2019, 109 : 100545
https://doi.org/10.1016/j.paerosci.2019.05.005
12 C. Harding E., F. Hansen J., A. Hurricane O., P. Drake R., F. Robey H., C. Kuranz C., A. Remington B., J. Bono M., J. Grosskopf M., S. Gillespie R.. Observation of a Kelvin−Helmholtz instability in a high-energydensity plasma on the omega laser. Phys. Rev. Lett. , 2009, 103( 4): 045005
https://doi.org/10.1103/PhysRevLett.103.045005
13 K. Awasthi M., Asthana R., Agrawal G.. Viscous correction for the viscous potential flow analysis of Kelvin−Helmholtz instability of cylindrical flow with heat and mass transfer. Int. J. Heat Mass Transf. , 2014, 78 : 251
https://doi.org/10.1016/j.ijheatmasstransfer.2014.06.082
14 Akula B., Suchandra P., Mikhaeil M., Ranjan D.. Dynamics of unstably stratified free shear flows: An experimental investigation of coupled Kelvin−Helmholtz and Rayleigh−Taylor instability. J. Fluid Mech. , 2017, 816 : 619
https://doi.org/10.1017/jfm.2017.95
15 D. Lin C., G. Xu A., C. Zhang G., J. Li Y., Succi S.. Polarcoordinate lattice Boltzmann modeling of compressible flows. Phys. Rev. E , 2014, 89( 1): 013307
https://doi.org/10.1103/PhysRevE.89.013307
16 G. Xu A., C. Zhang G., B. Gan Y., Chen F., J. Yu X.. Lattice Boltzmann modeling and simulation of compressible flows. Front. Phys. , 2012, 7( 5): 582
https://doi.org/10.1007/s11467-012-0269-5
17 P. Parker J., P. Caulfield C., R. Kerswell R.. The effects of Prandtl number on the nonlinear dynamics of Kelvin−Helmholtz instability in two dimensions. J. Fluid Mech. , 2021, 915 : A37
https://doi.org/10.1017/jfm.2021.125
18 Mohan V., Sameen A., Srinivasan B., S. Girimaji S.. Influence of Knudsen and Mach numbers on Kelvin−Helmholtz instability. Phys. Rev. E , 2021, 103( 5): 053104
https://doi.org/10.1103/PhysRevE.103.053104
19 B. Gan Y., G. Xu A., C. Zhang G., D. Lin C., L. Lai H., P. Liu Z.. Nonequilibrium and morphological characterizations of Kelvin−Helmholtz instability in compressible flows. Front. Phys. , 2019, 14( 4): 43602
https://doi.org/10.1007/s11467-019-0885-4
20 G. Lee H., Kim J.. Two-dimensional Kelvin− Helmholtz instabilities of multi-component fluids. Eur. J. Mech. BFluids , 2015, 49 : 77
https://doi.org/10.1016/j.euromechflu.2014.08.001
21 S. Kim K., H. Kim M.. Simulation of the Kelvin−Helmholtz instability using a multi-liquid moving particle semi-implicit method. Ocean Eng. , 2017, 130 : 531
https://doi.org/10.1016/j.oceaneng.2016.11.071
22 J. Yao M., Q. Shang W., Zhang Y., Gao H., X. Zhang D., Y. Liu P.. Numerical analysis of Kelvin−Helmholtz instability in inclined walls. Chin. J. Comput. Phys. , 2019, 36 : 403
23 I. Ebihara K., Watanabe T.. Lattice Boltzmann simulation of the interfacial growth of the horizontal stratified two-phase flow. Int. J. Mod. Phys. B , 2003, 17( 01n02): 113
https://doi.org/10.1142/S0217979203017175
24 B. Gan Y., G. Xu A., C. Zhang G., J. Li Y.. Lattice Boltzmann study on Kelvin−Helmholtz instability: Roles of velocity and density gradients. Phys. Rev. E , 2011, 83( 5): 056704
https://doi.org/10.1103/PhysRevE.83.056704
25 G. Li Y., G. Geng X., J. Liu Z., P. Wang H., Y. Zang D.. Simulating Kelvin−Helmholtz instability using dissipative particle dynamics. Fluid Dyn. Res. , 2018, 50( 4): 045512
https://doi.org/10.1088/1873-7005/aac769
26 Q. Shang W., Zhang Y., Q. Chen Z., P. Yuan Z., H. Dong B.. Numerical simulation of two-dimensional Kelvin−Helmholtz instabilities using a front tracking method. Chin. J. Comput. Mech. , 2018, 35 : 424
27 A. Hoshoudy G., K. Awasthi M.. Compressibility effects on the Kelvin−Helmholtz and Rayleigh−Taylor instabilities between two immiscible fluids flowing through a porous medium. Eur. Phys. J. Plus , 2020, 135( 2): 169
https://doi.org/10.1140/epjp/s13360-020-00160-x
28 P. Budiana E.. The meshless numerical simulation of Kelvin−Helmholtz instability during the wave growth of liquid−liquid slug flow. Comput. Math. Appl. , 2020, 80( 7): 1810
https://doi.org/10.1016/j.camwa.2020.08.006
29 M. McMullen R., C. Krygier M., R. Torczynski J., A. Gallis M.. Navier−Stokes equations do not describe the smallest scales of turbulence in gases. Phys. Rev. Lett. , 2022, 128( 11): 114501
https://doi.org/10.1103/PhysRevLett.128.114501
30 G. Xu A., D. Lin C., C. Zhang G., J. Li Y.. Multiple-relaxation-time lattice Boltzmann kinetic model for combustion. Phys. Rev. E , 2015, 91( 4): 043306
https://doi.org/10.1103/PhysRevE.91.043306
31 D. Lin C., H. Luo K.. Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects. Phys. Rev. E , 2019, 99( 1): 012142
https://doi.org/10.1103/PhysRevE.99.012142
32 L. Su X., D. Lin C.. Nonequilibrium effects of reactive flow based on gas kinetic theory. Commum. Theor. Phys. , 2022, 74( 3): 035604
https://doi.org/10.1088/1572-9494/ac53a0
33 B. Gan Y., G. Xu A., C. Zhang G., Succi S.. Discrete Boltzmann modeling of multiphase flows: Hydrodynamic and thermodynamic nonequilibrium effects. Soft Matter , 2015, 11( 26): 5336
https://doi.org/10.1039/C5SM01125F
34 B. Gan Y., G. Xu A., C. Zhang G., D. Zhang Y., Succi S.. Discrete Boltzmann trans-scale modeling of high-speed compressible flows. Phys. Rev. E , 2018, 97( 5): 053312
https://doi.org/10.1103/PhysRevE.97.053312
35 L. Lai H., G. Xu A., C. Zhang G., B. Gan Y., J. Li Y., Succi S.. Nonequilibrium thermohydrodynamic effects on the Rayleigh−Taylor instability in compressible flows. Phys. Rev. E , 2016, 94( 2): 023106
https://doi.org/10.1103/PhysRevE.94.023106
36 M. Li D., L. Lai H., G. Xu A., C. Zhang G., D. Lin C., B. Gan Y.. Discrete Boltzmann simulation of Rayleigh−Taylor instability in compressible flows. Acta Physica Sinica , 2018, 67( 8): 080501
https://doi.org/10.7498/aps.67.20171952
37 Y. Ye H., L. Lai H., M. Li D., B. Gan Y., D. Lin C., Chen L., G. Xu A.. Knudsen number effects on two-dimensional Rayleigh−Taylor instability in compressible fluid: Based on a discrete Boltzmann method. Entropy (Basel) , 2020, 22( 5): 500
https://doi.org/10.3390/e22050500
38 Chen L., L. Lai H., D. Lin C., M. Li D.. Specific heat ratio effects of compressible Rayleigh−Taylor instability studied by discrete Boltzmann method. Front. Phys. , 2021, 16( 5): 52500
https://doi.org/10.1007/s11467-021-1096-3
39 Chen L., L. Lai H., D. Lin C., M. Li D.. Numerical study of multimode Rayleigh−Taylor instability by using the discrete Boltzmann method. Acta Aerodyn. Sin. , 2022, 40 : 1
40 D. Lin C., G. Xu A., C. Zhang G., J. Li Y.. An efficient two-dimensional discrete Boltzmann model of detonation. Adv. Condens. Matter Phys. , 2015, 4( 3): 102
https://doi.org/10.12677/CMP.2015.43012
41 Chen F., G. Xu A., C. Zhang G.. Collaboration and competition between Richtmyer−Meshkov instability and Rayleigh-Taylor instability. Phys. Fluids , 2018, 30( 10): 102105
https://doi.org/10.1063/1.5049869
42 D. Zhang Y., G. Xu A., C. Zhang G., H. Chen Z., Wang P.. Discrete Boltzmann method for non-equilibrium flows: Based on Shakhov model. Comput. Phys. Commun. , 2019, 238 : 50
https://doi.org/10.1016/j.cpc.2018.12.018
43 D. Lin C., H. Luo K., B. Gan Y., P. Liu Z.. Kinetic simulation of nonequilibrium Kelvin−Helmholtz instability. Commum. Theor. Phys. , 2019, 71( 1): 132
https://doi.org/10.1088/0253-6102/71/1/132
44 J. Zhang D., G. Xu A., D. Zhang Y., J. Li Y.. Two-fluid discrete Boltzmann model for compressible flows: Based on ellipsoidal statistical Bhatnagar−Gross−Krook. Phys. Fluids , 2020, 32( 12): 126110
https://doi.org/10.1063/5.0017673
45 Chen F., G. Xu A., D. Zhang Y., K. Zeng Q.. Morphological and nonequilibrium analysis of coupled Rayleigh−Taylor−Kelvin−Helmholtz instability. Phys. Fluids , 2020, 32( 10): 104111
https://doi.org/10.1063/5.0023364
46 D. Lin C., H. Luo K., G. Xu A., B. Gan Y., L. Lai H.. Multiple-relaxation-time discrete Boltzmann modeling of multicomponent mixture with nonequilibrium effects. Phys. Rev. E , 2021, 103( 1): 013305
https://doi.org/10.1103/PhysRevE.103.013305
47 Chen F., G. Xu A., D. Zhang Y., B. Gan Y., B. Liu B., Wang S.. Effects of the initial perturbations on the Rayleigh−Taylor−Kelvin−Helmholtz instability system. Front. Phys. , 2022, 17( 3): 33505
https://doi.org/10.1007/s11467-021-1145-y
48 Benzi R., Succi S., Vergassola M.. The lattice Boltzmann equation: Theory and applications. Phys. Rep. , 1992, 222( 3): 145
https://doi.org/10.1016/0370-1573(92)90090-M
49 Y. He X. Y. Chen S. D. Doolen G., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys . 146(1), 282 ( 1998)
50 H. Chai Z., C. Shi B.. Multiple-relaxation-time lattice Boltzmann method for the Navier−Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements. Phys. Rev. E , 2020, 102( 2): 023306
https://doi.org/10.1103/PhysRevE.102.023306
51 Li Q., Yang H., Z. Huang R.. Lattice Boltzmann simulation of solidliquid phase change with nonlinear density variation. Phys. Fluids , 2021, 33( 12): 123302
https://doi.org/10.1063/5.0070407
52 D. Wang Z. K. Wen Y. H. Qian Y., A novel thermal lattice Boltzmann model with heat source and its application in incompressible flow, Appl. Math. Comput . 427, 127167 ( 2022)
53 G. Xu A., Chen J., H. Song J., W. Chen D., H. Chen Z.. Progress of discrete Boltzmann study on multiphase complex flows. Acta Aerodyn. Sin. , 2021, 39 : 138
54 G. Xu A., H. Song J., Chen F., Xie K., J. Ying Y.. Modeling and analysis methods for complex fields based on phase space. Chin. J. Comput. Phys. , 2021, 38 : 631
55 G. Xu A., M. Shan Y., Chen F., B. Gan Y., D. Lin C.. Progress of mesoscale modeling and investigation of combustion multiphase flow. Acta Aero. Astro. Sin. , 2021, 42 : 625842
56 P. Klaassen G., R. Peltier W.. Evolution of finite amplitude Kelvin−Helmholtz billows in two spatial dimensions. J. Atmos. Sci. , 1985, 42( 12): 1321
https://doi.org/10.1175/1520-0469(1985)042<1321:EOFAKB>2.0.CO;2
57 P. Klaassen G., R. Peltier W.. The effect of prandtl number on the evolution and stability of Kelvin−Helmholtz billows. Geophys. Astrophys. Fluid Dyn. , 1985, 32( 1): 23
https://doi.org/10.1080/03091928508210082
58 Fatehi R., S. Shadloo M., T. Manzari M.. Numerical investigation of two-phase secondary Kelvin−Helmholtz instability. Proc. Instit. Mech. Eng. C:J. Mech. Eng. Sci. , 2014, 228( 11): 1913
https://doi.org/10.1177/0954406213512630
59 Kiuchi K., Cerdá-Durán P., Kyutoku K., Sekiguchi Y., Shibata M.. Efficient magnetic-field amplification due to the Kelvin−Helmholtz instability in binary neutron star mergers. Phys. Rev. D , 2015, 92( 12): 124034
https://doi.org/10.1103/PhysRevD.92.124034
60 D. Zhang Y., G. Xu A., C. Zhang G., M. Zhu C., D. Lin C.. Kinetic modeling of detonation and effects of negative temperature coefficient. Combust. Flame , 2016, 173 : 483
https://doi.org/10.1016/j.combustflame.2016.04.003
61 D. Lin C. H. Luo K. L. Fei L. Succi S., A multi-component discrete Boltzmann model for nonequilibrium reactive flows, Sci. Rep . 7(1), 14580 ( 2017)
[1] Feng Chen, Aiguo Xu, Yudong Zhang, Yanbiao Gan, Bingbing Liu, Shuang Wang. Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system[J]. Front. Phys. , 2022, 17(3): 33505-.
[2] Lu Chen (陈璐), Huilin Lai (赖惠林), Chuandong Lin (林传栋), Demei Li (李德梅). Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method[J]. Front. Phys. , 2021, 16(5): 52500-.
[3] Yu-Dong Zhang, Ai-Guo Xu, Jing-Jiang Qiu, Hong-Tao Wei, Zung-Hang Wei. Kinetic modeling of multiphase flow based on simplified Enskog equation[J]. Front. Phys. , 2020, 15(6): 62503-.
[4] Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Chuan-Dong Lin, Hui-Lin Lai, Zhi-Peng Liu. Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows[J]. Front. Phys. , 2019, 14(4): 43602-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed