Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (1) : 13309    https://doi.org/10.1007/s11467-022-1223-9
RESEARCH ARTICLE
Spiral wave chimeras in populations of oscillators coupled to a slowly varying diffusive environment
Lei Yang, Yuan He, Bing-Wei Li()
School of Physics, Hangzhou Normal University, Hangzhou 311121, China
 Download: PDF(4446 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Chimera states are firstly discovered in nonlocally coupled oscillator systems. Such a nonlocal coupling arises typically as oscillators are coupled via an external environment whose characteristic time scale τ is so small (i.e., τ → 0) that it could be eliminated adiabatically. Nevertheless, whether the chimera states still exist in the opposite situation (i.e., τ ≫ 1) is unknown. Here, by coupling large populations of Stuart−Landau oscillators to a diffusive environment, we demonstrate that spiral wave chimeras do exist in this oscillator-environment coupling system even when τ is very large. Various transitions such as from spiral wave chimeras to spiral waves or unstable spiral wave chimeras as functions of the system parameters are explored. A physical picture for explaining the formation of spiral wave chimeras is also provided. The existence of spiral wave chimeras is further confirmed in ensembles of FitzHugh−Nagumo oscillators with the similar oscillator-environment coupling mechanism. Our results provide an affirmative answer to the observation of spiral wave chimeras in populations of oscillators mediated via a slowly changing environment and give important hints to generate chimera patterns in both laboratory and realistic chemical or biological systems.

Keywords spiral wave chimeras      reaction-diffusion systems      oscillator−environment coupling      pattern formation     
Corresponding Author(s): Bing-Wei Li   
Issue Date: 30 November 2022
 Cite this article:   
Lei Yang,Yuan He,Bing-Wei Li. Spiral wave chimeras in populations of oscillators coupled to a slowly varying diffusive environment[J]. Front. Phys. , 2023, 18(1): 13309.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1223-9
https://academic.hep.com.cn/fop/EN/Y2023/V18/I1/13309
Fig.1  SWCs in populations of SL oscillators coupled via a slowly changing environment. (a) An SWC for the real component of W, and (b) the corresponding phase, i.e., ϕ, of SWCs, and (c) enlarged view of the core region in (b). (d) The variation of Δϕ= ϕi +1,N/2ϕi,N /2 with respect to x along the horizontal central axis in (c). (e) A spiral wave for the real component of S, and (f) the corresponding phase of spiral waves and (g) enlarged view of the core region in (f). (h) The variation of Δϕ with respect to x along the horizontal central axis in (g). (i) Temporal profile of ReWi,j and ReSi,j inside the core region with i=500 and j=512. Parameters are α= 0.2 and K=0.5.
Fig.2  The amplitude (modules) of the component of W and S and corresponding phase portraits. (a) |W| near the core and (b) the variation of Δ |W|=|Wi+1,N /2| |Wi,N /2| with respect to x along the center line. (c) The phase portrait in the ReW I mW plane. (d) |S| near the core and (e) the variation of Δ|S|=|Si+1,N/2 || Si,N/2 | with respect to x along the center line. (f) The phase portrait in the ReSImS plane. All the parameters are the same as in Fig.1.
Fig.3  The dynamical state of spiral wave chimeras as a function of K. (a−c) three spiral wave chimeras for K=0.6, 0.7 and 0.8. (d−f) The averaged order parameter ?R? corresponding to (a−c). (g) Regions for different dynamical states for K. The circles in this panel denote the core diameter for the corresponding coupling strength K. SWC: Spiral wave chimera. SW: Spiral wave. The local dynamics parameter α is 0.2.
Fig.4  Two typical states of unstable spiral wave chimeras observed in the small coupling strength K. (a) Spiral wave chimera state with core break and (b) enlarged view of the core region in (a) for K=0.35. (c) The variation of Δ ReW= ReW491,j+1 ReW491,j with respect to y in (b). (d) A turbulent-like state and (e) enlarged view of the center region in (d) for K=0.2. (f) The variation of ΔReW= ReW522,j+1 ReW522,j with respect to y in (e). Other parameters are the same as in Fig.3.
Fig.5  The effects of α on rotation direction of spiral wave chimeras for K=0.65. (a) A spiral wave chimera for ReW and (b) spiral wave for ReS rotating clockwise for α =+0.35. (c) The spatial distribution of D(S/x). (d) Spiral wave chimeras for ReW and (e) spiral wave for ReS rotating counterclockwise for α =0.35. (f) The spatial distribution of D(S/x). The arrows with the solid (dashed) line denote the curl (rotation) direction in (a) and (d). The arrows in (b) and (e) denote the direction of wave propagation.
Fig.6  The dispersion relation given by Eq. (9). (a) α=0.35. (b) α= 0.35. The other parameters are the same as in Fig.5.
Fig.7  Mechanism analysis of the spiral wave chimera formation. (a) Frequency profile with respect to x along the center line in Fig.1. The left and right light green regions mean synchronization between W and S while the centered yellow region denotes the desynchronized. (b) |S| with respect to x along the center line. (c) Frequency difference between the forcing and measured frequency, i.e., |Δω |=| ωmω f| as a function of the forcing amplitude Af for a local system with ωf= 0.0046. Other parameters are the same as in Fig.1.
Fig.8  Spiral wave chimeras in populations of FHN oscillators coupled via a slowly changing environment. (a) A snapshot of spiral wave chimeras for the u component and (b) enlarged view of the core region in (a). (c) The variation of Δu= ui+1,N/2ui,N /2 with respect to x along the center line. (d) Time-averaged amplitude, Aw(x), along central horizontal axis in (b). (e) Frequency difference between the forcing and measured frequency, i.e., |Δω |=| ωmω f| as a function of forcing amplitude Af for a local system.
1 Kuramoto Y., Battogtokh D.. Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenom. Complex Syst., 2002, 5: 380
2 M. Abrams D., H. Strogatz S.. Chimera states for coupled oscillators. Phys. Rev. Lett., 2004, 93(17): 174102
https://doi.org/10.1103/PhysRevLett.93.174102
3 E. Omel’chenko O., L. Maistrenko Y., A. Tass P.. Chimera states: The natural link between coherence and incoherence. Phys. Rev. Lett., 2008, 100(4): 044105
https://doi.org/10.1103/PhysRevLett.100.044105
4 C. Sethia G., Sen A., M. Atay F.. Clustered chimera states in delay-coupled oscillator systems. Phys. Rev. Lett., 2008, 100(14): 144102
https://doi.org/10.1103/PhysRevLett.100.144102
5 M. Abrams D., Mirollo R., H. Strogatz S., A. Wiley D.. Solvable model for chimera states of coupled oscillators. Phys. Rev. Lett., 2008, 101(8): 084103
https://doi.org/10.1103/PhysRevLett.101.084103
6 Omelchenko I., Maistrenko Y., Hövel P., Schöll E.. Loss of coherence in dynamical networks: Spatial chaos and chimera states. Phys. Rev. Lett., 2011, 106(23): 234102
https://doi.org/10.1103/PhysRevLett.106.234102
7 Omelchenko I., E. Omel’chenko O., Hövel P., Schöll E.. When nonlocal coupling between oscillators becomes stronger: Patched synchrony or multichimera states. Phys. Rev. Lett., 2013, 110(22): 224101
https://doi.org/10.1103/PhysRevLett.110.224101
8 Zakharova A., Kapeller M., Schöll E.. Chimera death: Symmetry breaking in dynamical networks. Phys. Rev. Lett., 2014, 112(15): 154101
https://doi.org/10.1103/PhysRevLett.112.154101
9 C. Sethia G., Sen A., L. Johnston G.. Amplitude-mediated chimera states. Phys. Rev. E, 2013, 88(4): 042917
https://doi.org/10.1103/PhysRevE.88.042917
10 Mukherjee R., Sen A.. Amplitude mediated chimera states with active and inactive oscillators. Chaos, 2018, 28(5): 053109
https://doi.org/10.1063/1.5031804
11 Zhu Y., G. Zheng Z., Yang J.. Chimera states on complex networks. Phys. Rev. E, 2014, 89(2): 022914
https://doi.org/10.1103/PhysRevE.89.022914
12 Y. Xu H., L. Wang G., Huang L., C. Lai Y.. Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera. Phys. Rev. Lett., 2018, 120(12): 124101
https://doi.org/10.1103/PhysRevLett.120.124101
13 Zhang Y., G. Nicolaou Z., D. Hart J., Roy R., E. Motter A.. Critical switching in globally attractive chimeras. Phys. Rev. X, 2020, 10(1): 011044
https://doi.org/10.1103/PhysRevX.10.011044
14 G. Zheng Z., Zhai Y.. Chimera state: From complex networks to spatiotemporal patterns. Sci. Chin. -Phys. Mech. Astron., 2020, 50(1): 010505
https://doi.org/10.1360/SSPMA-2019-0132
15 Zhang Y., E. Motter A.. Mechanism for strong chimeras. Phys. Rev. Lett., 2021, 126(9): 094101
https://doi.org/10.1103/PhysRevLett.126.094101
16 L. Dai Q., X. Liu X., Yang K., Y. Cheng H., H. Li H., Xie F., Z. Yang J.. Entangled chimeras in nonlocally coupled bicomponent phase oscillators: From synchronous to asynchronous chimeras. Front. Phys., 2020, 15(6): 62501
https://doi.org/10.1007/s11467-020-0971-7
17 H. Wang W., L. Dai Q., Y. Cheng H., H. Li H., Z. Yang J.. Chimera dynamics in nonlocally coupled moving phase oscillators. Front. Phys., 2019, 14(4): 43605
https://doi.org/10.1007/s11467-019-0906-3
18 M. Hagerstrom A., E. Murphy T., Roy R., Hövel P., Omelchenko I., Schöll E.. Experimental observation of chimeras in coupled-map lattices. Nat. Phys., 2012, 8(9): 658
https://doi.org/10.1038/nphys2372
19 R. Tinsley M., Nkomo S., Showalter K.. Chimera and phase-cluster states in populations of coupled chemical oscillators. Nat. Phys., 2012, 8(9): 662
https://doi.org/10.1038/nphys2371
20 Nkomo S., R. Tinsley M., Showalter K.. Chimera states in populations of nonlocally coupled chemical oscillators. Phys. Rev. Lett., 2013, 110(24): 244102
https://doi.org/10.1103/PhysRevLett.110.244102
21 Nkomo S., R. Tinsley M., Showalter K.. Chimera and chimera-like states in populations of nonlocally coupled homogeneous and heterogeneous chemical oscillators. Chaos, 2016, 26(9): 094826
https://doi.org/10.1063/1.4962631
22 A. Martens E., Thutupalli S., Fourriere A., Hallatschek O.. Chimera states in mechanical oscillator networks. Proc. Natl. Acad. Sci. USA, 2013, 110(26): 10563
https://doi.org/10.1073/pnas.1302880110
23 Wickramasinghe M., Z. Kiss I.. Spatially organized partial synchronization through the chimera mechanism in a network of electrochemical reactions. Phys. Chem. Chem. Phys., 2014, 16(34): 18360
https://doi.org/10.1039/C4CP02249A
24 Schmidt L., Schönleber K., Krischer K., García-Morales V.. Coexistence of synchrony and incoherence in oscillatory media under nonlinear global coupling. Chaos, 2014, 24(1): 013102
https://doi.org/10.1063/1.4858996
25 C. Wiehl J., Patzauer M., Krischer K.. Birhythmicity, intrinsic entrainment, and minimal chimeras in an electrochemical experiment. Chaos, 2021, 31(9): 091102
https://doi.org/10.1063/5.0064266
26 V. Gambuzza L., Buscarino A., Chessari S., Fortuna L., Meucci R., Frasca M.. Experimental investigation of chimera states with quiescent and synchronous domains in coupled electronic oscillators. Phys. Rev. E, 2014, 90(3): 032905
https://doi.org/10.1103/PhysRevE.90.032905
27 Larger L., Penkovsky B., Maistrenko Y.. Laser chimeras as a paradigm for multistable patterns in complex systems. Nat. Commun., 2015, 6(1): 7752
https://doi.org/10.1038/ncomms8752
28 J. Panaggio M., M. Abrams D.. Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity, 2015, 28(3): R67
https://doi.org/10.1088/0951-7715/28/3/R67
29 E. Omel’chenko O.. The mathematics behind chimera states. Nonlinearity, 2018, 31(5): R121
https://doi.org/10.1088/1361-6544/aaaa07
30 Parastesh F., Jafari S., Azarnoush H., Shahriari Z., Wang Z., Boccaletti S., Perc M.. Chimeras. Phys. Rep., 2021, 898: 1
https://doi.org/10.1016/j.physrep.2020.10.003
31 Semenova N., Zakharova A., Anishchenko V., Schöll E.. Coherence-resonance chimeras in a network of excitable elements. Phys. Rev. Lett., 2016, 117(1): 014102
https://doi.org/10.1103/PhysRevLett.117.014102
32 Dai Q., Zhang M., Cheng H., Li H., Xie F., Yang J.. From collective oscillation to chimera state in a nonlocally coupled excitable system. Nonlinear Dyn., 2018, 91(3): 1723
https://doi.org/10.1007/s11071-017-3977-0
33 K. Bera B., Majhi S., Ghosh D., Perc M.. Chimera states: Effects of different coupling topologies. Europhys. Lett., 2017, 118(1): 10001
https://doi.org/10.1209/0295-5075/118/10001
34 C. Sethia G., Sen A.. Chimera states: The existence criteria revisited. Phys. Rev. Lett., 2014, 112(14): 144101
https://doi.org/10.1103/PhysRevLett.112.144101
35 Yeldesbay A., Pikovsky A., Rosenblum M.. Chimeralike states in an ensemble of globally coupled oscillators. Phys. Rev. Lett., 2014, 112(14): 144103
https://doi.org/10.1103/PhysRevLett.112.144103
36 R. Laing C.. Chimeras in networks with purely local coupling. Phys. Rev. E, 2015, 92(5): 050904(R)
https://doi.org/10.1103/PhysRevE.92.050904
37 G. Clerc M., Coulibaly S., A. Ferré M., A. Garcìa-Nustes M., G. Rojas R.. Chimera-type states induced by local coupling. Phys. Rev. E, 2016, 93(5): 052204
https://doi.org/10.1103/PhysRevE.93.052204
38 K. Bera B., Ghosh D., Banerjee T.. Imperfect traveling chimera states induced by local synaptic gradient coupling. Phys. Rev. E, 2016, 94(1): 012215
https://doi.org/10.1103/PhysRevE.94.012215
39 K. Bera B., Ghosh D.. Chimera states in purely local delay-coupled oscillators. Phys. Rev. E, 2016, 93(5): 052223
https://doi.org/10.1103/PhysRevE.93.052223
40 Premalatha K., K. Chandrasekar V., Senthilvelan M., Lakshmanan M.. Stable amplitude chimera states in a network of locally coupled Stuart−Landau oscillators. Chaos, 2018, 28(3): 033110
https://doi.org/10.1063/1.5006454
41 G. Clerc M., Coulibaly S., A. Ferré M., G. Rojas R.. Chimera states in a Duffing oscillators chain coupled to nearest neighbors. Chaos, 2018, 28(8): 083126
https://doi.org/10.1063/1.5025038
42 Kundu S., Majhi S., K. Bera B., Ghosh D., Lakshmanan M.. Chimera states in two-dimensional networks of locally coupled oscillators. Phys. Rev. E, 2018, 97(2): 022201
https://doi.org/10.1103/PhysRevE.97.022201
43 Kundu S., K. Bera B., Ghosh D., Lakshmanan M.. Chimera patterns in three-dimensional locally coupled systems. Phys. Rev. E, 2019, 99(2): 022204
https://doi.org/10.1103/PhysRevE.99.022204
44 W. Haugland S., Schmidt L., Krischer K.. Self-organized alternating chimera states in oscillatory media. Sci. Rep., 2015, 5(1): 9883
https://doi.org/10.1038/srep09883
45 Xie J., Knobloch E., C. Kao H.. Multicluster and traveling chimera states in nonlocal phasecoupled oscillators. Phys. Rev. E, 2014, 90(2): 022919
https://doi.org/10.1103/PhysRevE.90.022919
46 Kuramoto Y., Shima S.. Rotating spirals without phase singularity in reaction-diffusion systems. Prog. Theor. Phys. Suppl., 2003, 150: 115
https://doi.org/10.1143/PTPS.150.115
47 Shima S., Kuramoto Y.. Rotating spiral waves with phase-randomized core in nonlocally coupled oscillators. Phys. Rev. E, 2004, 69(3): 036213
https://doi.org/10.1103/PhysRevE.69.036213
48 A. Martens E., R. Laing C., H. Strogatz S.. Solvable model of spiral wave chimeras. Phys. Rev. Lett., 2010, 104(4): 044101
https://doi.org/10.1103/PhysRevLett.104.044101
49 C. Rattenborg N., J. Amlaner C., L. Lima S.. Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci. Biobehav. Rev., 2000, 24(8): 817
https://doi.org/10.1016/S0149-7634(00)00039-7
50 Tamaki M., W. Bang J., Watanabe T., Sasaki Y.. Night watch in one brain hemisphere during sleep associated with the first-night effect in humans. Curr. Biol., 2016, 26(9): 1190
https://doi.org/10.1016/j.cub.2016.02.063
51 Lainscsek C., Rungratsameetaweemana N., S. Cash S., J. Sejnowski T.. Cortical chimera states predict epileptic seizures. Chaos, 2019, 29(12): 121106
https://doi.org/10.1063/1.5139654
52 Majhi S., K. Bera B., Ghosh D., Perc M.. Chimera states in neuronal networks: A review. Phys. Life Rev., 2019, 28: 100
https://doi.org/10.1016/j.plrev.2018.09.003
53 Majhi S., Perc M., Ghosh D.. Chimera states in a multilayer network of coupled and uncoupled neurons. Chaos, 2017, 27(7): 073109
https://doi.org/10.1063/1.4993836
54 Huo S., Tian C., Zheng M., Guan S., S. Zhou C., Liu Z.. Spatial multi-scaled chimera states of cerebral cortex network and its inherent structure-dynamics relationship in human brain. Nat. Sci. Rev., 2021, 8(1): nwaa125
https://doi.org/10.1093/nsr/nwaa125
55 Wu T., Zhang X., Liu Z.. Understanding the mechanisms of brain functions from the angle of synchronization and complex network. Front. Phys., 2022, 17(3): 31504
https://doi.org/10.1007/s11467-022-1161-6
56 R. Laing C.. The dynamics of chimera states in heterogeneous Kuramoto networks. Physica D, 2009, 238(16): 1569
https://doi.org/10.1016/j.physd.2009.04.012
57 Gu C., St-Yves G., Davidsen J.. Spiral wave chimeras in complex oscillatory and chaotic systems. Phys. Rev. Lett., 2013, 111(13): 134101
https://doi.org/10.1103/PhysRevLett.111.134101
58 Tang X., Yang T., R. Epstein I., Liu Y., Zhao Y., Gao Q.. Novel type of chimera spiral waves arising from decoupling of a diffusible component. J. Chem. Phys., 2014, 141(2): 024110
https://doi.org/10.1063/1.4886395
59 Xie J., Knobloch E., C. Kao H.. Twisted chimera states and multicore spiral chimera states on a two-dimensional torus. Phys. Rev. E, 2015, 92(4): 042921
https://doi.org/10.1103/PhysRevE.92.042921
60 W. Li B., Dierckx H.. Spiral wave chimeras in locally coupled oscillator systems. Phys. Rev. E, 2016, 93: 020202(R)
https://doi.org/10.1103/PhysRevE.93.020202
61 Kundu S., Majhi S., Muruganandam P., Ghosh D.. Diffusion induced spiral wave chimeras in ecological system. Eur. Phys. J. Spec. Top., 2018, 227(7−9): 983
https://doi.org/10.1140/epjst/e2018-800011-1
62 Guo S., Dai Q., Cheng H., Li H., Xie F., Yang J.. Spiral wave chimera in two-dimensional nonlocally coupled FitzHugh–Nagumo systems. Chaos Solitons Fractals, 2018, 114: 394
https://doi.org/10.1016/j.chaos.2018.07.029
63 Rybalova E., Bukh A., Strelkova G., Anishchenko V.. Spiral and target wave chimeras in a 2D lattice of map-based neuron models. Chaos, 2019, 29(10): 101104
https://doi.org/10.1063/1.5126178
64 W. Li B., He Y., D. Li L., Yang L., Wang X.. Spiral wave chimeras in reaction-diffusion systems: Phenomenon, mechanism and transitions. Commun. Nonlinear Sci. Numer. Simul., 2021, 99: 105830
https://doi.org/10.1016/j.cnsns.2021.105830
65 F. Totz J., R. Tinsley M., Engel H., Showalter K.. Transition from spiral wave chimeras to phase cluster states. Sci. Rep., 2020, 10(1): 7821
https://doi.org/10.1038/s41598-020-64081-6
66 F. Totz J., Rode J., R. Tinsley M., Showalter K., Engel H.. Spiral wave chimera states in large populations of coupled chemical oscillators. Nat. Phys., 2018, 14(3): 282
https://doi.org/10.1038/s41567-017-0005-8
67 Bataille-Gonzalez M., G. Clerc M., E. Omel’chenko O.. Moving spiral wave chimeras. Phys. Rev. E, 2021, 104(2): L022203
https://doi.org/10.1103/PhysRevE.104.L022203
68 K. Bera B., Kundu S., Muruganandam P., Ghosh D., Lakshmanan M.. Spiral wave chimeralike transient dynamics in three-dimensional grid of diffusive ecological systems. Chaos, 2021, 31(8): 083125
https://doi.org/10.1063/5.0062566
69 Maistrenko Y., Sudakov O., Osiv O., Maistrenko V.. Chimera states in three dimensions. New J. Phys., 2015, 17(7): 073037
https://doi.org/10.1088/1367-2630/17/7/073037
70 H. Tian C., Y. Zhang X., H. Wang Z., H. Liu Z.. Diversity of chimera-like patterns from a model of 2D arrays of neurons with nonlocal coupling. Front. Phys., 2017, 12(3): 128904
https://doi.org/10.1007/s11467-017-0656-z
71 Camilli A., L. Bassler B.. Bacterial small-molecule signaling pathways. Science, 2006, 311(5764): 1113
https://doi.org/10.1126/science.1121357
72 Garcia-Ojalvo J., B. Elowitz M., H. Strogatz S.. Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA, 2004, 101(30): 10955
https://doi.org/10.1073/pnas.0307095101
73 De Monte S., d’Ovidio F., Danø S., G. Sørensen P.. Dynamical quorum sensing: Population density encoded in cellular dynamics. Proc. Natl. Acad. Sci. USA, 2007, 104(47): 18377
https://doi.org/10.1073/pnas.0706089104
74 Toth R., F. Taylor A., R. Tinsley M.. Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B, 2006, 110(20): 10170
https://doi.org/10.1021/jp060732z
75 F. Taylor A., R. Tinsley M., Wang F., Huang Z., Showalter K.. Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science, 2009, 323(5914): 614
https://doi.org/10.1126/science.1166253
76 Gregor T., Fujimoto K., Masaki N., Sawai S.. The onset of collective behavior in social Amoebae. Science, 2010, 328(5981): 1021
https://doi.org/10.1126/science.1183415
77 Noorbakhsh J., J. Schwab D., E. Sgro A., Gregor T., Mehta P.. Modeling oscillations and spiral waves in Dictyostelium populations. Phys. Rev. E, 2015, 91(6): 062711
https://doi.org/10.1103/PhysRevE.91.062711
78 Danino T.Mondragón-Palomino O.Tsimring L. Hasty J., A synchronized quorum of genetic clocks, Nature 463(7279), 326 (2010)
79 Schütze J., Mair T., J. B. Hauser M., Falcke M., Wolf J.. Metabolic synchronization by traveling waves in yeast cell layers. Biophys. J., 2011, 100(4): 809
https://doi.org/10.1016/j.bpj.2010.12.3704
80 J. Rubin J., E. Rubin J., B. Ermentrout G.. Analysis of synchronization in a slowly changing environment: How slow coupling becomes fast weak coupling. Phys. Rev. Lett., 2013, 110(20): 204101
https://doi.org/10.1103/PhysRevLett.110.204101
81 Gou J., J. Ward M.. An asymptotic analysis of a 2-D model of dynamically active compartments coupled by bulk diffusion. J. Nonlinear Sci., 2016, 26(4): 979
https://doi.org/10.1007/s00332-016-9296-7
82 A. Iyaniwura S., J. Ward M.. Synchrony and oscillatory dynamics for a 2-D PDE-ODE model of diffusion-mediated communication between small signaling compartments. SIAM J. Appl. Dyn. Syst., 2021, 20(1): 438
https://doi.org/10.1137/20M1353666
83 K. Chandrasekar V., Gopal R., V. Senthilkumar D., Lakshmanan M.. Phase-flip chimera induced by environmental nonlocal coupling. Phys. Rev. E, 2016, 94(1): 012208
https://doi.org/10.1103/PhysRevE.94.012208
84 U. Choe C., H. Choe M., Jang H., S. Kim R.. Symmetry breakings in two populations of oscillators coupled via diffusive environments: Chimera and heterosynchrony. Phys. Rev. E, 2020, 101(4): 042213
https://doi.org/10.1103/PhysRevE.101.042213
85 Alonso S., John K., Bär M.. Complex wave patterns in an effective reaction–diffusion model for chemical reactions in microemulsions. J. Chem. Phys., 2011, 134(9): 094117
https://doi.org/10.1063/1.3559154
86 M. Nicola E., Or-Guil M., Wolf W., Bär M.. Drifting pattern domains in a reaction-diffusion system with nonlocal coupling. Phys. Rev. E, 2002, 65(5): 055101(R)
https://doi.org/10.1103/PhysRevE.65.055101
87 A. Cherkashin A., K. Vanag V., R. Epstein I.. Discontinuously propagating waves in the bathoferroin-catalyzed Belousov–Zhabotinsky reaction incorporated into a microemulsion. J. Chem. Phys., 2008, 128(20): 204508
https://doi.org/10.1063/1.2924119
88 P. Schenk C., Or-Guil M., Bode M., G. Purwins H.. Interacting pulses in three-component reaction-diffusion systems on two-dimensional domains. Phys. Rev. Lett., 1997, 78(19): 3781
https://doi.org/10.1103/PhysRevLett.78.3781
89 W. Li B., Z. Cao X., Fu C.. Quorum sensing in populations of spatially extended chaotic oscillators coupled indirectly via a heterogeneous environment. J. Nonlinear Sci., 2017, 27(6): 1667
https://doi.org/10.1007/s00332-017-9384-3
90 Z. Cao X., He Y., W. Li B.. Selection of spatiotemporal patterns in arrays of spatially distributed oscillators indirectly coupled via a diffusive environment. Chaos, 2019, 29(4): 043104
https://doi.org/10.1063/1.5058741
91 T. Pan J., C. Cai M., W. Li B., Zhang H.. Chiralities of spiral waves and their transitions. Phys. Rev. E, 2013, 87(6): 062907
https://doi.org/10.1103/PhysRevE.87.062907
92 F. Totz J., Synchronization and Waves in Active Media, Springer, 2019
[1] Ben Cao, Ya-Feng Wang, Liang Wang, Yi-Zhen Yu, Xin-Gang Wang. Cluster synchronization in complex network of coupled chaotic circuits: An experimental study[J]. Front. Phys. , 2018, 13(5): 130505-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed