Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2012, Vol. 7 Issue (4) : 481-490    https://doi.org/10.1007/s11467-012-0245-0
RESEARCH ARTICLE
Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions
Yan-Biao Gan1,2,3, Ai-Guo Xu2(), Guang-Cai Zhang2, Ying-Jun Li3()
1. North China Institute of Aerospace Engineering, Langfang 065000, China; 2. National Key Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, P. O. Box 8009-26, Beijing 100088, China; 3. State Key Laboratory for GeoMechanics and Deep Underground Engineering, SMCE, China University of Mining and Technology (Beijing), Beijing 100083, China
 Download: PDF(825 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The aims of the present paper are threefold. First, we further study the fast Fourier transform thermal lattice Boltzmann (FFT–TLB) model for van der Waals (VDW) fluids proposed in Phys. Rev. E, 2011, 84(4): 046715. We analyze the merits of the FFT approach over the traditional finite difference scheme and investigate the effects of smoothing factors on accuracy and stability in detail. Second, we incorporate the VDW equation of state with flexible parameters into the FFT–TLB model. As a result, the revised model may be used to handle multiphase flows with various critical densities and temperatures. Third, we design appropriate boundary conditions for systems with solid walls. These improvements, from the views of numerics and physics, significantly extend the application scope of the model in science and engineering.

Keywords van der Waals fluids      lattice Boltzmann method      FFT      equation of state     
Corresponding Author(s): Xu Ai-Guo,Email:Xu Aiguo@iapcm.ac.cn; Li Ying-Jun,Email:lyj@aphy.iphy.ac.cn   
Issue Date: 01 August 2012
 Cite this article:   
Yan-Biao Gan,Ai-Guo Xu,Guang-Cai Zhang, et al. Physical modeling of multiphase flow via lattice Boltzmann method: Numerical effects, equation of state and boundary conditions[J]. Front. Phys. , 2012, 7(4): 481-490.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-012-0245-0
https://academic.hep.com.cn/fop/EN/Y2012/V7/I4/481
1 S. Chapman and T. G. Cowling, The Mathematical Theory of Non-uniform Gases, London: Cambridge University Press, 1970
2 S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, New York: Oxford University Press, 2001
3 Z. Guo and C. Zheng, Theory and Applications of Lattice Boltzmann Method, Beijing: Science Press, 2009 (in Chinese)
4 A. Xu, Phys. Rev. E , 2005, 71(6): 066706
doi: 10.1103/PhysRevE.71.066706
5 A. Xu, Europhys. Lett. , 2005, 69(2): 214
doi: 10.1209/epl/i2004-10334-y
6 Y. Gan, A. Xu, G. Zhang, X. Yu, and Y. Li, Physica A , 2008, 387(8-9): 1721
doi: 10.1016/j.physa.2007.11.013
7 Z. Guo, C. Zheng, and B. Shi, Phys. Rev. E , 2008, 77(3): 036707
doi: 10.1103/PhysRevE.77.036707
8 B. Shi and Z. Guo, Phys. Rev. E , 2009, 79(1): 016701
doi: 10.1103/PhysRevE.79.016701
9 Q. Li, Y. L. He, Y. Wang, and W. Q. Tao, Phys. Rev. E , 2007, 76(5): 056705
doi: 10.1103/PhysRevE.76.056705
10 Q. Li, Y. L. He, G. H. Tang, and W. Q. Tao, Phys. Rev. E , 2009, 80(3): 037702
doi: 10.1103/PhysRevE.80.037702
11 Q. Li, Y. L. He, G. H. Tang, and W. Q. Tao, Microfluid. Nanofluid. , 2011, 10(3): 607
doi: 10.1007/s10404-010-0693-1
12 Q. Li, K. H. Luo, Y. L. He, Y. J. Gao, and W. Q. Tao, Phys. Rev. E , 2012, 85(1): 016710
doi: 10.1103/PhysRevE.85.016710
13 H. Lai and C. Ma, J. Stat. Mech.: Theory Exp. , 2010, 2010(4): P04011
doi: 10.1088/1742-5468/2010/04/P04011
14 H. Lai and C. Ma, Phys. Rev. E , 2011, 84(4): 046708
doi: 10.1103/PhysRevE.84.046708
15 H. Li, X. Lu, H. Fang, and Y. Qian, Phys. Rev. E , 2004, 70(2): 026701
doi: 10.1103/PhysRevE.70.026701
16 B. Wen, H. Li, C. Zhang, and H. Fang, Phys. Rev. E , 2012, 85(1): 016704
doi: 10.1103/PhysRevE.85.016704
17 D. H. Rothman and J. M. Keller, J. Stat. Phys. , 1988, 52(3-4): 1119
doi: 10.1007/BF01019743
18 A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, Phys. Rev. A , 1991, 43(8): 4320
doi: 10.1103/PhysRevA.43.4320
19 X. Shan and H. Chen, Phys. Rev. E , 1993, 47(3): 1815
doi: 10.1103/PhysRevE.47.1815
20 X. Shan and H. Chen, Phys. Rev. E , 1994, 49(4): 2941
doi: 10.1103/PhysRevE.49.2941
21 M. R. Swift, W. R. Osborn, and J. M. Yeomans, Phys. Rev. Lett. , 1995, 75(5): 830
doi: 10.1103/PhysRevLett.75.830
22 W. R. Osborn, E. Orlandini, M. R. Swift, J. M. Yeomans, and J. R. Banavar, Phys. Rev. Lett. , 1995, 75(22): 4031
doi: 10.1103/PhysRevLett.75.4031
23 A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E , 2003, 67(5): 056105
doi: 10.1103/PhysRevE.67.056105
24 A. Xu, G. Gonnella, and A. Lamura, Physica A , 2004, 331(1-2): 10
doi: 10.1016/j.physa.2003.09.040
25 A. Xu, G. Gonnella, and A. Lamura, Physica A , 2004, 344(3-4): 750
doi: 10.1016/j.physa.2004.06.057
26 A. Xu, G. Gonnella, A. Lamura, G. Amati, and F. Massaioli, Europhys. Lett. , 2005, 71(4): 651
doi: 10.1209/epl/i2005-10130-3
27 A. Xu, G. Gonnella, and A. Lamura, Phys. Rev. E , 2006, 74(1): 011505
doi: 10.1103/PhysRevE.74.011505
28 A. Xu, G. Gonnella, and A. Lamura, Physica A , 2006, 362(1): 42
doi: 10.1016/j.physa.2005.09.015
29 F. Corberi, G. Gonnella, and A. Lamura, Phys. Rev. Lett. , 1998, 81(18): 3852
doi: 10.1103/PhysRevLett.81.3852
30 A. Tiribocchi, N. Stella, G. Gonnella, and A. Lamura, Phys. Rev. E , 2009, 80(2): 026701
doi: 10.1103/PhysRevE.80.026701
31 V. Sofonea and K. R. Mecke, Eur. Phys. J. B , 1999, 8(1): 99
doi: 10.1007/s100510050672
32 V. Sofonea, A. Lamura, G. Gonnella, and A. Cristea, Phys. Rev. E , 2004, 70(4): 046702
doi: 10.1103/PhysRevE.70.046702
33 A. Cristea, G. Gonnella, A. Lamura, and V. Sofonea, Comm. Comp. Phys. , 2010, 7(2): 350
34 R. Zhang and H. Chen, Phys. Rev. E , 2003, 67(6): 066711
doi: 10.1103/PhysRevE.67.066711
35 P. Yuan and L. Schaefer, J. Fluid Eng. , 2006, 128(1): 142
doi: 10.1115/1.2137343
36 G. Gonnella, A. Lamura, A. Piscitelli, and A. Tiribocchi, Phys. Rev. E , 2010, 82(4): 046302
doi: 10.1103/PhysRevE.82.046302
37 G. Gonnella, A. Lamura, and A. Tiribocchi, Phil. Trans. R. Soc. A , 2011, 369(1945): 2592
38 A. Márkus and G. Házi, Phys. Rev. E , 2011, 83(4): 046705
doi: 10.1103/PhysRevE.83.046705
39 M. Sbragaglia, R. Benzi, L. Biferale, X. Shan, H. Chen, and S. Succi, J. Fluid Mech. , 2009, 628:299
doi: 10.1017/S002211200900665X
40 T. Seta, K. Kono, and S. Chen, Int. J. Mod. Phys. B , 2003, 17(1-2): 169
doi: 10.1142/S021797920301728X
41 G. Gonnella, A. Lamura, and V. Sofonea, Phys. Rev. E , 2007, 76(3): 036703
doi: 10.1103/PhysRevE.76.036703
42 Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E , 2011, 84(4): 046715
doi: 10.1103/PhysRevE.84.046715
43 Y. Gan, A. Xu, G. Zhang, P. Zhang, and Y. Li, Europhys. Lett. , 2012, 97(4): 44002
doi: 10.1209/0295-5075/97/44002
44 H. Huang, D. T. Thorne, M. G. Schaap, and M. C. Sukop, Phys. Rev. E , 2007, 76(6): 066701
doi: 10.1103/PhysRevE.76.066701
45 H. Huang, M. Krafczyk, and X. Lu, Phys. Rev. E , 2011, 84(4): 046710
doi: 10.1103/PhysRevE.84.046710
46 L. Zheng, B. Shi, and Z. Guo, Phys. Rev. E , 2008, 78(2): 026705
doi: 10.1103/PhysRevE.78.026705
47 M. Watari and M. Tsutahara, Phys. Rev. E , 2003, 67(3): 036306
doi: 10.1103/PhysRevE.67.036306
48 A. Onuki, Phys. Rev. Lett. , 2005, 94(5): 054501
doi: 10.1103/PhysRevLett.94.054501
49 A. Onuki, Phys. Rev. E , 2007, 75(3): 036304
doi: 10.1103/PhysRevE.75.036304
50 F. Chen, A. Xu, G. Zhang, Y. Li, and S. Succi, Europhys. Lett. , 2010, 90(5): 54003
doi: 10.1209/0295-5075/90/54003
51 C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, London: Springer-Verlag, 1987
52 C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, Bristol: Adam Hilger, 1991
doi: 10.1887/0750301171
53 J. P. Boyd, Chebyshev and Fourier Spectral Methods, New York: Dover Publications, 2000
54 S. Orszag, Phys. Rev. Lett. , 1971, 26(18): 1100
doi: 10.1103/PhysRevLett.26.1100
55 H. Hadwiger, Math. Z. , 1959, 71: 124
doi: 10.1007/BF01181393
56 G. Gonnella1, A. Lamura, and A. Piscitelli, J. Phys. A , 2008, 41(10): 105001
57 Y. Gan, A. Xu, G. Zhang, and Y. Li, Phys. Rev. E , 2011, 83(5): 056704
doi: 10.1103/PhysRevE.83.056704
58 L. F. Wang, W. H. Ye, Z. F. Fan, and Y. J. Li, Europhys. Lett. , 2010, 90(1): 15001
doi: 10.1209/0295-5075/90/15001
59 W. H. Ye, L. F. Wang, and X. T. He, Phys. Plasmas , 2010, 17(12): 122704
doi: 10.1063/1.3497006
60 W. H. Ye, L. F. Wang, C. Xue, Z. F. Fan, and X. T. He, Phys. Plasmas , 2011, 18(2): 022704
doi: 10.1063/1.3552106
[1] Ying-Xun Zhang, Ning Wang, Qing-Feng Li, Li Ou, Jun-Long Tian, Min Liu, Kai Zhao, Xi-Zhen Wu, Zhu-Xia Li. Progress of quantum molecular dynamics model and its applications in heavy ion collisions[J]. Front. Phys. , 2020, 15(5): 54301-.
[2] Yong-Jia Wang, Qing-Feng Li. Application of microscopic transport model in the study of nuclear equation of state from heavy ion collisions at intermediate energies[J]. Front. Phys. , 2020, 15(4): 44302-.
[3] Feng Chen, Ai-Guo Xu, Guang-Cai Zhang, Yong-Long Wang. Two-dimensional Multiple-Relaxation-Time Lattice Boltzmann model for compressible and incompressible flows[J]. Front. Phys. , 2014, 9(2): 246-254.
[4] Bo Yan, Ai-Guo Xu, Guang-Cai Zhang, Yang-Jun Ying, Hua Li. Lattice Boltzmann model for combustion and detonation[J]. Front. Phys. , 2013, 8(1): 94-110.
[5] Di BAO(鲍迪), Efthymios KALLOS, Wen-xuan TANG(汤文轩), Christos ARGYROPOULOS, Yang HAO(郝阳), Tie-jun CUI(崔铁军), . A broadband simplified free space cloak realized by nonmagnetic dielectric cylinders[J]. Front. Phys. , 2010, 5(3): 319-323.
[6] CHEN Lie-wen, KO Che Ming, LI Bao-an, YONG Gao-chan. Probing the nuclear symmetry energy with heavy-ion reactions induced by neutron-rich nuclei[J]. Front. Phys. , 2007, 2(3): 327-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed