|
|
Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows |
Feng Chen1( ), Ai-Guo Xu2( ), Guang-Cai Zhang2, Yong-Long Wang3 |
1. School of Aeronautics, Shan Dong Jiaotong University, Jinan 250357, China; 2. National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China; 3. Institute of Condensed Matter Physics, School of Science, Linyi University, Linyi 276005, China |
|
|
Abstract In the paper we extend the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett., 2010, 90: 54003] so that it is suitable also for incompressible flows. To decrease the artificial oscillations, the convection term is discretized by the flux limiter scheme with splitting technique. A new model is validated by some well-known benchmark tests, including Riemann problem and Couette flow, and satisfying agreements are obtained between the simulation results and analytical ones. In order to show the merit of LB model over traditional methods, the non-equilibrium characteristics of system are solved. The simulation results are consistent with the physical analysis.
|
Keywords
lattice Boltzmann method
multiple-relaxation-time
flux limiter technique
Prandtl numbers effect
non-equilibrium characteristic
|
Corresponding Author(s):
Chen Feng,Email:shanshiwycf@163.com; Xu Ai-Guo,Email:Xu Aiguo@iapcm.ac.cn
|
Issue Date: 01 April 2014
|
|
1 |
S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
|
2 |
R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. , 1992, 222(3): 145 doi: 10.1016/0370-1573(92)90090-M
|
3 |
A. G. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E , 2003, 67(5): 056105 doi: 10.1103/PhysRevE.67.056105
|
4 |
A. G. Xu, G. Gonnella, and A. Lamura, Morphologies and flow patterns in quenching of lamellar systems with shear, Phys. Rev. E , 2006, 74(1): 011505 doi: 10.1103/PhysRevE.74.011505
|
5 |
A. G. Xu, G. Gonnella, and A. Lamura, Phase separation of incompressible binary fluids with lattice Boltzmann methods, Physica A , 2004, 331(1-2): 10 doi: 10.1016/j.physa.2003.09.040
|
6 |
A. G. Xu, G. Gonnella, and A. Lamura, Numerical study of the ordering properties of lamellar phase, Physica A , 2004, 344(3-4): 750 doi: 10.1016/j.physa.2004.06.057
|
7 |
A. G. Xu, G. Gonnella, and A. Lamura, Simulations of complex fluids by mixed lattice Boltzmann-finite difference methods, Physica A , 2006, 362(1): 42 doi: 10.1016/j.physa.2005.09.015
|
8 |
F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett. , 1989, 9: 345 doi: 10.1209/0295-5075/9/4/008
|
9 |
F. J. Higuera and J. Jimenez, Boltzmann approach to lattice gas simulations, Europhys. Lett. , 1989, 9: 662 doi: 10.1209/0295-5075/9/7/009
|
10 |
D. d’Humieres, Generalized lattice-Boltzmann equations, in: Rarefied Gas Dynamics: Theory and Simulations, edited by B. D. Shizgal and D. P Weaver, Progress in Astronautics and Aeronautics , Vol. 159, Washington: AIAA Press, DC, 1992: 450-458
|
11 |
P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E , 2000, 61(6): 6546 doi: 10.1103/PhysRevE.61.6546
|
12 |
D. d’Humières, M. Bouzidi, and P. Lallemand, Thirteenvelocity three-dimensional lattice Boltzmann model, Phys. Rev. E , 2001, 63(6): 066702 doi: 10.1103/PhysRevE.63.066702
|
13 |
M. E. McCracken and J. Abraham, Multiple-relaxation-time lattice-Boltzmann model for multiphase flow, Phys. Rev. E , 2005, 71(3): 036701 doi: 10.1103/PhysRevE.71.036701
|
14 |
K. N. Premnath and J. Abraham, Three-dimensional multirelaxation time (MRT) lattice-Boltzmann models for multiphase flow, J. Comput. Phys. , 2007, 224(2): 539 doi: 10.1016/j.jcp.2006.10.023
|
15 |
H. D. Yu, L. S. Luo, and S. S. Girimaji, LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids , 2006, 35(8-9): 957 doi: 10.1016/j.compfluid.2005.04.009
|
16 |
P. Asinari, Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling, Comput. Math. Appl. , 2008, 55(7): 1392 doi: 10.1016/j.camwa.2007.08.006
|
17 |
I. Rasin, S. Succi, and W. Miller, A multi-relaxation lattice kinetic method for passive scalar diffusion, J. Comput. Phys. , 2006, 206(2): 453 doi: 10.1016/j.jcp.2004.12.010
|
18 |
H. Yoshida and M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys. , 2010, 229(20): 7774 doi: 10.1016/j.jcp.2010.06.037
|
19 |
Z. H. Chai and T. S. Zhao, Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor, Phys. Rev. E , 2012, 86(1): 016705 doi: 10.1103/PhysRevE.86.016705
|
20 |
J. J. Huang, H. B. Huang, C. Shu, Y. T. Chew, and S. L. Wang, Hybrid multiple-relaxation-time lattice-Boltzmann finite-difference method for axisymmetric multiphase flows, J. Phys. A: Math. Theor. , 2013, 46(5): 055501 doi: 10.1088/1751-8113/46/5/055501
|
21 |
P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys. Rev. E , 2003, 68(3): 036706 doi: 10.1103/PhysRevE.68.036706
|
22 |
L. Zheng, B. C. Shi, and Z. L. Guo, Multiple-relaxation-time model for the correct thermohydrodynamic equations, Phys. Rev. E , 2008, 78(2): 026705 doi: 10.1103/PhysRevE.78.026705
|
23 |
A. Mezrhab, M. A. Moussaouia, M. Jami, H. Naji, and M. Bouzidi, Double MRT thermal lattice Boltzmann method for simulating convective flows, Phys. Lett. A , 2010, 374(34): 3499 doi: 10.1016/j.physleta.2010.06.059
|
24 |
F. Chen, A. G. Xu, G. C. Zhang, Y. J. Li, and S. Succi, Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett. , 2010, 90(5): 54003 doi: 10.1209/0295-5075/90/54003
|
25 |
A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiter techniques, Proceedings of the Romanian Academy, Series A , 2003, 4: 59
|
26 |
A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiters, Central Eur. J. Phys. , 2004, 2: 382 doi: 10.2478/BF02475638
|
27 |
V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Finitedifference lattice Boltzmann model with flux limiters for liquid-vapor systems, Phys. Rev. E , 2004, 70(4): 046702 doi: 10.1103/PhysRevE.70.046702
|
28 |
F. Chen, A. G. Xu, G. C. Zhang, and Y. J. Li, Flux limiter lattice Boltzmann for compressible flows, Commun. Theor. Phys. , 2011, 56(2): 333 doi: 10.1088/0253-6102/56/2/25
|
29 |
A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. , 2012, 7(5): 582 doi: 10.1007/s11467-012-0269-5
|
30 |
B. Yan, A. G. Xu, G. C. Zhang, Y. J. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys. , 2013, 8(1): 94 doi: 10.1007/s11467-013-0286-z
|
31 |
C. Lin, A. G. Xu, G. Zhang, Y. Li, and S. Succi, Polar coordinate lattice Boltzmann modeling of compressible flows, arXiv: 1302.7104v1 , 2013
|
32 |
T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E , 2004, 69(3): 035701(R) doi: 10.1103/PhysRevE.69.035701
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|