Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (4) : 42301    https://doi.org/10.1007/s11467-022-1252-4
RESEARCH ARTICLE
An ultra-wideband coding polarizer for beam control and RCS reduction
Huanhuan Gao1, Xiaojun Huang1(), Xiongwei Ma1, Xiaoyan Li2, Linyan Guo3, Helin Yang4()
1. College of Communication and Information Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
2. College of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
3. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China
4. College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
 Download: PDF(6890 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pancharatnam−Berry (PB) phase metasurface, as a special class of gradient metasurfaces, has been paid much attention owing to the robust performance for phase control of circularly polarized waves. Herein, we present an element-based polarizer for the first step, which enables the incident electromagnetic waves into the cross-polarized waves with the relative bandwidth of 71%, and the polarization conversion ratio exceeds 90% at 6.9−14.5 GHz. Then an eight-elements coding polarizer based on the PB phase is presented for the applications on beam control and radar cross section reduction. The simulated values indicate that the reduction of radar cross section is more than 10 dB at 6−16 GHz. Our work reveals the availability of manipulating the waves, beamforming in communication systems and electromagnetic stealth, and so on.

Keywords polarizer      Pancharatnam−Berry phase      coding metasurface      beam control      RCS reduction     
Corresponding Author(s): Xiaojun Huang,Helin Yang   
About author:

Changjian Wang and Zhiying Yang contributed equally to this work.

Issue Date: 20 February 2023
 Cite this article:   
Huanhuan Gao,Xiaojun Huang,Xiongwei Ma, et al. An ultra-wideband coding polarizer for beam control and RCS reduction[J]. Front. Phys. , 2023, 18(4): 42301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-022-1252-4
https://academic.hep.com.cn/fop/EN/Y2023/V18/I4/42301
Fig.1  Structure diagram.
Fig.2  The working mechanism diagram of metasurface.
Fig.3  Reflectance. (a) rxx and ryx. (b) ryy and rxy. (c) PCR.
Fig.4  (a) The schematic diagram of polarizer. (b) The reflectances of ruu, rvv and phase difference Δφ.
Fig.5  Surface current distribution. (a) 7.3 GHz. (b) 10.6 GHz. (c) 14.3 GHz.
α 0° 22.5° 45° 67.5° 90° 112.5° 135° 157.5°
Unit
1-bit 0 ? ? ? 1 ? ? ?
2-bit 00 ? 01 ? 10 ? 11 ?
3-bit 000 001 010 011 100 101 110 111
Tab.1  The basic unit cells for CMS.
Fig.6  (a) Amplitude and (b) phase with different rotation angles.
Fig.7  3D and 2D far field scattering patterns of 1-bit CMS. (a) 3D far field, (b) 2D far field along x-direction. (c) 3D far field, (d) 2D far field along y-direction.
Fig.8  3D and 2D far field scattering patterns of 2-bit CMS. (a) 3D far field, (b) 2D far field.
Fig.9  3D and 2D far field scattering patterns of 3-bit CMS. (a) 3D far field, (b) 2D far field of LCR incidence. (c) 3D far field, (d) 2D far field of RCP incidence.
Fig.10  The RCS of the metal plane and CMS.
Polarization converter
Ref. OB1)(GHz) PCR(%) RB2)(%)
[52] 10.3?20.5 90% 66.2
[53] 6.53?12.07 88% 59.6
[54] 9.38?13.36 & 14.84?20.36 90% 35
[55] 8?12 90% 40
This work 6.9?14.5 90% 71
RCS reduction
Ref. Working mechanism OB1)(GHz) RB2)(%)
[56] Anomalous reflection 8.9?11.4 24.6
[57] Anomalous reflection 9.85?19.37 65
[58] Anomalous reflection 7?16 78
[59] Destructive interference 9.5?13.9 & 15.2?20.4 32 & 30
[60] Absorber 2.12?4.15 & 6.08?9.58 64 & 45
[61] Diffused scattering 5.4?7.4 31.25
[62] Diffused scattering 13.2?23.2 54.9
[63] Polarization conversion 8?16 67.8
This work Polarization conversion & diffused scattering 6.9?14.5 71
Tab.2  Performance comparison with presented works.
Fig.11  (a) Sample diagram for testing polarization conversion. (b) Experimental test environment. (c) Sample diagram for RCS reduction.
Fig.12  Measurement results of (a) x-polarized incident wave, (b) y-polarized incident wave, (c) PCR, (d) S11 and RCS reduction.
1 Fang B. , Feng D. , Chen P. , Shi L. , Cai J. , Li J. , Li C. , Hong Z. , Jing X. . Broadband cross-circular polarization carpet cloaking based on a phase change material metasurface in the mid-infrared region. Front. Phys., 2022, 17(5): 53502
https://doi.org/10.1007/s11467-021-1148-8
2 Ding J. , An S. , Zheng B. , Zhang H. . Multiwavelength metasurfaces based on single-layer dual-wavelength metaatoms: Toward complete phase and amplitude modulations at two wavelengths. Adv. Opt. Mater., 2017, 5(10): 1700079
https://doi.org/10.1002/adom.201700079
3 Bao L. , Y. Wu R. , Fu X. , J. Cui T. . Mathematical operations of transmissive near fields controlled by metasurface with phase and amplitude modulations. Ann. Phys., 2020, 532(6): 2000069
https://doi.org/10.1002/andp.202000069
4 C. Overvig A. , Shrestha S. , C. Malek S. , Lu M. , Stein A. , Zheng C. , Yu N. . Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl., 2019, 8(1): 92
https://doi.org/10.1038/s41377-019-0201-7
5 Wu T. , Zhang X. , Xu Q. , Plum E. , Chen K. , Xu Y. , Lu Y. , Zhang H. , Zhang Z. , Chen X. , Ren G. , Niu L. , Tian Z. , Han J. , Zhang W. . Dielectric metasurfaces for complete control of phase, amplitude, and polarization. Adv. Opt. Mater., 2022, 10(1): 2101223
https://doi.org/10.1002/adom.202101223
6 Y. Song Z. , Q. Chu Q. , P. Shen X. , H. Liu Q. . Wideband high-efficient linear polarization rotators. Front. Phys., 2018, 13(5): 137803
https://doi.org/10.1007/s11467-018-0779-x
7 Huang X. , Ma X. , Li X. , Fan J. , Guo L. , Yang H. . Simultaneous realization of polarization conversion for reflected and transmitted waves with bi-functional metasurface. Sci. Rep., 2022, 12(1): 2368
https://doi.org/10.1038/s41598-022-06366-6
8 Zeng F. , Ye L. , Li L. , Wang Z. , Zhao W. , Zhang Y. . Tunable mid-infrared dual-band and broadband crosspolarization converters based on U-shaped graphene metamaterials. Opt. Express, 2019, 27(23): 33826
https://doi.org/10.1364/OE.27.033826
9 Wang Y. , Qi F. , Liu Z. , Liu P. , Li W. . Ultrathin and flexible reflective polarization converter based on metasurfaces with overlapped arrays. IEEE Antennas Wirel. Propag. Lett., 2020, 19(12): 2512
https://doi.org/10.1109/LAWP.2020.3037907
10 Loncar J. , Grbic A. , Hrabar S. . A reflective polarization converting metasurface at X-band frequencies. IEEE Trans. Antenn. Propag., 2018, 66(7): 3213
https://doi.org/10.1109/TAP.2018.2816784
11 Zheng Q. , Guo C. , Ding J. . Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion. IEEE Antennas Wirel. Propag. Lett., 2018, 17(8): 1459
https://doi.org/10.1109/LAWP.2018.2849352
12 Huang X. , Yang H. , Zhang D. , Luo Y. . Ultrathin dualband metasurface polarization converter. IEEE Trans. Antenn. Propag., 2019, 67(7): 4636
https://doi.org/10.1109/TAP.2019.2911377
13 Huang X. , Gao H. , He J. , Li X. , Li X. , Fan J. , Guo L. . Broadband linear polarizer with high-efficient asymmetric transmission using a chiral metasurface. AEU Int. J. Electron. Commun., 2022, 152: 154244
https://doi.org/10.1016/j.aeue.2022.154244
14 Yu N. , Genevet P. , A. Kats M. , Aieta F. , P. Tetienne J. , Capasso F. , Gaburro Z. . Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science, 2011, 334(6054): 333
https://doi.org/10.1126/science.1210713
15 Yue F. , Wen D. , Xin J. , D. Gerardot B. , Li J. , Chen X. . Vector vortex beam generation with a single plasmonic metasurface. ACS Photon., 2016, 3(9): 1558
https://doi.org/10.1021/acsphotonics.6b00392
16 Feng M. , Tian X. , Wang J. , Yin M. , Qu S. , Li D. . Broadband abnormal reflection based on a metal-backed gradient index liquid slab: An alternative to metasurfaces. J. Phys. D Appl. Phys., 2015, 48(24): 245501
https://doi.org/10.1088/0022-3727/48/24/245501
17 Xu Z. , Li Z. , Tian Y. , Wei Y. , Wu F. . Highly efficient bifunctional dielectric metasurfaces at visible wavelength: Beam focusing and anomalous refraction in highorder modes. Front. Phys., 2020, 8: 575824
https://doi.org/10.3389/fphy.2020.575824
18 U. Lee Y. , Ozerov I. , Bedu F. , S. Kim J. , Fages F. , W. Wu J. . Optical spin-dependent beam separation in cyclic group symmetric metasurface. Nanophotonics, 2020, 9(10): 3459
https://doi.org/10.1515/nanoph-2020-0160
19 Wu X. , Cao H. , Meng Z. , Sun Z. . Ultra-broadband Pancharatnam−Berry phase metasurface for arbitrary rotation of linear polarization and beam splitter. Opt. Express, 2022, 30(9): 15158
https://doi.org/10.1364/OE.456393
20 Leitis A. , Heßler A. , Wahl S. , Wuttig M. , Taubner T. , Tittl A. , Altug H. . All-dielectric programmable Huygens’ metasurfaces. Adv. Funct. Mater., 2020, 30(19): 1910259
https://doi.org/10.1002/adfm.201910259
21 Wang Z. , Dong S. , Luo W. , Jia M. , Liang Z. , He Q. , Sun S. , Zhou L. . High-efficiency generation of Bessel beams with transmissive metasurfaces. Appl. Phys. Lett., 2018, 112(19): 191901
https://doi.org/10.1063/1.5023553
22 Liu Y. , Liu C. , Song K. , Li M. , Zhao X. . A broadband high-transmission gradient phase discontinuity metasurface. J. Phys. D Appl. Phys., 2018, 51(9): 095103
https://doi.org/10.1088/1361-6463/aaa92d
23 W. Wu L. , F. Ma H. , Gou Y. , Y. Wu R. , X. Wang Z. , Wang M. , Gao X. , J. Cui T. . High-transmission ultrathin Huygens’ metasurface with 360° phase control by using double-layer transmitarray elements. Phys. Rev. Appl., 2019, 12(2): 024012
https://doi.org/10.1103/PhysRevApplied.12.024012
24 Zhou Q. , Liu M. , Zhu W. , Chen L. , Ren Y. , J. Lezec H. , Lu Y. , Agrawal A. , Xu T. . Generation of perfect vortex beams by dielectric geometric metasurface for visible light. Laser Photon. Rev., 2021, 15(12): 2100390
https://doi.org/10.1002/lpor.202100390
25 Yu F. , Zhao Z. , Chen J. , Wang J. , Jin R. , Chen J. , Wang J. , Li G. , Chen X. , Lu W. . Orthogonal manipulations of phase and phase dispersion in realization of azimuthal angle-resolved focusings. Opt. Express, 2021, 29(26): 43757
https://doi.org/10.1364/OE.446962
26 Pancharatnam S. . Generalized theory of interference, and its applications. Resonance, 2013, 18(4): 387
https://doi.org/10.1007/s12045-013-0054-y
27 Moreno-Peñarrubia A. , Teniente J. , Kuznetsov S. , Orazbayev B. , Beruete M. . Ultrathin and high-efficiency Pancharatnam−Berry phase metalens for millimeter waves. Appl. Phys. Lett., 2021, 118(22): 221105
https://doi.org/10.1063/5.0048907
28 Lin R. , Li X. . Multifocal metalens based on multilayer Pancharatnam−Berry phase elements architecture. Opt. Lett., 2019, 44(11): 2819
https://doi.org/10.1364/OL.44.002819
29 Choudhury S. , Guler U. , Shaltout A. , M. Shalaev V. , V. Kildishev A. , Boltasseva A. . Pancharatnam−Berry phase manipulating metasurface for visible color hologram based on low loss silver thin film. Adv. Opt. Mater., 2017, 5(10): 1700196
https://doi.org/10.1002/adom.201700196
30 Song X. , Huang L. , Sun L. , Zhang X. , Zhao R. , Li X. , Wang J. , Bai B. , Wang Y. . Near-field plasmonic beam engineering with complex amplitude modulation based on metasurface. Appl. Phys. Lett., 2018, 112(7): 073104
https://doi.org/10.1063/1.5013327
31 J. Li S. , Y. Li Z. , S. Huang G. , B. Liu X. , Q. Li R. , Y. Cao X. . Digital coding transmissive metasurface for multi-OAM-beam. Front. Phys., 2022, 17(6): 62501
https://doi.org/10.1007/s11467-022-1179-9
32 X. Xu H. , Hu G. , Wang Y. , Wang C. , Wang M. , Wang S. , Huang Y. , Genevet P. , Huang W. , W. Qiu C. . Polarization-insensitive 3D conformal-skin metasurface cloak. Light Sci. Appl., 2021, 10(1): 75
https://doi.org/10.1038/s41377-021-00507-8
33 Xu H. , Wang Y. , Wang C. , Wang M. , Wang S. , Ding F. , Huang Y. , Zhang X. , Liu H. , Ling X. , Huang W. . Deterministic approach to achieve full-polarization cloak. Research, 2021, 2021: 1
https://doi.org/10.34133/2021/6382172
34 M. Kamali S. , Arbabi E. , Arbabi A. , Faraon A. . A review of dielectric optical metasurfaces for wavefront control. Nanophotonics, 2018, 7(6): 1041
https://doi.org/10.1515/nanoph-2017-0129
35 Liang L. , Qi M. , Yang J. , Shen X. , Zhai J. , Xu W. , Jin B. , Liu W. , Feng Y. , Zhang C. , Lu H. , T. Chen H. , Kang L. , Xu W. , Chen J. , J. Cui T. , Wu P. , Liu S. . Anomalous terahertz reflection and scattering by flexible and conformal coding metamaterials. Adv. Opt. Mater., 2015, 3(10): 1374
https://doi.org/10.1002/adom.201500206
36 Tian Y. , Jing X. , Yu H. , Gan H. , Li C. , Hong Z. . Manipulation of the arbitrary scattering angle based on all-dielectric transmissive Pancharatnam−Berry phase coding metasurfaces in the visible range. Opt. Express, 2020, 28(21): 32107
https://doi.org/10.1364/OE.409509
37 Yang J. , Chen Y. , Jian M. , Dou J. , Fang M. . Capacity improvement in reconfigurable intelligent surface assisted MIMO communications. IEEE Access, 2021, 9: 137460
https://doi.org/10.1109/ACCESS.2021.3113917
38 Pei X. , Yin H. , Tan L. , Cao L. , Li Z. , Wang K. , Zhang K. , Bjornson E. . RIS-aided wireless communications: Prototyping, adaptive beamforming, and indoor/outdoor field trials. IEEE Trans. Commun., 2021, 69(12): 8627
https://doi.org/10.1109/TCOMM.2021.3116151
39 Han J. , Cao X. , Gao J. , Li S. , Yang H. , Zhang C. , Li T. . Broadband dual-circular polarized coding metasurfaces and their powerful manipulation of differently circular polarizations. Opt. Express, 2019, 27(23): 34141
https://doi.org/10.1364/OE.27.034141
40 Li S. , Dong S. , Yi S. , Pan W. , Chen Y. , Guan F. , Guo H. , Wang Z. , He Q. , Zhou L. , Sun S. . Broadband and high-efficiency spin-polarized wave engineering with PB metasurfaces. Opt. Express, 2020, 28(10): 15601
https://doi.org/10.1364/OE.394658
41 Gou Y. , F. Ma H. , W. Wu L. , X. Wang Z. , Xu P. , J. Cui T. . Broadband spin-selective wavefront manipulations based on Pancharatnam−Berry coding metasurfaces. ACS Omega, 2021, 6(44): 30019
https://doi.org/10.1021/acsomega.1c04733
42 Fu C. , Han L. , Liu C. , Lu X. , Sun Z. . Combining Pancharatnam−Berry phase and conformal coding metasurface for dual-band RCS reduction. IEEE Trans. Antenn. Propag., 2022, 70(3): 2352
https://doi.org/10.1109/TAP.2021.3112618
43 Yu G. , Qiu Y. , Li Y. , Wang X. , Wang N. . Underwater acoustic stealth by a broadband 2-bit coding metasurface. Phys. Rev. Appl., 2021, 15(6): 064064
https://doi.org/10.1103/PhysRevApplied.15.064064
44 X. Xu H. , Zhang L. , Kim Y. , M. Wang G. , K. Zhang X. , Sun Y. , Ling X. , Liu H. , Chen Z. , W. Qiu C. . Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility. Adv. Opt. Mater., 2018, 6(10): 1800010
https://doi.org/10.1002/adom.201800010
45 Li X. , Feng M. , Wang J. , Meng Y. , Yang J. , Liu T. , Zhu R. , Qu S. . Suppressing edge back-scattering of electromagnetic waves using coding metasurface purfle. Front. Phys. (Lausanne), 2020, 8: 578295
https://doi.org/10.3389/fphy.2020.578295
46 Murugesan A. , T. Selvan K. , Iyer A. , V. Srivastava K. , Alphones A. . A review of metasurface-assisted RCS reduction techniques. Prog. Electromagn. Res. B Pier B, 2021, 94: 75
https://doi.org/10.2528/PIERB21081401
47 X. Xu H. , Ma S. , Ling X. , K. Zhang X. , Tang S. , Cai T. , Sun S. , He Q. , Zhou L. . Deterministic approach to achieve broadband polarization-independent diffusive scatterings based on metasurfaces. ACS Photon., 2018, 5(5): 1691
https://doi.org/10.1021/acsphotonics.7b01036
48 Bao G. , Lai J. . Optimal shape design of a cavity for radar cross section reduction. SIAM J. Contr. Optim., 2014, 52(4): 2122
https://doi.org/10.1137/130905708
49 T. Zhao Y. , Chen B. , Wu B. . Miniaturized periodicity broadband absorber with via-based hybrid metal-graphene structure for large-angle RCS reduction. IEEE Trans. Antenn. Propag., 2022, 70(4): 2832
https://doi.org/10.1109/TAP.2021.3125384
50 Q. Lin B. , X. Guo J. , Chu P. , J. Huo W. , Xing Z. , G. Huang B. , Wu L. . Multiple-band linear-polarization conversion and circular polarization in reflection mode using a symmetric anisotropic metasurface. Phys. Rev. Appl., 2018, 9(2): 024038
https://doi.org/10.1103/PhysRevApplied.9.024038
51 Y. Modi A. , A. Balanis C. , R. Birtcher C. , N. Shaman H. . Novel design of ultrabroadband radar cross section reduction surfaces using artificial magnetic conductors. IEEE Trans. Antenn. Propag., 2017, 65(10): 5406
https://doi.org/10.1109/TAP.2017.2734069
52 Zhang J. , Yang L. , Li L. , Zhang T. , Li H. , Wang Q. , Hao Y. , Lei M. , Bi K. . High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection. J. Appl. Phys., 2017, 122(1): 014501
https://doi.org/10.1063/1.4991505
53 Zheng Q. , Guo C. , Ding J. . Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion. IEEE Antennas Wirel. Propag. Lett., 2018, 17(8): 1459
https://doi.org/10.1109/LAWP.2018.2849352
54 Science P. , Engineering E. , Technology I. , Electromagnetics A. , Science I. . Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Opt. Express, 2018, 26(16): 20913
https://doi.org/10.1364/OE.26.020913
55 K. T. Nguyen T. , M. Nguyen T. , Q. Nguyen H. , N. Cao T. , T. Le D. , K. Bui X. , T. Bui S. , L. Truong C. , L. Vu D. , Q. H. Nguyen T. . Simple design of efficient broadband multifunctional polarization converter for Xband applications. Sci. Rep., 2021, 11(1): 2032
https://doi.org/10.1038/s41598-021-81586-w
56 Cheng Y. , Wu C. , Ge C. , Yang J. , Pei X. , Jia F. , Gong R. . An ultra-thin dual-band phase-gradient metasurface using hybrid resonant structures for backward RCS reduction. Appl. Phys. B, 2017, 123(5): 143
https://doi.org/10.1007/s00340-017-6728-5
57 Zheng Q. , Li Y. , Zhang J. , Ma H. , Wang J. , Pang Y. , Han Y. , Sui S. , Shen Y. , Chen H. , Qu S. . Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam−Berry phase. Sci. Rep., 2017, 7(1): 43543
https://doi.org/10.1038/srep43543
58 Zhang W. , Liu Y. , Gong S. , Wang J. , Jiang Y. . Wideband RCS reduction of a slot array antenna using phase gradient metasurface. IEEE Antennas Wirel. Propag. Lett., 2018, 17(12): 2193
https://doi.org/10.1109/LAWP.2018.2870863
59 Fu C. , Han L. , Liu C. , Sun Z. , Lu X. . Dual-band polarization conversion metasurface for RCS reduction. IEEE Trans. Antenn. Propag., 2021, 69(5): 3044
https://doi.org/10.1109/TAP.2020.3028148
60 Sharma A. , Ghosh S. , V. Srivastava K. . A polarization-insensitive band-notched absorber for radar cross section reduction. IEEE Antennas Wirel. Propag. Lett., 2021, 20(2): 259
https://doi.org/10.1109/LAWP.2020.3047643
61 Liu X. , Gao J. , Xu L. , Cao X. , Zhao Y. , Li S. . A coding diffuse metasurface for RCS reduction. IEEE Antennas Wirel. Propag. Lett., 2017, 16: 724
https://doi.org/10.1109/LAWP.2016.2601108
62 Yuan F. , M. Wang G. , X. Xu H. , Cai T. , J. Zou X. , H. Pang Z. . Broadband RCS reduction based on spiral-coded metasurface. IEEE Antennas Wirel. Propag. Lett., 2017, 16: 3188
https://doi.org/10.1109/LAWP.2017.2768129
63 H. Kim S. , J. Yoon Y. . Wideband radar cross-section reduction on checkerboard metasurfaces with surface wave suppression. IEEE Antennas Wirel. Propag. Lett., 2019, 18(5): 896
https://doi.org/10.1109/LAWP.2019.2905012
[1] Si Jia Li, Zhuo Yue Li, Guo Shai Huang, Xiao Bin Liu, Rui Qi Li, Xiang Yu Cao. Digital coding transmissive metasurface for multi-OAM-beam[J]. Front. Phys. , 2022, 17(6): 62501-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed