Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2023, Vol. 18 Issue (6) : 64302    https://doi.org/10.1007/s11467-023-1318-y
RESEARCH ARTICLE
Taiji data challenge for exploring gravitational wave universe
Zhixiang Ren1,2, Tianyu Zhao1,3,2, Zhoujian Cao1,3,4(), Zong-Kuan Guo1,5,6,4, Wen-Biao Han1,4,7,8,9,10, Hong-Bo Jin1,11,8, Yue-Liang Wu1,5,4,9()
1. Taiji Laboratory for Gravitational Wave Universe, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
2. Peng Cheng Laboratory, Shenzhen 518055, China
3. Department of Astronomy, Beijing Normal University, Beijing 100875, China
4. School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
5. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
6. School of Physical Sciences, UCAS, Beijing 100049, China
7. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China
8. School of Astronomy and Space Science, UCAS, Beijing 100049, China
9. International Centre for Theoretical Physics Asia-Pacific (ICTP-AP, UNESCO), UCAS, Beijing 100190, China
10. Shanghai Frontiers Science Center for Gravitational Wave Detection, Shanghai 200240, China
11. Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Beijing 100101, China
 Download: PDF(8655 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The direct observation of gravitational waves (GWs) opens a new window for exploring new physics from quanta to cosmos and provides a new tool for probing the evolution of universe. GWs detection in space covers a broad spectrum ranging over more than four orders of magnitude and enables us to study rich physical and astronomical phenomena. Taiji is a proposed space-based gravitational wave (GW) detection mission that will be launched in the 2030s. Taiji will be exposed to numerous overlapping and persistent GW signals buried in the foreground and background, posing various data analysis challenges. In order to empower potential scientific discoveries, the Mock Laser Interferometer Space Antenna (LISA) data challenge and the LISA data challenge (LDC) were developed. While LDC provides a baseline framework, the first LDC needs to be updated with more realistic simulations and adjusted detector responses for Taiji’s constellation. In this paper, we review the scientific objectives and the roadmap for Taiji, as well as the technical difficulties in data analysis and the data generation strategy, and present the associated data challenges. In contrast to LDC, we utilize second-order Keplerian orbit and second-generation time delay interferometry techniques. Additionally, we employ a new model for the extreme-mass-ratio inspiral waveform and stochastic GW background spectrum, which enables us to test general relativity and measure the non-Gaussianity of curvature perturbations. Furthermore, we present a comprehensive showcase of parameter estimation using a toy dataset. This showcase not only demonstrates the scientific potential of the Taiji data challenge (TDC) but also serves to validate the effectiveness of the pipeline. As the first data challenge for Taiji, we aim to build an open ground for data analysis related to Taiji sources and sciences. More details can be found on the official website (taiji-tdc.ictp-ap.org).

Keywords gravitational wave      universe evolution      Taiji      data challenge     
Corresponding Author(s): Zhoujian Cao,Yue-Liang Wu   
Issue Date: 10 August 2023
 Cite this article:   
Zhixiang Ren,Tianyu Zhao,Zhoujian Cao, et al. Taiji data challenge for exploring gravitational wave universe[J]. Front. Phys. , 2023, 18(6): 64302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1318-y
https://academic.hep.com.cn/fop/EN/Y2023/V18/I6/64302
No.Scientific objective
1 Dynamical evolution and population of MBHBs, study the birth and growth of MBHs, and the astrophysical environment of the host galaxy
2 Precisely estimate parameters of MBH, reveals the physical nature of BHs, probe dynamics of galactic nuclei, and the astrophysical environment at the galaxy center by EMRI
3 Formation evolution and population of Galaxy binaries
4 Study SOBHB formation, environment, population, and joint observation with LIGO
5 Test GR, study the properties of GW propagation
6 GW cosmology, i.e., measurement of the Hubble constant and cosmology constant
7 PSD shape and upper limit of SGWB signals
8 Detect unmodeled signals
9 New physics and cosmology beyond GR
Tab.1  Scientific objectives of Taiji mission.
No.Technical challenges
1 Foreground GB signals separation
2 SOBBH signals separation
3 Others signal with non-Gaussian GB noise
4 Overlapping MBHB signals
5 Instrumental glitches
6 Data gap due to maintenance, telescope re-alignment, and communication issue
7 TDI technique to suppress laser frequency noise
Tab.2  Technical challenges of Taiji mission.
Fig.1  Time-domain data of all the TDC datasets. The strain of TDI X channel data and signals are presented. (a) TDC-1, the MBHB signal is zoomed in because of its duration. (b, c) TDC-2-1 and TDC-2-2. (d) TDC-3. (e) TDC-4. (f) TDC-5. (g, h) TDC-6-1 and TDC-6-2. (i) TDC-7, signals No. 8 and No. 9 are zoomed in due to the closeness of their coalescence time.
Fig.2  Frequency domain data of all the TDC datasets. The PSD of TDI X channel data and signals are compared with the noise PSD. (a) TDC-1. (b, c) TDC-2-1 and TDC-2-2. (d) TDC-3. (e) TDC-4. (f) TDC-5. (g, h) TDC-6-1 and TDC-6-2. (i) TDC-7.
No. MT(M) q s1 s2 DL(Gpc) ι ψ λ β tc(yr) ?c
1 1.2×106 0.3 0.1 0.2 53.39 2π/3 π/3 π/10 π/8 0.2 1
2 1.8×106 0.8 0.14 0.12 16.02 π π/3 π/15 5π/4 0.4 0.05
3 2.4×106 0.4 0.18 0.08 21.36 5π/6 π/3 π/20 7π/4 0.6 0.1
4 1.5×106 0.7 0.14 0.8 53.39 π/3 π/3 π/25 3π/4 0.8 0.15
5 6×105 0.5 0.2 0.4 53.39 π/3 π/3 π/5 π/4 1 0.5
6 1.2×106 0.6 0.1 0.6 106.78 π/6 2π/3 π/30 5π/4 1.2 0.35
7 2.4×106 0.1 0.22 0.48 16.02 4π/15 5π/3 π/35 π/8 1.4 0.45
8 1.2×106 0.05 0.16 0.28 26.69 13π/30 π/3 2π/5 π/12 1.6 1
9 1.8×106 0.5 0.02 0.08 32.03 14π/30 π/3 3π/5 11π/40 1.601 0.4
10 1.2×107 1 0.06 0.08 10.68 π/3 π/3 6π/5 π/4 1.8 0.5
Tab.3  Parameters of MBHB signals used in TDC-1 and TDC-7.
Name Scientific objective Technical challenge Signals Waveform model
TDC-1 1, 5, 6 7 1 MBHB signal SEOBNRv4_opt
TDC-2-1 2, 5, 6 7 1 EMRI signal PN5AAK
TDC-2-2 2, 5, 6 7 1 EMRI signal XSPEG
TDC-3 3, 5, 6 7 43 VGB signals Sinusoidal
TDC-4 3, 5, 6 1, 7 3×107 GB signals Sinusoidal
TDC-5 4, 5, 6 2, 7 2×105 SOBBH signals IMRPhenomD
TDC-6-1 5, 6, 7 7 SGWB Power-law
TDC-6-2 5, 6, 7 7 SGWB Non-Gaussian curvature perturbations
TDC-7 1, 3, 5, 6 1, 3, 7 10 MBHBs, 43 VGBs, 3×107GBs SEOBNRv4_opt, Sinusoidal
Tab.4  Summary of Taiji data challenge datasets.
Fig.3  MCMC posterior corner plot for the toy dataset. The MCMC posterior analysis is conducted on our toy dataset, utilizing the following source parameter values: (A,f,f˙,λ,β,ι,?0,ψ)=(2.008192×10?23,0.00459585,1.469823×10?16,4.604082,?0.052144,0.39811,1.8777623071795864,2.927109). The posterior distribution is represented by the dark cyan color, while the true parameter values are indicated by the red lines.
1 P. Abbott B. , (LIGO Scientific Collaboration . , Collaboration) Virgo . et al.. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, 116(6): 061102
https://doi.org/10.1103/PhysRevLett.116.061102
2 LIGO Scientific Collaboration TheVirgo Collaboration theKAGRA Collaboration the, et al.., GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run, arXiv: 2111.03606 (2021)
3 González G. , Viceré A. , Wen L. . Gravitational wave astronomy. Front. Phys., 2013, 8(6): 771
https://doi.org/10.1007/s11467-013-0329-5
4 Matichard F. , Lantz B. , Mittleman R. , Mason K. , Kissel J. . et al.. Seismic isolation of advanced LIGO: Review of strategy, instrumentation and performance. Class. Quantum Gravity, 2015, 32(18): 185003
https://doi.org/10.1088/0264-9381/32/18/185003
5 Amaro-Seoane P., et al.., Laser interferometer space antenna, arXiv: 1702.00786 (2017)
6 Gong X. , Xu S. , Bai S. , Cao Z. , Chen G. , Chen Y. , He X. , Heinzel G. , K. Lau Y. , Liu C. , Luo J. , Luo Z. , P. Patón A. , Rüdiger A. , Shao M. , Spurzem R. , Wang Y. , Xu P. , C. Yeh H. , Yuan Y. , Zhou Z. . A scientific case study of an advanced LISA mission. Class. Quantum Gravity, 2011, 28(9): 094012
https://doi.org/10.1088/0264-9381/28/9/094012
7 Luo Z. , Wang Y. , Wu Y. , Hu W. , Jin G. . The Taiji program: A concise overview. Prog. Theor. Exp. Phys., 2021, 2021(5): 05A108
https://doi.org/10.1093/ptep/ptaa083
8 L. Wu Y., in: Presentation to 1st eLISA Consortium Meeting (2012)
9 Q. Li Y. , R. Luo Z. , S. Liu H. , H. Dong Y. , Jin G. . Laser interferometer used for satellite—satellite tracking: An on-ground methodological demonstration. Chin. Phys. Lett., 2012, 29(7): 079501
https://doi.org/10.1088/0256-307X/29/7/079501
10 S. Liu H. , H. Dong Y. , Q. Li Y. , R. Luo Z. , Jin G. . The evaluation of phasemeter prototype performance for the space gravitational waves detection. Rev. Sci. Instrum., 2014, 85(2): 024503
https://doi.org/10.1063/1.4865121
11 H. Dong Y. , S. Liu H. , R. Luo Z. , Q. Li Y. , Jin G. . Methodological demonstration of laser beam pointing control for space gravitational wave detection missions. Rev. Sci. Instrum., 2014, 85(7): 074501
https://doi.org/10.1063/1.4891037
12 Q. Li Y. , R. Luo Z. , S. Liu H. , H. Dong Y. , Jin G. . Path-length measurement performance evaluation of polarizing laser interferometer prototype. Appl. Phys. B, 2015, 118(2): 309
https://doi.org/10.1007/s00340-014-5987-7
13 R. Hu W. , L. Wu Y. . The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev., 2017, 4(5): 685
https://doi.org/10.1093/nsr/nwx116
14 Luo Z. , Guo Z. , Jin G. , Wu Y. , Hu W. . A brief analysis to Taiji: Science and technology. Results Phys., 2020, 16: 102918
https://doi.org/10.1016/j.rinp.2019.102918
15 Luo Z. , Wang Q. , Mahrdt C. , Goerth A. , Heinzel G. . Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission. Appl. Opt., 2017, 56(5): 1495
https://doi.org/10.1364/AO.56.001495
16 Luo Z. , Liu H. , Jin G. . The recent development of interferometer prototype for Chinese gravitational wave detection pathfinder mission. Opt. Laser Technol., 2018, 105: 146
https://doi.org/10.1016/j.optlastec.2018.02.042
17 Liu H. , Dong Y. , Gao R. , Luo Z. , Jin G. . Principle demonstration of the phase locking based on the electro-optic modulator for Taiji space gravitational wave detection pathfinder mission. Opt. Eng., 2018, 57(5): 054113
https://doi.org/10.1117/1.OE.57.5.054113
18 Liu H. , Luo Z. , Jin G. . The development of phasemeter for Taiji space gravitational wave detection. Microgravity Sci. Technol., 2018, 30(6): 775
https://doi.org/10.1007/s12217-018-9625-6
19 Deng W. , Yang T. , Cao J. , Zang E. , Li L. , Chen L. , Fang Z. . High-efficiency 1064 nm nonplanar ring oscillator Nd:YAG laser with diode pumping at 885 nm. Opt. Lett., 2018, 43(7): 1562
https://doi.org/10.1364/OL.43.001562
20 Wang Z. , Sha W. , Chen Z. , S. Kang Y. , R. Luo Z. , Li M. , P. Li Y. . Preliminary design and analysis of telescope for space gravitational wave detection. Chin. Opt., 2018, 11(1): 131
https://doi.org/10.3788/co.20181101.0131
21 Taiji Scientific Collaboration The . China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna. Commun. Phys., 2021, 4: 34
https://doi.org/10.1038/s42005-021-00529-z
22 Taiji Scientific Collaboration The . Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1. Int. J. Mod. Phys. A, 2021, 36: 2102002
https://doi.org/10.1142/S0217751X21020024
23 Klein A. , Barausse E. , Sesana A. , Petiteau A. , Berti E. , Babak S. , Gair J. , Aoudia S. , Hinder I. , Ohme F. , Wardell B. . Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys. Rev. D, 2016, 93(2): 024003
https://doi.org/10.1103/PhysRevD.93.024003
24 H. Zhang X. , D. Mohanty S. , B. Zou X. , X. Liu Y. . Resolving Galactic binaries in LISA data using particle swarm optimization and cross-validation. Phys. Rev. D, 2021, 104(2): 024023
https://doi.org/10.1103/PhysRevD.104.024023
25 Sesana A. . Prospects for multiband gravitational-wave astronomy after GW150914. Phys. Rev. Lett., 2016, 116(23): 231102
https://doi.org/10.1103/PhysRevLett.116.231102
26 Xin S. , B. Han W. , C. Yang S. . Gravitational waves from extreme-mass-ratio inspirals using general parametrized metrics. Phys. Rev. D, 2019, 100(8): 084055
https://doi.org/10.1103/PhysRevD.100.084055
27 Otto M., Time-Delay Interferometry Simulations for the Laser Interferometer Space Antenna, Ph. D. thesis, Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2015
28 Blelly A. , Bobin J. , Moutarde H. . Sparse data inpainting for the recovery of Galactic-binary gravitational wave signals from gapped data. Mon. Not. R. Astron. Soc., 2021, 509(4): 5902
https://doi.org/10.1093/mnras/stab3314
29 Robson T. , J. Cornish N. . Detecting gravitational wave bursts with LISA in the presence of instrumental glitches. Phys. Rev. D, 2019, 99(2): 024019
https://doi.org/10.1103/PhysRevD.99.024019
30 V. Dhurandhar S. , R. Nayak K. , Koshti S. , Y. Vinet J. . Fundamentals of the LISA stable flight formation. Class. Quantum Gravity, 2005, 22(3): 481
https://doi.org/10.1088/0264-9381/22/3/002
31 R. Nayak K. , Koshti S. , V. Dhurandhar S. , Y. Vinet J. . On the minimum flexing of LISA’s arms. Class. Quantum Gravity, 2006, 23(5): 1763
https://doi.org/10.1088/0264-9381/23/5/017
32 Wu B. , G. Huang C. , F. Qiao C. . Analytical analysis on the orbits of Taiji spacecrafts. Phys. Rev. D, 2019, 100(12): 122001
https://doi.org/10.1103/PhysRevD.100.122001
33 Chauvineau B. , Regimbau T. , Y. Vinet J. , Pireaux S. . Relativistic analysis of the LISA long range optical links. Phys. Rev. D, 2005, 72(12): 122003
https://doi.org/10.1103/PhysRevD.72.122003
34 Hees A. , Bertone S. , Le Poncin-Lafitte C. , formulation of coordinate light time Relativistic . Doppler, and astrometric observables up to the second post-Minkowskian order. Phys. Rev. D, 2014, 89(6): 064045
https://doi.org/10.1103/PhysRevD.89.064045
35 L. Katz M. , B. Bayle J. , J. K. Chua A. , Vallisneri M. . Assessing the data-analysis impact of LISA orbit approximations using a GPU-accelerated response model. Phys. Rev. D, 2022, 106(10): 103001
https://doi.org/10.1103/PhysRevD.106.103001
36 Rijnveld N.A. C. M. Pijnenburg J., in: International Conference on Space Optics — ICSO 2010, edited by N. Kadowaki, SPIE, Rhodes Island, Greece, 2017, p. 96
37 Babak S.Hewitson M.Petiteau A., LISA sensitivity and SNR calculations, arXiv: 2108.01167 (2021)
38 L. Katz M. , Z. Kelley L. , Dosopoulou F. , Berry S. , Blecha L. , L. Larson S. . Probing massive black hole binary populations with LISA. Mon. Not. R. Astron. Soc., 2019, 491: 2301
https://doi.org/10.1093/mnras/stz3102
39 Bohé A. , Shao L. , Taracchini A. , Buonanno A. , Babak S. . et al.. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D, 2017, 95(4): 044028
https://doi.org/10.1103/PhysRevD.95.044028
40 R. Gair J. , Babak S. , Sesana A. , Amaro-Seoane P. , Barausse E. , P. L. Berry C. , Berti E. , Sopuerta C. . Prospects for observing extreme-mass-ratio inspirals with LISA. J. Phys. Conf. Ser., 2017, 840: 012021
https://doi.org/10.1088/1742-6596/840/1/012021
41 Babak S. , Gair J. , Sesana A. , Barausse E. , F. Sopuerta C. , P. L. Berry C. , Berti E. , Amaro-Seoane P. , Petiteau A. , Klein A. . Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D, 2017, 95(10): 103012
https://doi.org/10.1103/PhysRevD.95.103012
42 Barack L. , Cutler C. . Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes. Phys. Rev. D, 2007, 75(4): 042003
https://doi.org/10.1103/PhysRevD.75.042003
43 Glampedakis K. . Extreme mass ratio inspirals: LISA’s unique probe of black hole gravity. Class. Quantum Gravity, 2005, 22(15): S605
https://doi.org/10.1088/0264-9381/22/15/004
44 B. Han W. , Cao Z. . Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals. Phys. Rev. D, 2011, 84(4): 044014
https://doi.org/10.1103/PhysRevD.84.044014
45 Babak S. , Fang H. , R. Gair J. , Glampedakis K. , A. Hughes S. . “Kludge” gravitational waveforms for a test-body orbiting a Kerr black hole. Phys. Rev. D, 2007, 75(2): 024005
https://doi.org/10.1103/PhysRevD.75.024005
46 Barack L. , Cutler C. . LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D, 2004, 69(8): 082005
https://doi.org/10.1103/PhysRevD.69.082005
47 J. K. Chua A. , R. Gair J. . Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis. Class. Quantum Gravity, 2015, 32(23): 232002
https://doi.org/10.1088/0264-9381/32/23/232002
48 J. K. Chua A. , J. Moore C. , R. Gair J. . Augmented kludge waveforms for detecting extreme-mass-ratio inspirals. Phys. Rev. D, 2017, 96(4): 044005
https://doi.org/10.1103/PhysRevD.96.044005
49 L. Katz M. , J. K. Chua A. , Speri L. , Warburton N. , A. Hughes S. . Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis. Phys. Rev. D, 2021, 104(6): 064047
https://doi.org/10.1103/PhysRevD.104.064047
50 Zhang C. , B. Han W. , C. Yang S. . Analytical effective one-body formalism for extreme-mass-ratio inspirals with eccentric orbits. Commum. Theor. Phys., 2021, 73(8): 085401
https://doi.org/10.1088/1572-9494/abfbe4
51 Kupfer T. , Korol V. , Shah S. , Nelemans G. , R. Marsh T. , Ramsay G. , J. Groot P. , T. H. Steeghs D. , M. Rossi E. . LISA verification binaries with updated distances from Gaia Data Release 2. Mon. Not. R. Astron. Soc., 2018, 480(1): 302
https://doi.org/10.1093/mnras/sty1545
52 Nelemans G. , R. Yungelson L. , F. P. Zwart S. . The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. Astron. Astrophys., 2001, 375(3): 890
https://doi.org/10.1051/0004-6361:20010683
53 Nelemans G. , A. Tout C. . Reconstructing the evolution of white dwarf binaries: Further evidence for an alternative algorithm for the outcome of the common-envelope phase in close binaries. Mon. Not. R. Astron. Soc., 2005, 356(2): 753
https://doi.org/10.1111/j.1365-2966.2004.08496.x
54 Gair J.Hewitson M.Petiteau A.Mueller G., in: Handbook of Gravitational Wave Astronomy, edited by C. Bambi, S. Katsanevas, and K. D. Kokkotas, Springer Singapore, Singapore, 2021, pp 1–71
55 Toubiana A. , Marsat S. , Babak S. , Baker J. , Dal Canton T. . Parameter estimation of stellar-mass black hole binaries with LISA. Phys. Rev. D, 2020, 102(12): 124037
https://doi.org/10.1103/PhysRevD.102.124037
56 Bartolo N. , Bertacca D. , Caldwell R. , R. Contaldi C. , Cusin G. . et al.. Probing anisotropies of the stochastic gravitational wave background with LISA. J. Cosmol. Astropart. Phys., 2022, 11: 009
https://doi.org/10.1088/1475-7516/2022/11/009
57 Abbott R. . et al.. (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Upper limits on the isotropic gravitational-wave background from advanced LIGO and advanced Virgo’s third observing run. Phys. Rev. D, 2021, 104(2): 022004
https://doi.org/10.1103/PhysRevD.104.022004
58 LIGO Scientific Collaboration TheVirgo Collaboration theKAGRA Collaboration the, All-sky, all-frequency directional search for persistent gravitational waves from advanced LIGO’s and advanced Virgo’s first three observing runs, Phys. Rev. D 105(12), 122001 (2022)
59 Caprini C. , G. Figueroa D. , Flauger R. , Nardini G. , Peloso M. , Pieroni M. , Ricciardone A. , Tasinato G. . Reconstructing the spectral shape of a stochastic gravitational wave background with LISA. J. Cosmol. Astropart. Phys., 2019, 11: 017
https://doi.org/10.1088/1475-7516/2019/11/017
60 Hindmarsh M. , J. Huber S. , Rummukainen K. , J. Weir D. . Gravitational waves from the sound of a first order phase transition. Phys. Rev. Lett., 2014, 112(4): 041301
https://doi.org/10.1103/PhysRevLett.112.041301
61 Liu J. , K. Guo Z. , G. Cai R. , Shiu G. . Gravitational waves from oscillons with Cuspy potentials. Phys. Rev. Lett., 2018, 120(3): 031301
https://doi.org/10.1103/PhysRevLett.120.031301
62 G. Cai R. , Pi S. , Sasaki M. . Gravitational waves induced by non-Gaussian scalar perturbations. Phys. Rev. Lett., 2019, 122(20): 201101
https://doi.org/10.1103/PhysRevLett.122.201101
63 Yuan C. , G. Huang Q. . Gravitational waves induced by the local-type non-Gaussian curvature perturbations. Phys. Lett. B, 2021, 821: 136606
https://doi.org/10.1016/j.physletb.2021.136606
64 Falxa M. , Babak S. , Le Jeune M. . Adaptive kernel density estimation proposal in gravitational wave data analysis. Phys. Rev. D, 2023, 107(2): 022008
https://doi.org/10.1103/PhysRevD.107.022008
[1] Meng-Qin Jiang, Nan Yang, Jin Li. Identify real gravitational wave events in the LIGO-Virgo catalog GWTC-1 and GWTC-2 with convolutional neural network[J]. Front. Phys. , 2022, 17(5): 54501-.
[2] Xiang-Ru Li, Wo-Liang Yu, Xi-Long Fan, G. Jogesh Babu. Some optimizations on detecting gravitational wave using convolutional neural network[J]. Front. Phys. , 2020, 15(5): 54501-.
[3] Bai-Jiong Lin, Xiang-Ru Li, Wo-Liang Yu. Binary neutron stars gravitational wave detection based on wavelet packet analysis and convolutional neural networks[J]. Front. Phys. , 2020, 15(2): 24602-.
[4] He Gao, Shun-Ke Ai, Zhou-Jian Cao, Bing Zhang, Zhen-Yu Zhu, Ang Li, Nai-Bo Zhang, Andreas Bauswein. Relation between gravitational mass and baryonic mass for non-rotating and rapidly rotating neutron stars[J]. Front. Phys. , 2020, 15(2): 24603-.
[5] Hua-Mei Luo, Wenbin Lin, Zu-Cheng Chen, Qing-Guo Huang. Extraction of gravitational wave signals with optimized convolutional neural network[J]. Front. Phys. , 2020, 15(1): 14601-.
[6] Bing Zhang. The delay time of gravitational wave – gamma-ray burst associations[J]. Front. Phys. , 2019, 14(6): 64402-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed