Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2022, Vol. 17 Issue (3) : 33505    https://doi.org/10.1007/s11467-021-1145-y
RESEARCH ARTICLE
Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system
Feng Chen1(), Aiguo Xu2,3,4(), Yudong Zhang5, Yanbiao Gan6, Bingbing Liu7, Shuang Wang8
1. School of Aeronautics, Shan Dong Jiaotong University, Jinan 250357, China
2. Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China
3. HEDPS, Center for Applied Physics and Technology, and College of Engineering, Peking University, Beijing 100871, China
4. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
5. School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China
6. Hebei Key Laboratory of Trans-Media Aerial Underwater Vehicle, North China Institute of Aerospace Engineering, Langfang 065000, China
7. Naval Architecture and Port Engineering College, Shan Dong Jiaotong University, Weihai 264200, China
8. School of Science, Shandong Jianzhu University, Jinan 250101, China
 Download: PDF(5118 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The effects of initial perturbations on the Rayleigh–Taylor instability (RTI), Kelvin–Helmholtz instability (KHI), and the coupled Rayleigh–Taylor–Kelvin–Helmholtz instability (RTKHI) systems are investigated using a multiple-relaxation-time discrete Boltzmann model. Six different perturbation interfaces are designed to study the effects of the initial perturbations on the instability systems. It is found that the initial perturbation has a significant influence on the evolution of RTI. The sharper the interface, the faster the growth of bubble or spike. While the influence of initial interface shape on KHI evolution can be ignored. Based on the mean heat flux strength D3,1, the effects of initial interfaces on the coupled RTKHI are examined in detail. The research is focused on two aspects: (i) the main mechanism in the early stage of the RTKHI, (ii) the transition point from KHI-like to RTI-like for the case where the KHI dominates at earlier time and the RTI dominates at later time. It is found that the early main mechanism is related to the shape of the initial interface, which is represented by both the bilateral contact angle θ1 and the middle contact angle θ2. The increase of θ1 and the decrease of θ2 have opposite effects on the critical velocity. When θ2 remains roughly unchanged at 90 degrees, if θ1 is greater than 90 degrees (such as the parabolic interface), the critical shear velocity increases with the increase of θ1, and the ellipse perturbation is its limiting case; If θ1 is less than 90 degrees (such as the inverted parabolic and the inverted ellipse disturbances), the critical shear velocities are basically the same, which is less than that of the sinusoidal and sawtooth disturbances. The influence of inverted parabolic and inverted ellipse perturbations on the transition point of the RTKHI system is greater than that of other interfaces: (i) For the same amplitude, the smaller the contact angle θ1, the later the transition point appears; (ii) For the same interface morphology, the disturbance amplitude increases, resulting in a shorter duration of the linear growth stage, so the transition point is greatly advanced.

Keywords discrete Boltzmann method      hydrodynamic instability      non-equilibrium characteristic      initial perturbation     
Corresponding Author(s): Feng Chen,Aiguo Xu   
Issue Date: 18 February 2022
 Cite this article:   
Feng Chen,Aiguo Xu,Yudong Zhang, et al. Effects of the initial perturbations on the Rayleigh–Taylor–Kelvin–Helmholtz instability system[J]. Front. Phys. , 2022, 17(3): 33505.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-021-1145-y
https://academic.hep.com.cn/fop/EN/Y2022/V17/I3/33505
1 Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (I), Phys. Rep. 720, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.07.005
2 Y. Zhou, Rayleigh–Taylor and Richtmyer–Meshkov instability induced flow, turbulence, and mixing (II), Phys. Rep. 723-725, 1 (2017)
https://doi.org/10.1016/j.physrep.2017.07.008
3 Y. Zhou, T. T. Clark, D. S. Clark, G. S. Gail, S. M. Aaron, C. M. Huntington, O. A. Hurricane, A. M. Dimits, and B. A. Remington, Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities, Phys. Plasmas 26(8), 080901 (2019)
https://doi.org/10.1063/1.5088745
4 H. Li, B. Tian, Z. He, and Y. Zhang, Growth mechanism of interfacial fluid mixing width induced by successive nonlinear wave interactions, Phys. Rev. E 103(5), 053109 (2021)
https://doi.org/10.1103/PhysRevE.103.053109
5 L. F. Wang, C. Xue, W. H. Ye, and Y. J. Li, Destabilizing effect of density gradient on the Kelvin–Helmholtz instability, Phys. Plasmas 16(11), 112104 (2009)
https://doi.org/10.1063/1.3255622
6 F. Chen, A. G. Xu, G. C. Zhang, Y. J. Li, and S. Succi, Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett. 90(5), 54003 (2010)
https://doi.org/10.1209/0295-5075/90/54003
7 H. Liang, Q. X. Li, B. C. Shi, and Z. H. Chai, Lattice Boltzmann simulation of three-dimensional Rayleigh–Taylor instability, Phys. Rev. E 93(3), 033113 (2016)
https://doi.org/10.1103/PhysRevE.93.033113
8 H. Liang, X. L. Hu, X. F. Huang, and J. R. Xu, Direct numerical simulations of multi-mode immiscible Rayleigh–Taylor instability with high Reynolds numbers, Phys. Fluids 31(11), 112104 (2019)
https://doi.org/10.1063/1.5127888
9 H. Liang, Z. H. Xia, and H. W. Huang, Late-time description of immiscible Rayleigh–Taylor instability: A lattice Boltzmann study, Phys. Fluids 33(8), 082103 (2021)
https://doi.org/10.1063/5.0057269
10 Z. Zhai, L. Zou, Q. Wu, and X. Luo, Review of experimental Richtmyer–Meshkov instability in shock tube: From simple to complex, J. Mech. Eng. Sci. 232(16), 2830 (2018)
https://doi.org/10.1177/0954406217727305
11 L. Zou, J. Liu, S. Liao, X. Zheng, Z. Zhai, and X. Luo, Richtmyer–Meshkov instability of a flat interface subjected to a rippled shock wave, Phys. Rev. E 95(1), 013107 (2017)
https://doi.org/10.1103/PhysRevE.95.013107
12 L. Zou, M. Al-Marouf, W. Cheng, R. Samtaney, J. Ding, and X. Luo, Richtmyer–Meshkov instability of an unperturbed interface subjected to a diffracted convergent shock, J. Fluid Mech. 879, 448 (2019)
https://doi.org/10.1017/jfm.2019.694
13 A. Ravid, R. I. Citron, and R. Jeanloz, Hydrodynamic instability at impact interfaces and planetary implications, Nat. Commun. 12(1), 2104 (2021)
https://doi.org/10.1038/s41467-021-22052-z
14 Y. W. Bin, M. J. Xiao, Y. P. Shi, Y. S. Zhang, and S. Y. Chen, A new idea to predict reshocked Richtmyer– Meshkov mixing: Constrained large-eddy simulation, J. Fluid Mech. 918, R1 (2021)
https://doi.org/10.1017/jfm.2021.332
15 H. Y. Ye, H. L. Lai, D. M. Li, Y. B. Gan, C. D. Lin, L. Chen, and A. G. Xu, Knudsen number effects on twodimensional Rayleigh–Taylor instability in compressible fluid: Based on a discrete Boltzmann method, Entropy (Basel) 22(5), 500 (2020)
https://doi.org/10.3390/e22050500
16 L. Chen, H. L. Lai, C. D. Lin, and D. M. Li, Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method, Front. Phys. 16(5), 52500 (2021)
https://doi.org/10.1007/s11467-021-1096-3
17 J. G. Tang, F. Zhang, X. S. Luo, and Z. G. Zhai, Effect of Atwood number on convergent Richtmyer–Meshkov instability, Acta Mech. Sin. 37(3), 434 (2021)
https://doi.org/10.1007/s10409-020-01015-5
18 C. D. Lin, K. H. Luo, Y. B. Gan, and Z. P. Liu, Kinetic simulation of nonequilibrium Kelvin–Helmholtz instability, Commun. Theor. Phys. 71(1), 132 (2019)
https://doi.org/10.1088/0253-6102/71/1/132
19 R. H. Zeng, J. J. Tao, and Y. B. Sun, Three-dimensional viscous Rayleigh–Taylor instability at the cylindrical interface, Phys. Rev. E 102(2), 023112 (2020)
https://doi.org/10.1103/PhysRevE.102.023112
20 Y. B. Sun, R. H. Zeng, and J. J. Tao, Effects of viscosity and elasticity on Rayleigh–Taylor instability in a cylindrical geometry, Phys. Plasmas 28(6), 062701 (2021)
https://doi.org/10.1063/5.0050629
21 G. Dimonte, Dependence of turbulent Rayleigh–Taylor (RT) instability on initial perturbations, Phys. Rev. E 69(5), 056305 (2004)
https://doi.org/10.1103/PhysRevE.69.056305
22 A. R. Miles, M. J. Edwards, and J. A. Greenough, Effect of initial conditions on two-dimensional Rayleigh–Taylor instability and transition to turbulence in planar blastwave- driven systems, Phys. Plasmas 11(11), 5278 (2004)
https://doi.org/10.1063/1.1804181
23 P. Ramaprabhu, G. Dimonte, and M. J. Andrews, A numerical study of the influence of initial perturbations on the turbulent Rayleigh–Taylor instability, J. Fluid Mech. 536, 285 (2005)
https://doi.org/10.1017/S002211200500488X
24 D. H. Olson and J. W. Jacobs, Experimental study of Rayleigh–Taylor instability with a complex initial perturbation, Phys. Fluids 21(3), 034103 (2009)
https://doi.org/10.1063/1.3085811
25 A. A. Gowardhan, J. R. Ristorcelli, and F. F. Grinstein, The bipolar behavior of the Richtmyer–Meshkov instability, Phys. Fluids 23(7), 071701 (2011)
https://doi.org/10.1063/1.3610959
26 Y. Doron and A. Duggleby, Optical density measurements and analysis for single-mode initial-condition buoyancydriven mixing, J. Fluids Eng. 133(10), 101204 (2011)
https://doi.org/10.1115/1.4004943
27 T. Wei and D. Livescu, Late-time quadratic growth in single-mode Rayleigh–Taylor instability, Phys. Rev. E 86(4), 046405 (2012)
https://doi.org/10.1103/PhysRevE.86.046405
28 S. Kuchibhatla and D. Ranjan, Effect of initial conditions on Rayleigh–Taylor mixing: Modal interaction, Phys. Scr. T155, 014057 (2013)
https://doi.org/10.1088/0031-8949/2013/T155/014057
29 W. H. Liu, L. F. Wang, W. H. Ye, and X. T. He, Temporal evolution of bubble tip velocity in classical Rayleigh– Taylor instability at arbitrary Atwood numbers, Phys. Plasmas 20(6), 062101 (2013)
https://doi.org/10.1063/1.4801505
30 J. A. Mc Farland, J. A. Greenough, and D. Ranjan, Investigation of the initial perturbation amplitude for the inclined interface Richtmyer–Meshkov instability, Phys. Scr. T155, 014014 (2013)
https://doi.org/10.1088/0031-8949/2013/T155/014014
31 Z. G. Zhai, M. H. Wang, T. Si, and X. S. Luo, On the interaction of a planar shock with a light polygonal interface, J. Fluid Mech. 757, 800 (2014)
https://doi.org/10.1017/jfm.2014.516
32 X. S. Luo, M. H. Wang, T. Si, and Z. G. Zhai, On the interaction of a planar shock with an SF6 polygon, J. Fluid Mech. 773, 366 (2015)
https://doi.org/10.1017/jfm.2015.257
33 Z. Dell, R. F. Stellingwerf, and S. I. Abarzhi, Effect of initial perturbation amplitude on Richtmyer–Meshkov flows induced by strong shocks, Phys. Plasmas 22(9), 092711 (2015)
https://doi.org/10.1063/1.4931051
34 J. X. Xiao, J. S. Bai, and T. Wang, Numerical study of initial perturbation effects on Richtmyer–Meshkov instability in non-uniform flows, Phys. Rev. E 94(1), 013112 (2016)
https://doi.org/10.1103/PhysRevE.94.013112
35 C. Y. Xie, J. J. Tao, Z. L. Sun, and J. Li, Retarding viscous Rayleigh–Taylor mixing by an optimized additional mode, Phys. Rev. E 95(2), 023109 (2017)
https://doi.org/10.1103/PhysRevE.95.023109
36 A. Kord and J. Capecelatro, Optimal perturbations for controlling the growth of a Rayleigh–Taylor instability, J. Fluid Mech. 876, 150 (2019)
https://doi.org/10.1017/jfm.2019.532
37 R. Sun, J. C. Ding, Z. G. Zhai, T. Si, and X. S. Luo, Convergent Richtmyer–Meshkov instability of heavy gas layer with perturbed inner surface, J. Fluid Mech. 902, A3 (2020)
https://doi.org/10.1017/jfm.2020.584
38 Y. Liang, L. L. Liu, Z. G. Zhai, T. Si, and X. S. Luo, Universal perturbation growth of Richtmyer–Meshkov instability for minimum-surface featured interface induced by weak shock waves, Phys. Fluids 33(3), 032110 (2021)
https://doi.org/10.1063/5.0045122
39 L. F. Wang, W. H. Ye, and Y. J. Li, Combined effect of the density and velocity gradients in the combination of Kelvin–Helmholtz and Rayleigh–Taylor instabilities, Phys. Plasmas 17(4), 042103 (2010)
https://doi.org/10.1063/1.3372843
40 W. H. Ye, L. F. Wang, C. Xue, Z. F. Fan, and X. T. He, Competitions between Rayleigh–Taylor instability and Kelvin–Helmholtz instability with continuous density and velocity profiles, Phys. Plasmas 18(2), 022704 (2011)
https://doi.org/10.1063/1.3552106
41 L. Mandal, S. Roy, R. Banerjee, M. Khan, and M. R. Gupta, Evolution of nonlinear interfacial structure induced by combined effect of Rayleigh–Taylor and Kelvin– Helmholtz instability, Nucl. Instr. Meth. Phys. Res. A 653(1), 103 (2011)
https://doi.org/10.1016/j.nima.2011.01.070
42 B. J. Olson, J. Larsson, S. K. Lele, and A. W. Cook, Nonlinear effects in the combined Rayleigh–Taylor/Kelvin– Helmholtz instability, Phys. Fluids 23(11), 114107 (2011)
https://doi.org/10.1063/1.3660723
43 B. Akula, M. J. Andrews, and D. Ranjan, Effect of shear on Rayleigh–Taylor mixing at small Atwood number, Phys. Rev. E 87(3), 033013 (2013)
https://doi.org/10.1103/PhysRevE.87.033013
44 M. Vadivukkarasan and M. V. Panchagnula, Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface, Int. J. Spray Combust. 8(4), 219 (2016)
https://doi.org/10.1177/1756827716642159
45 M. Vadivukkarasan and M. V. Panchagnula, Combined Rayleigh–Taylor and Kelvin–Helmholtz instabilities on an annular liquid sheet, J. Fluid Mech. 812, 152 (2017)
https://doi.org/10.1017/jfm.2016.784
46 M. Vadivukkarasan, Temporal instability characteristics of Rayleigh–Taylor and Kelvin–Helmholtz mechanisms of an inviscid cylindrical interface, Meccanica 56(1), 117 (2021)
https://doi.org/10.1007/s11012-020-01275-2
47 V. D. Sarychev, S. A. Nevskii, A. Y. Granovskii, S. V. Konovalov, and V. E. Gromov, Combined Rayleigh– Taylor-Kelvin–Helmholtz instability and its role in the formation of the surface relief of the coating/substrate, AIP Conf. Proc. 2167, 020307 (2019)
https://doi.org/10.1063/1.5132174
48 S. Brizzolara, J. Mollicone, M. Van Reeuwijk, A. Mazzino, and M. Holzner, Transition from shear-dominated to Rayleigh–Taylor turbulence, J. Fluid Mech. 924, A10 (2021)
https://doi.org/10.1017/jfm.2021.564
49 F. Chen, A. G. Xu, Y. D. Zhang, and Q. K. Zeng, Morphological and nonequilibrium analysis of coupled Rayleigh– Taylor-Kelvin–Helmholtz instability, Phys. Fluids 32(10), 104111 (2020)
https://doi.org/10.1063/5.0023364
50 Without causing misunderstanding, DBM is used as an abbreviation of discrete Boltzmann Model/Modeling/Method.
51 A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. 7(5), 582 (2012)
https://doi.org/10.1007/s11467-012-0269-5
52 A. G. Xu, G. C. Zhang, and Y. J. Ying, Progress of discrete Boltzmann modeling and simulation of combustion system, Acta Phys. Sin. 64(18), 184701 (2015)
https://doi.org/10.7498/aps.64.184701
53 A. Xu, G. Zhang, and Y. Gan, Progress in studies on discrete Boltzmann modeling of phase separation process, Mech. Eng. 38, 361 (2016)
54 A. G. Xu, G. C. Zhang, and Y. D. Zhang, Discrete Boltzmann Modeling of Compressible Flows, Chapter 2 in Kinetic Theory, edited by G. Z. Kyzas and A. C. Mitropoulos, Rijeka: In Tech, 2018
55 A. G. Xu, J. Chen, J. H. Song, D. W. Chen, and Z. H. Chen, Progress of discrete Boltzmann study on multiphase complex flows, Acta Aerodyn. Sin. 39(3), 138 (2021)
56 A. G. Xu, J. H. Song, F. Chen, K. Xie, and Y. J. Ying, Modeling and analysis methods for complex fields based on phase space, Chinese J. Comput. Phys. 38(6), 631 (2021) (in Chinese)
57 A. G. Xu, Y. M. Shan, F. Chen, Y. B. Gan, and C. D. Lin, Progress of mesoscale modeling and investigation of combustion multiphase flow, Acta Aero. Astro. Sin. 42(12), 625842 (2021)
58 S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001
59 R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. 222(3), 145 (1992)
https://doi.org/10.1016/0370-1573(92)90090-M
60 X. Shan and H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47(3), 1815 (1993)
https://doi.org/10.1103/PhysRevE.47.1815
61 Y. Zhang, R. Qin, and D. Emerson, Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71(4), 047702 (2005)
https://doi.org/10.1103/PhysRevE.71.047702
62 V. E. Ambruç and V. Sofonea, Quadrature-Based Lattice Boltzmann Models for Rarefied Gas Flow, edited by F. Toschi and M. Sega, Springer, 2019
https://doi.org/10.1007/978-3-030-23370-9_9
63 Y. B. Li and X. W. Shan, Lattice Boltzmann method for adiabatic acoustic, Phil. Trans. R. Soc. A 369(1944), 2371 (2011)
https://doi.org/10.1098/rsta.2011.0109
64 Q. Li, K. H. Luo, Y. J. Gao, and Y. L. He, Additional interfacial force in lattice Boltzmann models for incompressible multiphase flows, Phys. Rev. E 85(2), 026704 (2012)
https://doi.org/10.1103/PhysRevE.85.026704
65 Z. Wang, Y. Wei, and Y. Qian, A simple direct heating thermal immersed boundary-lattice Boltzmann method for its application in incompressible flow, Comput. Math. Appl. 80(6), 1633 (2020)
https://doi.org/10.1016/j.camwa.2020.08.003
66 Z. Chen, C. Shu, and D. Tan, Highly accurate simplified lattice Boltzmann method, Phys. Fluids 30(10), 103605 (2018)
https://doi.org/10.1063/1.5050185
67 F. B. Tian, H. Luo, L. Zhu, J. C. Liao, and X. Y. Lu, An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys. 230(19), 7266 (2011)
https://doi.org/10.1016/j.jcp.2011.05.028
68 F. B. Tian, Y. Wang, H. Liu, and Y. Zhang, The lattice Boltzmann method and its applications in complex flows and fluid-structure interactions, Inst. Mech. Eng. C 232(3), 403 (2018)
https://doi.org/10.1177/0954406218754913
69 H. Liang, B. C. Shi, Z. L. Guo, and Z. H. Chai, Phase-fieldbased multiple relaxation-time lattice Boltzmann model for incompressible multiphase flows, Phys. Rev. E 89(5), 053320 (2014)
https://doi.org/10.1103/PhysRevE.89.053320
70 Y. Wang, C. Zhong, C. Zhuo, and S. Liu, A simplified finite volume lattice Boltzmann method for simulations of fluid flows from laminar to turbulent regime, Part I: Numerical framework and its application to laminar flow simulation, Comput. Math. Appl. 79(5), 1590 (2020)
https://doi.org/10.1016/j.camwa.2019.09.017
71 K. Pasieczynski and B. X. Chen, Multipseudopotential interaction models for thermal lattice Boltzmann method simulations, Phys. Rev. E 102(1), 013311 (2020)
https://doi.org/10.1103/PhysRevE.102.013311
72 R. Qiu, Y. Bao, T. Zhou, H. Che, R. Chen, and Y. You, Study of regular reflection shock waves using a mesoscopic kinetic approach: Curvature pattern and effects of viscosity, Phys. Fluids 32(10), 106106 (2020)
https://doi.org/10.1063/5.0024801
73 R. Qiu, T. Zhou, Y. Bao, K. Zhou, H. Che, and Y. You, Mesoscopic kinetic approach for studying nonequilibrium hydrodynamic and thermodynamic effects of shock wave, contact discontinuity, and rarefaction wave in the unsteady shock tube, Phys. Rev. E 103(5), 053113 (2021)
https://doi.org/10.1103/PhysRevE.103.053113
74 D. K. Sun, A discrete kinetic scheme to model anisotropic liquid-solid phase transitions, Appl. Math. Lett. 103, 106222 (2020)
https://doi.org/10.1016/j.aml.2020.106222
75 D. K. Sun, H. Xing, X. L. Dong, and Y. S. Han, An anisotropic lattice Boltzmann-phase field scheme for numerical simulations of dendritic growth with melt convection, Int. J. Heat Mass Tran. 133, 1240 (2019)
https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.095
76 C. J. Zhan, Z. H. Chai, and B. C. Shi, A lattice Boltzmann model for the coupled cross-diffusion-fluid system, Appl. Math. Comput. 400, 126105 (2021)
https://doi.org/10.1016/j.amc.2021.126105
77 A. Xu, G. Zhang, X. Pan, P. Zhang, and J. Zhu, Morphological characterization of shocked porous material, J. Phys. D 42(7), 075409 (2009)
https://doi.org/10.1088/0022-3727/42/7/075409
78 A. G. Xu, G. C. Zhang, H. Li, Y. J. Ying, X. J. Yu, and J. S. Zhu, Temperature pattern dynamics in shocked porous materials, Sci. China Phys. Mech. Astron. 53(8), 1466 (2010)
https://doi.org/10.1007/s11433-010-4063-5
79 A. G. Xu, G. C. Zhang, Y. J. Ying, and C. Wang, Complex fields in heterogeneous materials under shock: Modeling, simulation and analysis, Sci. China Phys. Mech. Astron. 59(5), 650501 (2016)
https://doi.org/10.1007/s11433-016-5801-0
80 F. Chen, A. Xu, and G. Zhang, Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability, Front. Phys. 11(6), 114703 (2016)
https://doi.org/10.1007/s11467-016-0603-4
81 F. Chen, A. Xu, and G. Zhang, Collaboration and competition between Richtmyer–Meshkov instability and Rayleigh–Taylor instability, Phys. Fluids 30(10), 102105 (2018)
https://doi.org/10.1063/1.5049869
[1] Yaofeng Li, Huilin Lai, Chuandong Lin, Demei Li. Influence of the tangential velocity on the compressible Kelvin−Helmholtz instability with nonequilibrium effects[J]. Front. Phys. , 2022, 17(6): 63500-.
[2] Lu Chen (陈璐), Huilin Lai (赖惠林), Chuandong Lin (林传栋), Demei Li (李德梅). Specific heat ratio effects of compressible Rayleigh–Taylor instability studied by discrete Boltzmann method[J]. Front. Phys. , 2021, 16(5): 52500-.
[3] Yu-Dong Zhang, Ai-Guo Xu, Jing-Jiang Qiu, Hong-Tao Wei, Zung-Hang Wei. Kinetic modeling of multiphase flow based on simplified Enskog equation[J]. Front. Phys. , 2020, 15(6): 62503-.
[4] Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Chuan-Dong Lin, Hui-Lin Lai, Zhi-Peng Liu. Nonequilibrium and morphological characterizations of Kelvin–Helmholtz instability in compressible flows[J]. Front. Phys. , 2019, 14(4): 43602-.
[5] Feng Chen, Ai-Guo Xu, Guang-Cai Zhang, Yong-Long Wang. Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows[J]. Front. Phys. , 2014, 9(2): 246-254.
[6] Ai-Guo Xu, Guang-Cai Zhang, Yan-Biao Gan, Feng Chen, Xi-Jun Yu. Lattice Boltzmann modeling and simulation of compressible flows[J]. Front. Phys. , 2012, 7(5): 582-600.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed