Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (2) : 246-254    https://doi.org/10.1007/s11467-013-0368-y
Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows
Feng Chen1(), Ai-Guo Xu2(), Guang-Cai Zhang2, Yong-Long Wang3
1. School of Aeronautics, Shan Dong Jiaotong University, Jinan 250357, China; 2. National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China; 3. Institute of Condensed Matter Physics, School of Science, Linyi University, Linyi 276005, China
 Download: PDF(339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In the paper we extend the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model proposed in [Europhys. Lett., 2010, 90: 54003] so that it is suitable also for incompressible flows. To decrease the artificial oscillations, the convection term is discretized by the flux limiter scheme with splitting technique. A new model is validated by some well-known benchmark tests, including Riemann problem and Couette flow, and satisfying agreements are obtained between the simulation results and analytical ones. In order to show the merit of LB model over traditional methods, the non-equilibrium characteristics of system are solved. The simulation results are consistent with the physical analysis.

Keywords lattice Boltzmann method      multiple-relaxation-time      flux limiter technique      Prandtl numbers effect      non-equilibrium characteristic     
Corresponding Author(s): Chen Feng,Email:shanshiwycf@163.com; Xu Ai-Guo,Email:Xu Aiguo@iapcm.ac.cn   
Issue Date: 01 April 2014
 Cite this article:   
Feng Chen,Ai-Guo Xu,Guang-Cai Zhang, et al. Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows[J]. Front. Phys. , 2014, 9(2): 246-254.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0368-y
https://academic.hep.com.cn/fop/EN/Y2014/V9/I2/246
1 S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Oxford University Press, 2001
2 R. Benzi, S. Succi, and M. Vergassola, The lattice Boltzmann equation: Theory and applications, Phys. Rep. , 1992, 222(3): 145
doi: 10.1016/0370-1573(92)90090-M
3 A. G. Xu, G. Gonnella, and A. Lamura, Phase-separating binary fluids under oscillatory shear, Phys. Rev. E , 2003, 67(5): 056105
doi: 10.1103/PhysRevE.67.056105
4 A. G. Xu, G. Gonnella, and A. Lamura, Morphologies and flow patterns in quenching of lamellar systems with shear, Phys. Rev. E , 2006, 74(1): 011505
doi: 10.1103/PhysRevE.74.011505
5 A. G. Xu, G. Gonnella, and A. Lamura, Phase separation of incompressible binary fluids with lattice Boltzmann methods, Physica A , 2004, 331(1-2): 10
doi: 10.1016/j.physa.2003.09.040
6 A. G. Xu, G. Gonnella, and A. Lamura, Numerical study of the ordering properties of lamellar phase, Physica A , 2004, 344(3-4): 750
doi: 10.1016/j.physa.2004.06.057
7 A. G. Xu, G. Gonnella, and A. Lamura, Simulations of complex fluids by mixed lattice Boltzmann-finite difference methods, Physica A , 2006, 362(1): 42
doi: 10.1016/j.physa.2005.09.015
8 F. J. Higuera, S. Succi, and R. Benzi, Lattice gas dynamics with enhanced collisions, Europhys. Lett. , 1989, 9: 345
doi: 10.1209/0295-5075/9/4/008
9 F. J. Higuera and J. Jimenez, Boltzmann approach to lattice gas simulations, Europhys. Lett. , 1989, 9: 662
doi: 10.1209/0295-5075/9/7/009
10 D. d’Humieres, Generalized lattice-Boltzmann equations, in: Rarefied Gas Dynamics: Theory and Simulations, edited by B. D. Shizgal and D. P Weaver, Progress in Astronautics and Aeronautics , Vol. 159, Washington: AIAA Press, DC, 1992: 450-458
11 P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E , 2000, 61(6): 6546
doi: 10.1103/PhysRevE.61.6546
12 D. d’Humières, M. Bouzidi, and P. Lallemand, Thirteenvelocity three-dimensional lattice Boltzmann model, Phys. Rev. E , 2001, 63(6): 066702
doi: 10.1103/PhysRevE.63.066702
13 M. E. McCracken and J. Abraham, Multiple-relaxation-time lattice-Boltzmann model for multiphase flow, Phys. Rev. E , 2005, 71(3): 036701
doi: 10.1103/PhysRevE.71.036701
14 K. N. Premnath and J. Abraham, Three-dimensional multirelaxation time (MRT) lattice-Boltzmann models for multiphase flow, J. Comput. Phys. , 2007, 224(2): 539
doi: 10.1016/j.jcp.2006.10.023
15 H. D. Yu, L. S. Luo, and S. S. Girimaji, LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput. Fluids , 2006, 35(8-9): 957
doi: 10.1016/j.compfluid.2005.04.009
16 P. Asinari, Asymptotic analysis of multiple-relaxation-time lattice Boltzmann schemes for mixture modeling, Comput. Math. Appl. , 2008, 55(7): 1392
doi: 10.1016/j.camwa.2007.08.006
17 I. Rasin, S. Succi, and W. Miller, A multi-relaxation lattice kinetic method for passive scalar diffusion, J. Comput. Phys. , 2006, 206(2): 453
doi: 10.1016/j.jcp.2004.12.010
18 H. Yoshida and M. Nagaoka, Multiple-relaxation-time lattice Boltzmann model for the convection and anisotropic diffusion equation, J. Comput. Phys. , 2010, 229(20): 7774
doi: 10.1016/j.jcp.2010.06.037
19 Z. H. Chai and T. S. Zhao, Effect of the forcing term in the multiple-relaxation-time lattice Boltzmann equation on the shear stress or the strain rate tensor, Phys. Rev. E , 2012, 86(1): 016705
doi: 10.1103/PhysRevE.86.016705
20 J. J. Huang, H. B. Huang, C. Shu, Y. T. Chew, and S. L. Wang, Hybrid multiple-relaxation-time lattice-Boltzmann finite-difference method for axisymmetric multiphase flows, J. Phys. A: Math. Theor. , 2013, 46(5): 055501
doi: 10.1088/1751-8113/46/5/055501
21 P. Lallemand and L. S. Luo, Theory of the lattice Boltzmann method: Acoustic and thermal properties in two and three dimensions, Phys. Rev. E , 2003, 68(3): 036706
doi: 10.1103/PhysRevE.68.036706
22 L. Zheng, B. C. Shi, and Z. L. Guo, Multiple-relaxation-time model for the correct thermohydrodynamic equations, Phys. Rev. E , 2008, 78(2): 026705
doi: 10.1103/PhysRevE.78.026705
23 A. Mezrhab, M. A. Moussaouia, M. Jami, H. Naji, and M. Bouzidi, Double MRT thermal lattice Boltzmann method for simulating convective flows, Phys. Lett. A , 2010, 374(34): 3499
doi: 10.1016/j.physleta.2010.06.059
24 F. Chen, A. G. Xu, G. C. Zhang, Y. J. Li, and S. Succi, Multiple-relaxation-time lattice Boltzmann approach to compressible flows with flexible specific-heat ratio and Prandtl number, Europhys. Lett. , 2010, 90(5): 54003
doi: 10.1209/0295-5075/90/54003
25 A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiter techniques, Proceedings of the Romanian Academy, Series A , 2003, 4: 59
26 A. Cristea and V. Sofonea, Two component lattice Boltzmann model with flux limiters, Central Eur. J. Phys. , 2004, 2: 382
doi: 10.2478/BF02475638
27 V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Finitedifference lattice Boltzmann model with flux limiters for liquid-vapor systems, Phys. Rev. E , 2004, 70(4): 046702
doi: 10.1103/PhysRevE.70.046702
28 F. Chen, A. G. Xu, G. C. Zhang, and Y. J. Li, Flux limiter lattice Boltzmann for compressible flows, Commun. Theor. Phys. , 2011, 56(2): 333
doi: 10.1088/0253-6102/56/2/25
29 A. G. Xu, G. C. Zhang, Y. B. Gan, F. Chen, and X. Yu, Lattice Boltzmann modeling and simulation of compressible flows, Front. Phys. , 2012, 7(5): 582
doi: 10.1007/s11467-012-0269-5
30 B. Yan, A. G. Xu, G. C. Zhang, Y. J. Ying, and H. Li, Lattice Boltzmann model for combustion and detonation, Front. Phys. , 2013, 8(1): 94
doi: 10.1007/s11467-013-0286-z
31 C. Lin, A. G. Xu, G. Zhang, Y. Li, and S. Succi, Polar coordinate lattice Boltzmann modeling of compressible flows, arXiv: 1302.7104v1 , 2013
32 T. Kataoka and M. Tsutahara, Lattice Boltzmann model for the compressible Navier–Stokes equations with flexible specific-heat ratio, Phys. Rev. E , 2004, 69(3): 035701(R)
doi: 10.1103/PhysRevE.69.035701
[1] Yu-Dong Zhang, Ai-Guo Xu, Jing-Jiang Qiu, Hong-Tao Wei, Zung-Hang Wei. Kinetic modeling of multiphase flow based on simplified Enskog equation[J]. Front. Phys. , 2020, 15(6): 62503-.
[2] Feng Chen,Ai-Guo Xu,Guang-Cai Zhang. Viscosity, heat conductivity, and Prandtl number effects in the Rayleigh–Taylor Instability[J]. Front. Phys. , 2016, 11(6): 114703-.
[3] Bo Yan, Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Hua Li. Lattice Boltzmann model for combustion and detonation[J]. Front. Phys. , 2013, 8(1): 94-110.
[4] Yan-Biao Gan, Ai-Guo Xu, Guang-Cai Zhang, Ying-Jun Li. Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions[J]. Front. Phys. , 2012, 7(4): 481-490.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed