Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (5) : 52306    https://doi.org/10.1007/s11467-023-1300-8
RESEARCH ARTICLE
Magnetic-field-sensitive multi-wave interference
Wenhua Yan1, Xudong Ren1, Wenjie Xu1(), Zhongkun Hu1,2, Minkang Zhou1
1. MOE Key Laboratory of Fundamental Physical Quantities Measurements, Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
2. Wuhan Institute of Quantum Technology, Wuhan 430206, China
 Download: PDF(4522 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We report an experimental study of magnetic-field-sensitive multi-wave interference, realized in a three-wave RF-atom system. In the F = 1 hyperfine level of the 87Rb52S1/2 ground state, Ramsey fringes were observed via the spin-selective Raman detection. A decrease in the fringe contrast was observed with increasing free evolution time. The maximum evolution time for observable fringe contrasts was investigated at different atom temperatures, under free-falling and trapped conditions. As the main interest of the Ramsey method, the improvement in magnetic field resolution is observed with an increase of evolution time T up to 3 ms and with the measurement resolution reaching 0.85 nT. This study paves the way for precision magnetic field measurements based on cold atoms.

Keywords atom interferometer      magnetometer      cold atom device      multi-wave interference     
Corresponding Author(s): Wenjie Xu   
Issue Date: 07 June 2023
 Cite this article:   
Wenhua Yan,Xudong Ren,Wenjie Xu, et al. Magnetic-field-sensitive multi-wave interference[J]. Front. Phys. , 2023, 18(5): 52306.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1300-8
https://academic.hep.com.cn/fop/EN/Y2023/V18/I5/52306
Fig.1  Experimental sequence of the Ramsey interference in the three-wave system. Raman spin-selective detection is used to read the population in spin states.
Fig.2  (a) Global view and (b) detailed view of the atomic interference magnetometer integrated into a BEC gravimeter.
Fig.3  Raman spectrum of the initial state. Solid lines are the Gaussian fits representing the relative ratio in the spin states.
Fig.4  RF frequency scan for the resonant transition frequency.
Fig.5  Rabi oscillation initialized and observed in |1,0? state.
Fig.6  Interference fringes observed on the three spin states.
Fig.7  Ramsey fringes with different evolution times. The dashed line indicates the overlapped fringe center.
Fig.8  Fringes with the increase of evolution time.
Fig.9  Fringe contrast decay with different temperatures of atoms under free falling condition.
Fig.10  Fringe contrast decay with different temperatures of atoms under OCDT trapped condition.
Fig.11  Phase resolution σ? and magnetic field resolution σB in different evolution time T.
1 F. Ramsey N. . A molecular beam resonance method with separated oscillating fields. Phys. Rev., 1950, 78(6): 695
https://doi.org/10.1103/PhysRev.78.695
2 P. Heavner T. , A. Donley E. , Levi F. , Costanzo G. , E. Parker T. , H. Shirley J. , Ashby N. , Barlow S. , R. Jefferts S. . First accuracy evaluation of NIST-F2. Metrologia, 2014, 51(3): 174
https://doi.org/10.1088/0026-1394/51/3/174
3 Guena J. , Abgrall M. , Rovera D. , Laurent P. , Chupin B. , Lours M. , Santarelli G. , Rosenbusch P. , E. Tobar M. , Li Ruoxin , Gibble K. , Clairon A. , Bize S. . Progress in atomic fountains at LNE-SYRTE. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2012, 59(3): 391
https://doi.org/10.1109/TUFFC.2012.2208
4 Gerginov V. , Nemitz N. , Weyers S. , Schröder R. , Griebsch D. , Wynands R. . Uncertainty evaluation of the caesium fountain clock PTB-CSF2. Metrologia, 2010, 47(1): 65
https://doi.org/10.1088/0026-1394/47/1/008
5 Sadgrove M. , Eto Y. , Sekine S. , Suzuki H. , Hirano T. . Ramsey interferometry using the Zeeman sublevels in a spin-2 Bose gas. J. Phys. Soc. Jpn., 2013, 82(9): 094002
https://doi.org/10.7566/JPSJ.82.094002
6 Chen L. , Zhang K. , Xu Y. , Luo Q. , Xu W. , Zhou M. , Hu Z. . Multi-wave atom interferometer based on Doppler-insensitive Raman transition. Opt. Express, 2020, 28(6): 8463
https://doi.org/10.1364/OE.387086
7 I. Herrera, P. Lombardi, F. Schäfer , F. S. Cataliotti. Petrovic . A multi-state interferometer on an atom chip. New J. Phys., 2013, 15(4): 043002
https://doi.org/10.1088/1367-2630/15/4/043002
8 Robert-de-Saint-Vincent M. , P. Brantut J. , J. Bordé C. , Aspect A. , Bourdel T. , Bouyer P. . A quantum trampoline for ultra-cold atoms. Europhys. Lett., 2010, 89(1): 10002
https://doi.org/10.1209/0295-5075/89/10002
9 Gustavsson M. , Haller E. , J. Mark M. , G. Danzl J. , Hart R. , J. Daley A. , C. Nägerl H. . Interference of interacting matter waves. New J. Phys., 2010, 12(6): 065029
https://doi.org/10.1088/1367-2630/12/6/065029
10 K. Zhou M. , Zhang K. , C. Duan X. , Ke Y. , G. Shao C. , K. Hu Z. . Atomic multiwave interferometer for Aharonov−Casher-phase measurements. Phys. Rev. A, 2016, 93(2): 023641
https://doi.org/10.1103/PhysRevA.93.023641
11 Di Domenico G. , Saudan H. , Bison G. , Knowles P. , Weis A. . Sensitivity of double-resonance alignment magnetometers. Phys. Rev. A, 2007, 76(2): 023407
https://doi.org/10.1103/PhysRevA.76.023407
12 Knappe S. , D. D. Schwindt P. , Gerginov V. , Shah V. , Liew L. , Moreland J. , G. Robinson H. , Hollberg L. , Kitching J. . Microfabricated atomic clocks and magnetometers. J. Opt. A, 2006, 8(7): S318
https://doi.org/10.1088/1464-4258/8/7/S04
13 D. D. Schwindt P. , Knappe S. , Shah V. , Hollberg L. , Kitching J. , A. Liew L. , Moreland J. . Chip-scale atomic magnetometer. Appl. Phys. Lett., 2004, 85(26): 6409
https://doi.org/10.1063/1.1839274
14 Li J. , Quan W. , Zhou B. , Wang Z. , Lu J. , Hu Z. , Liu G. , Fang J. . SERF atomic magnetometer – recent advances and applications: A review. IEEE Sens. J., 2018, 18(20): 8198
https://doi.org/10.1109/JSEN.2018.2863707
15 Budker D. , Romalis M. . Optical magnetometry. Nat. Phys., 2007, 3(4): 227
https://doi.org/10.1038/nphys566
16 W. Mitchell M. , P. Alvarez S. . Quantum limits to the energy resolution of magnetic field sensors. Rev. Mod. Phys., 2020, 92(2): 021001
https://doi.org/10.1103/RevModPhys.92.021001
17 Zhao W. , Qian W. , Lv D. , Wei R. . Improvement of average magnetic field measurement based on magnetic-field-sensitive Ramsey fringes. Opt. Lett., 2022, 47(8): 2073
https://doi.org/10.1364/OL.455269
18 Wang W. , Dong R. , Wei R. , Lin J. , Zou F. , Chen T. , Wang Y. . Measuring magnetic field vector by stimulated Raman transitions. Appl. Phys. Lett., 2016, 108(12): 122401
https://doi.org/10.1063/1.4944700
19 Shi C. , Wei R. , Zhou Z. , Lv D. , Li T. , Wang Y. . Magnetic field measurement on 87Rb atomic fountain clock. Chin. Opt. Lett., 2010, 8: 549
https://doi.org/10.3788/COL20100806.0549
20 Peters A. , Y. Chung K. , Chu S. . High-precision gravity measurements using atom interferometry. Metrologia, 2001, 38(1): 25
https://doi.org/10.1088/0026-1394/38/1/4
21 K. Hu Z. , L. Sun B. , C. Duan X. , K. Zhou M. , L. Chen L. , Zhan S. , Z. Zhang Q. , Luo J. . Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys. Rev. A, 2013, 88(4): 043610
https://doi.org/10.1103/PhysRevA.88.043610
22 Y. Wang Z. , Chen T. , L. Wang X. , Zhang Z. , F. Xu Y. , Lin Q. . A precision analysis and determination of the technical requirements of an atom interferometer for gravity measurement. Front. Phys. China, 2009, 4(2): 174
https://doi.org/10.1007/s11467-009-0017-7
23 Wang J. , Zhou L. , B. Li R. , Liu M. , S. Zhan M. . Cold atom interferometers and their applications in precision measurements. Front. Phys. China, 2009, 4(2): 179
https://doi.org/10.1007/s11467-009-0045-3
24 Gautier R. , Guessoum M. , A. Sidorenkov L. , Bouton Q. , Landragin A. , Geiger R. . Accurate measurement of the Sagnac effect for matter waves. Sci. Adv., 2022, 8(23): eabn8009
https://doi.org/10.1126/sciadv.abn8009
25 J. Xu W. , Cheng L. , Liu J. , Zhang C. , Zhang K. , Cheng Y. , Gao Z. , S. Cao L. , C. Duan X. , K. Zhou M. , K. Hu Z. . Effects of wave-front tilt and air density fluctuations in a sensitive atom interferometry gyroscope. Opt. Express, 2020, 28(8): 12189
https://doi.org/10.1364/OE.391780
26 W. Yao Z. , B. Lu S. , B. Li R. , Luo J. , Wang J. , S. Zhan M. . Calibration of atomic trajectories in a large-area dual-atom-interferometer gyroscope. Phys. Rev. A, 2018, 97(1): 013620
https://doi.org/10.1103/PhysRevA.97.013620
27 Alauze X. , Bonnin A. , Solaro C. , P. D. Santos F. . A trapped ultracold atom force sensor with a μm-scale spatial resolution. New J. Phys., 2018, 20(8): 083014
https://doi.org/10.1088/1367-2630/aad716
28 Bennett R. , H. J. O’Dell D. . Revealing short-range non-Newtonian gravity through Casimir–Polder shielding. New J. Phys., 2019, 21(3): 033032
https://doi.org/10.1088/1367-2630/ab0ca6
29 Wolf P. , Lemonde P. , Lambrecht A. , Bize S. , Landragin A. , Clairon A. . From optical lattice clocks to the measurement of forces in the Casimir regime. Phys. Rev. A, 2007, 75(6): 063608
https://doi.org/10.1103/PhysRevA.75.063608
30 Dimopoulos S. , A. Geraci A. . Probing submicron forces by interferometry of Bose−Einstein condensed atoms. Phys. Rev. D, 2003, 68(12): 124021
https://doi.org/10.1103/PhysRevD.68.124021
31 B. Deng X. , Y. Xu Y. , C. Duan X. , K. Hu Z. . Precisely mapping the absolute magnetic field in vacuum by an optical ramsey atom interferometer. Phys. Rev. Appl., 2021, 15(5): 054062
https://doi.org/10.1103/PhysRevApplied.15.054062
32 Zhang H. , Ren X. , Yan W. , Cheng Y. , Zhou H. , Gao Z. , Luo Q. , Zhou M. , Hu Z. . Effects related to the temperature of atoms in an atom interferometry gravimeter based on ultra-cold atoms. Opt. Express, 2021, 29(19): 30007
https://doi.org/10.1364/OE.433968
33 Yan W. , Ren X. , Zhou M. , Hu Z. . Precision magnetic field sensing with dual multi-wave atom interferometer. Sensors (Basel), 2022, 23(1): 173
https://doi.org/10.3390/s23010173
34 Reinhard F., Design and construction of an atomic clock on an atom chip, Thesis, Université Pierre et Marie Curie-Paris VI, 2009
35 Eto Y. , Sadgrove M. , Hasegawa S. , Saito H. , Hirano T. . Control of spin current in a Bose gas by periodic application of π pulses. Phys. Rev. A, 2014, 90(1): 013626
https://doi.org/10.1103/PhysRevA.90.013626
36 Fattori M. , D’Errico C. , Roati G. , Zaccanti M. , Jona-Lasinio M. , Modugno M. , Inguscio M. , Modugno G. . Atom interferometry with a weakly interacting Bose−Einstein condensate. Phys. Rev. Lett., 2008, 100(8): 080405
https://doi.org/10.1103/PhysRevLett.100.080405
37 Fattori M. , Koch T. , Goetz S. , Griesmaier A. , Hensler S. , Stuhler J. , Pfau T. . Demagnetization cooling of a gas. Nat. Phys., 2006, 2(11): 765
https://doi.org/10.1038/nphys443
38 Hensler S. , Greiner A. , Stuhler J. , Pfau T. . Depolarisation cooling of an atomic cloud. Europhys. Lett., 2005, 71(6): 918
https://doi.org/10.1209/epl/i2005-10181-4
39 Widera A. , Gerbier F. , Fölling S. , Gericke T. , Mandel O. , Bloch I. . Precision measurement of spin-dependent interaction strengths for spin-1 and spin-2 87Rb atoms. New J. Phys., 2006, 8(8): 152
https://doi.org/10.1088/1367-2630/8/8/152
40 Schmaljohann H. , Erhard M. , Kronjäger J. , Kottke M. , van Staa S. , Cacciapuoti L. , J. Arlt J. , Bongs K. , Sengstock K. . Dynamics of F = 2 Spinor Bose−Einstein condensates. Phys. Rev. Lett., 2004, 92(4): 040402
https://doi.org/10.1103/PhysRevLett.92.040402
41 Kuwamoto T. , Araki K. , Eno T. , Hirano T. . Magnetic field dependence of the dynamics of 87Rb spin-2 Bose−Einstein condensates. Phys. Rev. A, 2004, 69(6): 063604
https://doi.org/10.1103/PhysRevA.69.063604
42 T. Xu X. , Y. Wang Z. , H. Jiao R. , R. Yi C. , Sun W. , Chen S. . Ultra-low noise magnetic field for quantum gases. Rev. Sci. Instrum., 2019, 90(5): 054708
https://doi.org/10.1063/1.5087957
43 Merkel B. , Thirumalai K. , E. Tarlton J. , M. Schäfer V. , J. Ballance C. , P. Harty T. , M. Lucas D. . Magnetic field stabilization system for atomic physics experiments. Rev. Sci. Instrum., 2019, 90(4): 044702
https://doi.org/10.1063/1.5080093
44 Riehle F., Frequency Standards: Basics and Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004
45 C. J. Gan H. , Maslennikov G. , W. Tseng K. , R. Tan T. , Kaewuam R. , J. Arnold K. , Matsukevich D. , D. Barrett M. . Oscillating-magnetic-field effects in high-precision metrology. Phys. Rev. A, 2018, 98(3): 032514
https://doi.org/10.1103/PhysRevA.98.032514
[1] Jin WANG (王谨), Lin ZHOU (周林), Run-bing LI (李润兵), Min LIU (刘敏), Ming-sheng ZHAN (詹明生). Cold atom interferometers and their applications in precision measurements[J]. Front. Phys. , 2009, 4(2): 179-189.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed