|
|
Taiji data challenge for exploring gravitational wave universe |
Zhixiang Ren1,2, Tianyu Zhao1,3,2, Zhoujian Cao1,3,4( ), Zong-Kuan Guo1,5,6,4, Wen-Biao Han1,4,7,8,9,10, Hong-Bo Jin1,11,8, Yue-Liang Wu1,5,4,9( ) |
1. Taiji Laboratory for Gravitational Wave Universe, University of Chinese Academy of Sciences (UCAS), Beijing 100049, China 2. Peng Cheng Laboratory, Shenzhen 518055, China 3. Department of Astronomy, Beijing Normal University, Beijing 100875, China 4. School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China 5. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China 6. School of Physical Sciences, UCAS, Beijing 100049, China 7. Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China 8. School of Astronomy and Space Science, UCAS, Beijing 100049, China 9. International Centre for Theoretical Physics Asia-Pacific (ICTP-AP, UNESCO), UCAS, Beijing 100190, China 10. Shanghai Frontiers Science Center for Gravitational Wave Detection, Shanghai 200240, China 11. Key Laboratory of Computational Astrophysics, National Astronomical Observatories, Beijing 100101, China |
|
|
Abstract The direct observation of gravitational waves (GWs) opens a new window for exploring new physics from quanta to cosmos and provides a new tool for probing the evolution of universe. GWs detection in space covers a broad spectrum ranging over more than four orders of magnitude and enables us to study rich physical and astronomical phenomena. Taiji is a proposed space-based gravitational wave (GW) detection mission that will be launched in the 2030s. Taiji will be exposed to numerous overlapping and persistent GW signals buried in the foreground and background, posing various data analysis challenges. In order to empower potential scientific discoveries, the Mock Laser Interferometer Space Antenna (LISA) data challenge and the LISA data challenge (LDC) were developed. While LDC provides a baseline framework, the first LDC needs to be updated with more realistic simulations and adjusted detector responses for Taiji’s constellation. In this paper, we review the scientific objectives and the roadmap for Taiji, as well as the technical difficulties in data analysis and the data generation strategy, and present the associated data challenges. In contrast to LDC, we utilize second-order Keplerian orbit and second-generation time delay interferometry techniques. Additionally, we employ a new model for the extreme-mass-ratio inspiral waveform and stochastic GW background spectrum, which enables us to test general relativity and measure the non-Gaussianity of curvature perturbations. Furthermore, we present a comprehensive showcase of parameter estimation using a toy dataset. This showcase not only demonstrates the scientific potential of the Taiji data challenge (TDC) but also serves to validate the effectiveness of the pipeline. As the first data challenge for Taiji, we aim to build an open ground for data analysis related to Taiji sources and sciences. More details can be found on the official website (taiji-tdc.ictp-ap.org).
|
Keywords
gravitational wave
universe evolution
Taiji
data challenge
|
Corresponding Author(s):
Zhoujian Cao,Yue-Liang Wu
|
Issue Date: 10 August 2023
|
|
1 |
P. Abbott B. , (LIGO Scientific Collaboration . , Collaboration) Virgo . et al.. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett., 2016, 116(6): 061102
https://doi.org/10.1103/PhysRevLett.116.061102
|
2 |
LIGO Scientific Collaboration TheVirgo Collaboration theKAGRA Collaboration the, et al.., GWTC-3: Compact binary coalescences observed by LIGO and Virgo during the second part of the third observing run, arXiv: 2111.03606 (2021)
|
3 |
González G. , Viceré A. , Wen L. . Gravitational wave astronomy. Front. Phys., 2013, 8(6): 771
https://doi.org/10.1007/s11467-013-0329-5
|
4 |
Matichard F. , Lantz B. , Mittleman R. , Mason K. , Kissel J. . et al.. Seismic isolation of advanced LIGO: Review of strategy, instrumentation and performance. Class. Quantum Gravity, 2015, 32(18): 185003
https://doi.org/10.1088/0264-9381/32/18/185003
|
5 |
Amaro-Seoane P., et al.., Laser interferometer space antenna, arXiv: 1702.00786 (2017)
|
6 |
Gong X. , Xu S. , Bai S. , Cao Z. , Chen G. , Chen Y. , He X. , Heinzel G. , K. Lau Y. , Liu C. , Luo J. , Luo Z. , P. Patón A. , Rüdiger A. , Shao M. , Spurzem R. , Wang Y. , Xu P. , C. Yeh H. , Yuan Y. , Zhou Z. . A scientific case study of an advanced LISA mission. Class. Quantum Gravity, 2011, 28(9): 094012
https://doi.org/10.1088/0264-9381/28/9/094012
|
7 |
Luo Z. , Wang Y. , Wu Y. , Hu W. , Jin G. . The Taiji program: A concise overview. Prog. Theor. Exp. Phys., 2021, 2021(5): 05A108
https://doi.org/10.1093/ptep/ptaa083
|
8 |
L. Wu Y., in: Presentation to 1st eLISA Consortium Meeting (2012)
|
9 |
Q. Li Y. , R. Luo Z. , S. Liu H. , H. Dong Y. , Jin G. . Laser interferometer used for satellite—satellite tracking: An on-ground methodological demonstration. Chin. Phys. Lett., 2012, 29(7): 079501
https://doi.org/10.1088/0256-307X/29/7/079501
|
10 |
S. Liu H. , H. Dong Y. , Q. Li Y. , R. Luo Z. , Jin G. . The evaluation of phasemeter prototype performance for the space gravitational waves detection. Rev. Sci. Instrum., 2014, 85(2): 024503
https://doi.org/10.1063/1.4865121
|
11 |
H. Dong Y. , S. Liu H. , R. Luo Z. , Q. Li Y. , Jin G. . Methodological demonstration of laser beam pointing control for space gravitational wave detection missions. Rev. Sci. Instrum., 2014, 85(7): 074501
https://doi.org/10.1063/1.4891037
|
12 |
Q. Li Y. , R. Luo Z. , S. Liu H. , H. Dong Y. , Jin G. . Path-length measurement performance evaluation of polarizing laser interferometer prototype. Appl. Phys. B, 2015, 118(2): 309
https://doi.org/10.1007/s00340-014-5987-7
|
13 |
R. Hu W. , L. Wu Y. . The Taiji Program in Space for gravitational wave physics and the nature of gravity. Natl. Sci. Rev., 2017, 4(5): 685
https://doi.org/10.1093/nsr/nwx116
|
14 |
Luo Z. , Guo Z. , Jin G. , Wu Y. , Hu W. . A brief analysis to Taiji: Science and technology. Results Phys., 2020, 16: 102918
https://doi.org/10.1016/j.rinp.2019.102918
|
15 |
Luo Z. , Wang Q. , Mahrdt C. , Goerth A. , Heinzel G. . Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission. Appl. Opt., 2017, 56(5): 1495
https://doi.org/10.1364/AO.56.001495
|
16 |
Luo Z. , Liu H. , Jin G. . The recent development of interferometer prototype for Chinese gravitational wave detection pathfinder mission. Opt. Laser Technol., 2018, 105: 146
https://doi.org/10.1016/j.optlastec.2018.02.042
|
17 |
Liu H. , Dong Y. , Gao R. , Luo Z. , Jin G. . Principle demonstration of the phase locking based on the electro-optic modulator for Taiji space gravitational wave detection pathfinder mission. Opt. Eng., 2018, 57(5): 054113
https://doi.org/10.1117/1.OE.57.5.054113
|
18 |
Liu H. , Luo Z. , Jin G. . The development of phasemeter for Taiji space gravitational wave detection. Microgravity Sci. Technol., 2018, 30(6): 775
https://doi.org/10.1007/s12217-018-9625-6
|
19 |
Deng W. , Yang T. , Cao J. , Zang E. , Li L. , Chen L. , Fang Z. . High-efficiency 1064 nm nonplanar ring oscillator Nd:YAG laser with diode pumping at 885 nm. Opt. Lett., 2018, 43(7): 1562
https://doi.org/10.1364/OL.43.001562
|
20 |
Wang Z. , Sha W. , Chen Z. , S. Kang Y. , R. Luo Z. , Li M. , P. Li Y. . Preliminary design and analysis of telescope for space gravitational wave detection. Chin. Opt., 2018, 11(1): 131
https://doi.org/10.3788/co.20181101.0131
|
21 |
Taiji Scientific Collaboration The . China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna. Commun. Phys., 2021, 4: 34
https://doi.org/10.1038/s42005-021-00529-z
|
22 |
Taiji Scientific Collaboration The . Taiji program in space for gravitational universe with the first run key technologies test in Taiji-1. Int. J. Mod. Phys. A, 2021, 36: 2102002
https://doi.org/10.1142/S0217751X21020024
|
23 |
Klein A. , Barausse E. , Sesana A. , Petiteau A. , Berti E. , Babak S. , Gair J. , Aoudia S. , Hinder I. , Ohme F. , Wardell B. . Science with the space-based interferometer eLISA: Supermassive black hole binaries. Phys. Rev. D, 2016, 93(2): 024003
https://doi.org/10.1103/PhysRevD.93.024003
|
24 |
H. Zhang X. , D. Mohanty S. , B. Zou X. , X. Liu Y. . Resolving Galactic binaries in LISA data using particle swarm optimization and cross-validation. Phys. Rev. D, 2021, 104(2): 024023
https://doi.org/10.1103/PhysRevD.104.024023
|
25 |
Sesana A. . Prospects for multiband gravitational-wave astronomy after GW150914. Phys. Rev. Lett., 2016, 116(23): 231102
https://doi.org/10.1103/PhysRevLett.116.231102
|
26 |
Xin S. , B. Han W. , C. Yang S. . Gravitational waves from extreme-mass-ratio inspirals using general parametrized metrics. Phys. Rev. D, 2019, 100(8): 084055
https://doi.org/10.1103/PhysRevD.100.084055
|
27 |
Otto M., Time-Delay Interferometry Simulations for the Laser Interferometer Space Antenna, Ph. D. thesis, Hannover: Gottfried Wilhelm Leibniz Universität Hannover, 2015
|
28 |
Blelly A. , Bobin J. , Moutarde H. . Sparse data inpainting for the recovery of Galactic-binary gravitational wave signals from gapped data. Mon. Not. R. Astron. Soc., 2021, 509(4): 5902
https://doi.org/10.1093/mnras/stab3314
|
29 |
Robson T. , J. Cornish N. . Detecting gravitational wave bursts with LISA in the presence of instrumental glitches. Phys. Rev. D, 2019, 99(2): 024019
https://doi.org/10.1103/PhysRevD.99.024019
|
30 |
V. Dhurandhar S. , R. Nayak K. , Koshti S. , Y. Vinet J. . Fundamentals of the LISA stable flight formation. Class. Quantum Gravity, 2005, 22(3): 481
https://doi.org/10.1088/0264-9381/22/3/002
|
31 |
R. Nayak K. , Koshti S. , V. Dhurandhar S. , Y. Vinet J. . On the minimum flexing of LISA’s arms. Class. Quantum Gravity, 2006, 23(5): 1763
https://doi.org/10.1088/0264-9381/23/5/017
|
32 |
Wu B. , G. Huang C. , F. Qiao C. . Analytical analysis on the orbits of Taiji spacecrafts. Phys. Rev. D, 2019, 100(12): 122001
https://doi.org/10.1103/PhysRevD.100.122001
|
33 |
Chauvineau B. , Regimbau T. , Y. Vinet J. , Pireaux S. . Relativistic analysis of the LISA long range optical links. Phys. Rev. D, 2005, 72(12): 122003
https://doi.org/10.1103/PhysRevD.72.122003
|
34 |
Hees A. , Bertone S. , Le Poncin-Lafitte C. , formulation of coordinate light time Relativistic . Doppler, and astrometric observables up to the second post-Minkowskian order. Phys. Rev. D, 2014, 89(6): 064045
https://doi.org/10.1103/PhysRevD.89.064045
|
35 |
L. Katz M. , B. Bayle J. , J. K. Chua A. , Vallisneri M. . Assessing the data-analysis impact of LISA orbit approximations using a GPU-accelerated response model. Phys. Rev. D, 2022, 106(10): 103001
https://doi.org/10.1103/PhysRevD.106.103001
|
36 |
Rijnveld N.A. C. M. Pijnenburg J., in: International Conference on Space Optics — ICSO 2010, edited by N. Kadowaki, SPIE, Rhodes Island, Greece, 2017, p. 96
|
37 |
Babak S.Hewitson M.Petiteau A., LISA sensitivity and SNR calculations, arXiv: 2108.01167 (2021)
|
38 |
L. Katz M. , Z. Kelley L. , Dosopoulou F. , Berry S. , Blecha L. , L. Larson S. . Probing massive black hole binary populations with LISA. Mon. Not. R. Astron. Soc., 2019, 491: 2301
https://doi.org/10.1093/mnras/stz3102
|
39 |
Bohé A. , Shao L. , Taracchini A. , Buonanno A. , Babak S. . et al.. Improved effective-one-body model of spinning, nonprecessing binary black holes for the era of gravitational-wave astrophysics with advanced detectors. Phys. Rev. D, 2017, 95(4): 044028
https://doi.org/10.1103/PhysRevD.95.044028
|
40 |
R. Gair J. , Babak S. , Sesana A. , Amaro-Seoane P. , Barausse E. , P. L. Berry C. , Berti E. , Sopuerta C. . Prospects for observing extreme-mass-ratio inspirals with LISA. J. Phys. Conf. Ser., 2017, 840: 012021
https://doi.org/10.1088/1742-6596/840/1/012021
|
41 |
Babak S. , Gair J. , Sesana A. , Barausse E. , F. Sopuerta C. , P. L. Berry C. , Berti E. , Amaro-Seoane P. , Petiteau A. , Klein A. . Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D, 2017, 95(10): 103012
https://doi.org/10.1103/PhysRevD.95.103012
|
42 |
Barack L. , Cutler C. . Using LISA extreme-mass-ratio inspiral sources to test off-Kerr deviations in the geometry of massive black holes. Phys. Rev. D, 2007, 75(4): 042003
https://doi.org/10.1103/PhysRevD.75.042003
|
43 |
Glampedakis K. . Extreme mass ratio inspirals: LISA’s unique probe of black hole gravity. Class. Quantum Gravity, 2005, 22(15): S605
https://doi.org/10.1088/0264-9381/22/15/004
|
44 |
B. Han W. , Cao Z. . Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals. Phys. Rev. D, 2011, 84(4): 044014
https://doi.org/10.1103/PhysRevD.84.044014
|
45 |
Babak S. , Fang H. , R. Gair J. , Glampedakis K. , A. Hughes S. . “Kludge” gravitational waveforms for a test-body orbiting a Kerr black hole. Phys. Rev. D, 2007, 75(2): 024005
https://doi.org/10.1103/PhysRevD.75.024005
|
46 |
Barack L. , Cutler C. . LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy. Phys. Rev. D, 2004, 69(8): 082005
https://doi.org/10.1103/PhysRevD.69.082005
|
47 |
J. K. Chua A. , R. Gair J. . Improved analytic extreme-mass-ratio inspiral model for scoping out eLISA data analysis. Class. Quantum Gravity, 2015, 32(23): 232002
https://doi.org/10.1088/0264-9381/32/23/232002
|
48 |
J. K. Chua A. , J. Moore C. , R. Gair J. . Augmented kludge waveforms for detecting extreme-mass-ratio inspirals. Phys. Rev. D, 2017, 96(4): 044005
https://doi.org/10.1103/PhysRevD.96.044005
|
49 |
L. Katz M. , J. K. Chua A. , Speri L. , Warburton N. , A. Hughes S. . Fast extreme-mass-ratio-inspiral waveforms: New tools for millihertz gravitational-wave data analysis. Phys. Rev. D, 2021, 104(6): 064047
https://doi.org/10.1103/PhysRevD.104.064047
|
50 |
Zhang C. , B. Han W. , C. Yang S. . Analytical effective one-body formalism for extreme-mass-ratio inspirals with eccentric orbits. Commum. Theor. Phys., 2021, 73(8): 085401
https://doi.org/10.1088/1572-9494/abfbe4
|
51 |
Kupfer T. , Korol V. , Shah S. , Nelemans G. , R. Marsh T. , Ramsay G. , J. Groot P. , T. H. Steeghs D. , M. Rossi E. . LISA verification binaries with updated distances from Gaia Data Release 2. Mon. Not. R. Astron. Soc., 2018, 480(1): 302
https://doi.org/10.1093/mnras/sty1545
|
52 |
Nelemans G. , R. Yungelson L. , F. P. Zwart S. . The gravitational wave signal from the Galactic disk population of binaries containing two compact objects. Astron. Astrophys., 2001, 375(3): 890
https://doi.org/10.1051/0004-6361:20010683
|
53 |
Nelemans G. , A. Tout C. . Reconstructing the evolution of white dwarf binaries: Further evidence for an alternative algorithm for the outcome of the common-envelope phase in close binaries. Mon. Not. R. Astron. Soc., 2005, 356(2): 753
https://doi.org/10.1111/j.1365-2966.2004.08496.x
|
54 |
Gair J.Hewitson M.Petiteau A.Mueller G., in: Handbook of Gravitational Wave Astronomy, edited by C. Bambi, S. Katsanevas, and K. D. Kokkotas, Springer Singapore, Singapore, 2021, pp 1–71
|
55 |
Toubiana A. , Marsat S. , Babak S. , Baker J. , Dal Canton T. . Parameter estimation of stellar-mass black hole binaries with LISA. Phys. Rev. D, 2020, 102(12): 124037
https://doi.org/10.1103/PhysRevD.102.124037
|
56 |
Bartolo N. , Bertacca D. , Caldwell R. , R. Contaldi C. , Cusin G. . et al.. Probing anisotropies of the stochastic gravitational wave background with LISA. J. Cosmol. Astropart. Phys., 2022, 11: 009
https://doi.org/10.1088/1475-7516/2022/11/009
|
57 |
Abbott R. . et al.. (LIGO Scientific Collaboration, Virgo Collaboration, and KAGRA Collaboration), Upper limits on the isotropic gravitational-wave background from advanced LIGO and advanced Virgo’s third observing run. Phys. Rev. D, 2021, 104(2): 022004
https://doi.org/10.1103/PhysRevD.104.022004
|
58 |
LIGO Scientific Collaboration TheVirgo Collaboration theKAGRA Collaboration the, All-sky, all-frequency directional search for persistent gravitational waves from advanced LIGO’s and advanced Virgo’s first three observing runs, Phys. Rev. D 105(12), 122001 (2022)
|
59 |
Caprini C. , G. Figueroa D. , Flauger R. , Nardini G. , Peloso M. , Pieroni M. , Ricciardone A. , Tasinato G. . Reconstructing the spectral shape of a stochastic gravitational wave background with LISA. J. Cosmol. Astropart. Phys., 2019, 11: 017
https://doi.org/10.1088/1475-7516/2019/11/017
|
60 |
Hindmarsh M. , J. Huber S. , Rummukainen K. , J. Weir D. . Gravitational waves from the sound of a first order phase transition. Phys. Rev. Lett., 2014, 112(4): 041301
https://doi.org/10.1103/PhysRevLett.112.041301
|
61 |
Liu J. , K. Guo Z. , G. Cai R. , Shiu G. . Gravitational waves from oscillons with Cuspy potentials. Phys. Rev. Lett., 2018, 120(3): 031301
https://doi.org/10.1103/PhysRevLett.120.031301
|
62 |
G. Cai R. , Pi S. , Sasaki M. . Gravitational waves induced by non-Gaussian scalar perturbations. Phys. Rev. Lett., 2019, 122(20): 201101
https://doi.org/10.1103/PhysRevLett.122.201101
|
63 |
Yuan C. , G. Huang Q. . Gravitational waves induced by the local-type non-Gaussian curvature perturbations. Phys. Lett. B, 2021, 821: 136606
https://doi.org/10.1016/j.physletb.2021.136606
|
64 |
Falxa M. , Babak S. , Le Jeune M. . Adaptive kernel density estimation proposal in gravitational wave data analysis. Phys. Rev. D, 2023, 107(2): 022008
https://doi.org/10.1103/PhysRevD.107.022008
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|