Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (1) : 13402    https://doi.org/10.1007/s11467-023-1329-8
TOPICAL REVIEW
Recent advances in memristors based on two-dimensional ferroelectric materials
Wenbiao Niu1, Guanglong Ding1, Ziqi Jia1, Xin-Qi Ma1, JiYu Zhao1, Kui Zhou1, Su-Ting Han2, Chi-Ching Kuo3(), Ye Zhou1()
1. Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
2. College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
3. Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, Taipei University of Technology, Taipei 10608, Taiwan, China
 Download: PDF(12769 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this big data era, the explosive growth of information puts ultra-high demands on the data storage/computing, such as high computing power, low energy consumption, and excellent stability. However, facing this challenge, the traditional von Neumann architecture-based computing system is out of its depth owing to the separated memory and data processing unit architecture. One of the most effective ways to solve this challenge is building brain inspired computing system with in-memory computing and parallel processing ability based on neuromorphic devices. Therefore, there is a research trend toward the memristors, that can be applied to build neuromorphic computing systems due to their large switching ratio, high storage density, low power consumption, and high stability. Two-dimensional (2D) ferroelectric materials, as novel types of functional materials, show great potential in the preparations of memristors because of the atomic scale thickness, high carrier mobility, mechanical flexibility, and thermal stability. 2D ferroelectric materials can realize resistive switching (RS) because of the presence of natural dipoles whose direction can be flipped with the change of the applied electric field thus producing different polarizations, therefore, making them powerful candidates for future data storage and computing. In this review article, we introduce the physical mechanisms, characterizations, and synthetic methods of 2D ferroelectric materials, and then summarize the applications of 2D ferroelectric materials in memristors for memory and synaptic devices. At last, we deliberate the advantages and future challenges of 2D ferroelectric materials in the application of memristors devices.

Keywords two-dimensional ferroelectric materials      synthesis strategies      memristors      artificial synapses     
Corresponding Author(s): Chi-Ching Kuo,Ye Zhou   
Issue Date: 13 September 2023
 Cite this article:   
Wenbiao Niu,Guanglong Ding,Ziqi Jia, et al. Recent advances in memristors based on two-dimensional ferroelectric materials[J]. Front. Phys. , 2024, 19(1): 13402.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1329-8
https://academic.hep.com.cn/fop/EN/Y2024/V19/I1/13402
Fig.1  High performance of memristors based on several kinds of 2D ferroelectric materials. (a) Reprinted with permission from Ref. [63], Copyright © 2020 Wiley‐VCH GmbH. (b) Reprinted with permission from Ref. [64], Copyright © 2019 American Chemical Society. (c) Reprinted with permission from Ref. [60], Copyright © 2021 American Chemical Society. (d) Reprinted with permission from Ref. [65], Copyright © 2022 American Chemical Society.
Fig.2  (a) Hysteresis curve of ferroelectric materials under electric field. E1 represents the electric field. (b) AFM image of In2Se3 films with thicknesses of 1.26−4.25 nm. (c) AFM images of In2Se3 films at 2−6 nm. (d, e) Amplitude and phase images of OOP PFM. (f, g) Amplitude and phase images of IP PFM. (h, i) OPP and IP phase images corresponding to 6 nm In2Se3 flake obtained by applying successive voltages of −7 and +6 V with size of 2 and 1 μm. The scale bars are 1 μm in (b−i). (b−i) Reprinted with permission from Ref. [90], Copyright © 2018 American Chemical Society.
Fig.3  (a) Side view of the crystal structure of α-In2Se3. (b) Schematic representation of the planar crystal structure and ferroelectric polarization P↑ and P↓ of α-In2Se3. (c) The sulfur framework of the CuInP2S6 crystal structure with octahedral gaps filled by Cu and In cations and PP pairs, where Cu+ ions can leap within the layer and cross the vdWs gap under the electric field. (d) The labelled Cu1, Cu2 and Cu3 are the three copper positions. The downward and upward positions of Cu1 are also denoted. (a) Reprinted with permission from Ref. [76], Copyright © 2021 American Chemical Society. (b) Reprinted with permission from Ref. [113], Copyright © 2020 Wiley‐VCH GmbH. (c, d) Reprinted with permission from Ref. [79], Copyright © 2021 American Chemical Society.
Fig.4  (a) Schematic diagram of mechanical exfoliation process for the production of 2D materials. (b) Diagram of the key process and main parameters tailored for use in PLD. (c) Schematic diagram of the CVD growth process of 2D ferroelectric material In2Se3 on mica substrate. (d) In2Se3 layers synthesized via PVD with In2Se3 powders as precursors. (e−g) Schematic diagram of the main liquid exfoliation mechanisms. (a) Reprinted with permission from Ref. [145], Copyright © 2019 The Author(s). Published by Elsevier Ltd. (b) Reprinted with permission from Ref. [146], Copyright © 2023 The Royal Society of Chemistry. (c) Reprinted with permission from Ref. [147], Copyright © 2021 Elsevier B.V. All rights reserved. (d) Reprinted with permission from Ref. [148], Copyright © 2015 American Chemical Society. (e−g) Reprinted with permission from Ref. [139], Copyright © 2013, American Association for the Advancement of Science.
Preparation methods Advantages Disadvantages Ref.
Mechanical exfoliation[Fig.4(a)] (1) Easy to operate
(2) Highly flexible
(3) High quality of prepared material samples
(1) Easy to mix in large amounts of impurities
(2) Unstable structure
(3) Low production efficiency, cannot be industrialized
(4) Poor samples controllability
[55, 77, 79, 89, 136, 137, 149-157]
PLD [Fig.4(b)] (1) Rapid response and growth
(2) Varieties of films can be made
(3) Less contamination to the film, can make high purity film
(4) Strong orientation and high film resolution
(5) Easy to make multi-layer films and heterogeneous films
(1) Large area deposition of materials cannot be achieved
(2) Slow average deposition rate
(3) Relatively high cost
[85, 145, 158, 146]
CVD [Fig.4(c)] (1) Fast film formation speed, can deposit large quantities of uniformly composed films
(2) Good wrap-around properties, complex shaped devices can be uniformly coated
(3) Good adhesion strength to the substrate
(4) Easy to obtain high purity and good crystallinity of the film
(5) A flat deposition surface can be obtained
(1) High reaction temperature may cause coarse grains and brittle phases
(2) Affect the service life of the machinery
(3) Deposition rate is not too high
(4) Easy to pollute the environment
[90, 115, 159-163]
PVD [Fig.4(d)] (1) Simple principle, easy to operate
(2) Uniform and dense film formation
(3) Fast deposition rate and high efficiency
(4) Low cost
(5) Low environmental pollution
(1) Relatively poor adhesion of the film to the substrate
(2) Repeatability is less satisfactory
(3) Chemical impurities are difficult to remove
[56, 113, 132]
Liquid phase exfoliation [Fig.4(e)] (1) Simple process, easy to operate
(2) Mild conditions
(3) High crystalline quality
(4) Low cost
(5) Easy to achieve large-scale production
(1) A bit noisy
(2) Small sample size
(3) Some auxiliary chemical reagents are easy to pollute the environment and human body
[80, 83, 116, 141, 142, 144, 164]
Tab.1  A summary of synthesis strategies to organize 2D ferroelectric materials.
Fig.5  (a) Schematic diagram device structure of α-In2Se3 memristor. (b, c) Symmetric and rectifying devices with increasing maximum Vds. (d−f) |I|−Vds relationships, OOP PFM phase images and contact potential difference images of rectifying in the LRS. (g−i) |I|−Vds relationships, OOP PFM phase images and contact potential difference images of rectifying in the HRS. (a−i) Reprinted with permission from Ref. [113], Copyright © 2020 Wiley‐VCH GmbH.
Fig.6  (a) Schematic diagram of α-In2Se3-based synaptic device. (b) Optical image of the α-In2Se3-based synaptic device. (c) I−V curves of the device under voltage sweep. (d) The endurance of α-In2Se3-based device (100 cycles, set pulse: 5 V/100 µs, reset pulse: −5 V/100 µs). (e) Schematic diagram of the artificial synapse based on α-In2Se3. (f) Long-term potentiation/long-term depression under the different pulse amplitude from 4 to 6 V. The current was read at 0.5 V after each pulse, and the pulse width is fixed with 1 µs. (g) STDP learning rules realized by α-In2Se3 artificial synapse. (h) The recognition results to MNIST handwritten dataset. The recognition accuracy of the α-In2Se3-based synaptic device is 93.2%, close to that of based on ideal hard-based device (94.1%). (a−h) Reprinted with permission from Ref. [153], Copyright © 2021 Wiley‐VCH GmbH.
Fig.7  Nonvolatile ferroelectric memory based on lateral β/α/β In2Se3 heterojunction. (a) Schematic diagram of a β/α/β In2Se3 device. The dashed box in the middle represents the α-phase. The β-phase is in contact with the electrodes at both ends. The position of the pink Se atoms in the middle can be used to distinguish between α-In2Se3 and β-In2Se3 (Blue: In atoms). The arrows represent the direction of polarization. (b) Side view of the cell unit for the α and β of In2Se3. Indium (blue balls) and selenium (red balls) atoms combine to form the tetrahedral and octahedral structures shown in the inset, respectively. (c) Raman spectroscopy of the α and β phases of In2Se3. (d) The I−V curves output measured repeatedly between +5 to −5 V, with the arrows representing the scanning direction. (e) The current response under periodic voltage pulses. The pulse width for write and erase is 10 ms, and two logic states can be read at 0.1 V. (f, g) The retention and endurance performance of the device. (a−g) Reprinted with permission from Ref. [154], Copyright © 2022 American Chemical Society.
Fig.8  The mimicking neuroplasticity via Cu+ ions migration in layered CuInP2S6. (a) Schematic diagram of a biological synapse. The lower right part is the CIPS artificial synaptic device. (b) Plot of I−V curves measured at a fixed voltage range (−2 to 2 V) after a voltage sweep from 0 V to positive stimulation voltages (6, 8, 10, 15 V). (c) I−V characteristics of the device at a swept voltage range (−10 to 10 V). The light blue, dark blue and black curves indicate the I−V curves for three consecutive cycles of testing, respectively, and the arrows indicate the direction of scanning. (d) Current at different resistive states of the device read with a voltage of 2 V after the 10 and −10 V scanning. (e) RS stability of the device at a set voltage of 15 V and a reset voltage of −10 V with a Vread of 2 V. (f) Excitatory postsynaptic currents at different Vread after application of a series of 10 V pulses lasting 1 s. (g) PPF on the device triggered by a pair of positively spaced pulses with different intervals. (h) Implementation of STDP based on CIPS devices with exponential functions fitted to the data points. (a−h) Reprinted with permission from Ref. [122], Copyright © 2021 Wiley‐VCH GmbH.
Fig.9  Gate programmable vertical M−FE−S heterojunction memristor. (a) Schematic diagram of the M−FE−S memristor. (b) I−V curves of the M−FE−S memristor under 300 K (room temperature, black) and above Tc 400 K (red). The arrows indicate the scanning direction. (c, d) Reproducibility and retention. (e, f) SEM images of a 3 × 4 M−FE−S array device. (g−i) The letters “I”, “M” and “R” encoded by reading the HRS and LRS of each pixel in the 3 × 4 array. (a−i) Reprinted with permission from Ref. [171], Copyright © 2022 The Authors. Advanced Materials published by Wiley‐VCH GmbH.
Fig.10  (a) Schematic diagram of the Pt/SnS/Pt synapse structure. (b) SnS polarization-electric field (P−E) hysteresis curve. (c) The performance of fatigue resistance and stability in 3 different devices. (d) PPF performance stimulated by applying 10, 30, and 50 presynaptic spikes (Vpulse = 3 V, Pwidth = 20 ms), read at 0.1 V. (e) LTP/LTD under different pulse amplitude (±3 V to ±5 V). Pulses width: 20 ms. (f) Cyclic LTP/LDP tests of this Pt/SnS/Pt artificial synapse. (g) The diagram of ANNs for the recognition of handwriting Arabic digits. (a−g) Reprinted with permission from Ref. [159], Copyright © 2020 American Chemical Society.
Fig.11  (a) Schematic diagram of a multilayer MoS2 device consisting of two Cr/Au electrodes. (b) I−V characteristics of the multilayer MoS2 over 20 cycles, showing excellent stability. (c) HRS and LRS currents retention test over 3000 s. (d) Schematic illustration of the multilayer MoS2 device under light illumination. (e) The ratio of LRS to HRS changes after light modulation at different power levels, leading to a maximum ratio of 105. (f) After six consecutive light pulses at 1 V bias, the device transitions to long-term memory (LTM) mode (the inset shows that after a single light pulse at 2 mW power, the short-term memory (STM) mode). (a−f) Reprinted with permission from Ref. [173], Copyright © 2021 American Chemical Society.
1 Ajayan J., Nirmal D., K. Jebalin I. V B., Sreejith S.. Advances in neuromorphic devices for the hardware implementation of neuromorphic computing systems for future artificial intelligence applications: A critical review. Microelectron. J., 2022, 130: 105634
https://doi.org/10.1016/j.mejo.2022.105634
2 Sun B., Ranjan S., Zhou G., Guo T., Xia Y., Wei L., N. Zhou Y., A. Wu Y.. Multistate resistive switching behaviors for neuromorphic computing in memristor. Mater. Today Adv., 2021, 9: 100125
https://doi.org/10.1016/j.mtadv.2020.100125
3 Sun K., Chen J., Yan X.. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater., 2021, 31(8): 2006773
https://doi.org/10.1002/adfm.202006773
4 Misra D.. Special issue of Interface on Neuromorphic Computing: An introduction and state of the field. Electrochem. Soc. Interface, 2023, 32(1): 45
https://doi.org/10.1149/2.F08231IF
5 Ielmini D., Wang Z., Liu Y.. Brain-inspired computing via memory device physics. APL Mater., 2021, 9(5): 050702
https://doi.org/10.1063/5.0047641
6 Q. Yang J., Wang R., Ren Y., Y. Mao J., P. Wang Z., Zhou Y., T. Han S.. Neuromorphic engineering: From biological to spike-based hardware nervous systems. Adv. Mater., 2020, 32(52): 2003610
https://doi.org/10.1002/adma.202003610
7 Wang L., Shen X., Gao Z., Fu J., Yao S., Cheng L., Lian X.. Review of applications of 2D materials in memristive neuromorphic circuits. J. Mater. Sci., 2022, 57(8): 4915
https://doi.org/10.1007/s10853-022-06954-x
8 Wang Z., Wang L., Nagai M., Xie L., Yi M., Huang W.. Nanoionics‐enabled memristive devices: Strategies and materials for neuromorphic applications. Adv. Electron. Mater., 2017, 3(7): 1600510
https://doi.org/10.1002/aelm.201600510
9 Gao C., P. Lee M., Li M., C. Lee K., S. Yang F., Y. Lin C., Watanabe K., Taniguchi T., W. Chiu P., H. Lien C., W. Wu W., P. Lin S., Li W., F. Lin Y., Chu J.. Mimic drug dosage modulation for neuroplasticity based on charge‐trap layered electronics. Adv. Funct. Mater., 2021, 31(5): 2005182
https://doi.org/10.1002/adfm.202005182
10 Wang X., Shang Z., Zhang C., Kang J., Liu T., Wang X., Chen S., Liu H., Tang W., J. Zeng Y., Guo J., Cheng Z., Liu L., Pan D., Tong S., Wu B., Xie Y., Wang G., Deng J., Zhai T., X. Deng H., Hong J., Zhao J.. Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6. Nat. Commun., 2023, 14(1): 840
https://doi.org/10.1038/s41467-023-36512-1
11 Lin R., Shi G., Qiao F., Wang C., Wu S.. Research progress and applications of memristor emulator circuits. Microelectron. J., 2023, 133: 105702
https://doi.org/10.1016/j.mejo.2023.105702
12 Zuo Y., Lin H., Guo J., Yuan Y., He H., Li Y., Xiao Y., Li X., Zhu K., Wang T., Jing X., Wen C., Lanza M.. Effect of the pressure exerted by probe station tips in the electrical characteristics of memristors. Adv. Electron. Mater., 2020, 6(3): 1901226
https://doi.org/10.1002/aelm.201901226
13 Vaughan O., A history of memristors in five covers, Nat. Electron. 6(1), 7 (2023)
14 Chua L.. Memristor—The missing circuit element. IEEE Transactions on Circuit Theory, 1971, 18(5): 507
https://doi.org/10.1109/TCT.1971.1083337
15 Yan S., Zang J., Xu P., Zhu Y., Li G., Chen Q., Chen Z., Zhang Y., Tang M., Zheng X.. Recent progress in ferroelectric synapses and their applications. Sci. China Mater., 2023, 66(3): 877
https://doi.org/10.1007/s40843-022-2318-9
16 Chen W., Song L., Wang S., Zhang Z., Wang G., Hu G., Gao S.. Essential characteristics of memristors for neuromorphic computing. Adv. Electron. Mater., 2022, 9(2): 2200833
https://doi.org/10.1002/aelm.202200833
17 H. Sung S., Jeong Y., W. Oh J., J. Shin H., H. Lee J., J. Lee K.. Bio-plausible memristive neural components towards hardware implementation of brain-like intelligence. Mater. Today, 2023, 62: 251
https://doi.org/10.1016/j.mattod.2022.11.022
18 Yuan F.Li Y., A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor, Chaos 29(10), 101101 (2019)
19 Biolek Z., Biolek D., Biolková V., Kolka Z., Ascoli A., Tetzlaff R.. Analysis of memristors with nonlinear memristance versus state maps. Int. J. Circuit Theory Appl., 2017, 45(11): 1814
https://doi.org/10.1002/cta.2314
20 Di Ventra M., V. Pershin Y., O. Chua L.. Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proc. IEEE, 2009, 97(10): 1717
https://doi.org/10.1109/JPROC.2009.2021077
21 G. Kim S., S. Han J., Kim H., Y. Kim S., W. Jang H.. Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol., 2018, 3(12): 1800457
https://doi.org/10.1002/admt.201800457
22 Yan X., Yan H., Liu G., Zhao J., Zhao Z., Wang H., He H., Hao M., Li Z., Wang L., Wang W., Jian Z., Li J., Chen J.. Silicon-based epitaxial ferroelectric memristor for high temperature operation in self-assembled vertically aligned BaTiO3-CeO2 films. Nano Res., 2022, 15(10): 9654
https://doi.org/10.1007/s12274-022-4604-z
23 Liu Z., Wang H., Li M., Tao L., R. Paudel T., Yu H., Wang Y., Hong S., Zhang M., Ren Z., Xie Y., Y. Tsymbal E., Chen J., Zhang Z., Tian H.. In-plane charged domain walls with memristive behaviour in a ferroelectric film. Nature, 2023, 613(7945): 656
https://doi.org/10.1038/s41586-022-05503-5
24 Yan X.Jia X.Zhang Y.Shi S.Wang L. Shao Y.Sun Y.Sun S.Zhao Z.Zhao J. Sun J.Guo Z.Guan Z.Zhang Z.Han X. Chen J., A low-power Si:HfO2 ferroelectric tunnel memristor for spiking neural networks, Nano Energy 107, 108091 (2023)
25 W. Fang Y., J. Yang Z., Y. Liao R., T. Chen P., B. Liu C., Y. Huang K., H. Hsu H., H. Cheng C., C. Chou W., H. Lin S., Zhou Y.. Electrical characteristics investigation of ferroelectric memories using stacked and mixed hafnium zirconium oxides. Thin Solid Films, 2022, 757: 139395
https://doi.org/10.1016/j.tsf.2022.139395
26 S. Yang F., Li M., P. Lee M., Y. Ho I., Y. Chen J., Ling H., Li Y., K. Chang J., H. Yang S., M. Chang Y., C. Lee K., C. Chou Y., H. Ho C., Li W., H. Lien C., F. Lin Y.. Oxidation-boosted charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nat. Commun., 2020, 11(1): 2972
https://doi.org/10.1038/s41467-020-16766-9
27 Yin L., Cheng R., Wen Y., Zhai B., Jiang J., Wang H., Liu C., He J.. High-performance memristors based on ultrathin 2D copper chalcogenides. Adv. Mater., 2022, 34(9): 2108313
https://doi.org/10.1002/adma.202108313
28 Qian F.S. Chen R.Wang R.Wang J.Xie P. Y. Mao J.Lv Z.Ye S.Q. Yang J.Wang Z. Zhou Y.T. Han S., A leaky integrate-and-fire neuron based on hexagonal boron nitride (h-BN) monocrystalline memristor, IEEE Trans. Electron Dev. 69(11), 6049 (2022)
29 P. Wang Z., Xie P., Y. Mao J., Wang R., Q. Yang J., Feng Z., Zhou Y., C. Kuo C., T. Han S.. The floating body effect of a WSe2 transistor with volatile memory performance. Mater. Horiz., 2022, 9(7): 1878
https://doi.org/10.1039/D2MH00151A
30 Wang Z., Wang W., Liu P., Liu G., Li J., Zhao J., Zhou Z., Wang J., Pei Y., Zhao Z., Li J., Wang L., Jian Z., Wang Y., Guo J., Yan X.. Superlow power consumption artificial synapses based on WSe2 quantum dots memristor for neuromorphic computing. Research, 2022, 2022: 9754876
https://doi.org/10.34133/2022/9754876
31 Cheng B., Lei Z., Wu P.. Bio-derived crystalline silk nanosheets for versatile macroscopic assemblies. Nano Res., 2022, 15(6): 5538
https://doi.org/10.1007/s12274-022-4124-x
32 Lee W.Zhou Z.Chen X.Qin N.Jiang J. Liu K.Liu M.H. Tao T.Li W., A rewritable optical storage medium of silk proteins using near-field nano-optics, Nat. Nanotechnol. 15(11), 941 (2020)
33 Z. Li M., C. Guo L., L. Ding G., Zhou K., Y. Xiong Z., T. Han S., Zhou Y.. Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing. ACS Appl. Mater. Interfaces, 2021, 13(26): 30861
https://doi.org/10.1021/acsami.1c07928
34 F. Cheng X., H. Qian W., Wang J., Yu C., H. He J., Li H., F. Xu Q., Y. Chen D., J. Li N., M. Lu J.. Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage. Small, 2019, 15(49): 1905731
https://doi.org/10.1002/smll.201905731
35 Liu Q., Yue W., Li Y., Wang W., Xu L., Wang Y., Gao S., Zhang C., Kan H., Li C.. Multifunctional optoelectronic random access memory device based on surface‐plasma‐treated inorganic halide perovskite. Adv. Electron. Mater., 2021, 7(7): 2100366
https://doi.org/10.1002/aelm.202100366
36 Zhu X., Wang Q., D. Lu W.. Memristor networks for real-time neural activity analysis. Nat. Commun., 2020, 11(1): 2439
https://doi.org/10.1038/s41467-020-16261-1
37 Zhao J., Li W., Wang X., Wei X., Zhu H., Qu W., Men D., Gao Z., Wei B., Gao H., Wu Y.. Organic memristor based on high planar cyanostilbene/polymer composite films. Chem. Res. Chin. Univ., 2023, 39(1): 121
https://doi.org/10.1007/s40242-023-2352-6
38 Feng Z., Comí M., Ren Y., Sredojević D., Attar S., Yang J., Wang Z., S. Chen R., T. Han S., Al-Hashimi M., Zhou Y.. Organic memory devices and synaptic simulation based on indacenodithienothiophene (IDTT) copolymers with improved planarity. J. Mater. Chem. C, 2022, 10(43): 16604
https://doi.org/10.1039/D2TC03484K
39 Wang W., Zhou G., Wang Y., Yan B., Sun B., Duan S., Song Q.. Multiphotoconductance levels of the organic semiconductor of polyimide-based memristor induced by interface charges. J. Phys. Chem. Lett., 2022, 13(42): 9941
https://doi.org/10.1021/acs.jpclett.2c02651
40 Qi L., Ruan S., J. Zeng Y.. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater., 2021, 33(13): 2005098
https://doi.org/10.1002/adma.202005098
41 Wang C., You L., Cobden D., Wang J.. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater., 2023, 22(5): 542
https://doi.org/10.1038/s41563-022-01422-y
42 Wang J., Lou J., F. Wang J., B. Qu S., L. Du H., J. Cui T.. Ferroelectric composite artificially-structured functional material: Multifield control for tunable functional devices. J. Phys. D, 2022, 55(30): 303002
https://doi.org/10.1088/1361-6463/ac5e8b
43 Yang C., Wang C., Cheng Z.. Editorial for the special issue “Nanoscale ferroic materials — ferroelectric, piezoelectric, magnetic, and multiferroic materials”. Nanomaterials (Basel), 2022, 12(17): 2951
https://doi.org/10.3390/nano12172951
44 W. Martin L., M. Rappe A.. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater., 2016, 2(2): 16087
https://doi.org/10.1038/natrevmats.2016.87
45 Geirhos K., Reschke S., Ghara S., Krohns S., Lunkenheimer P., Kézsmárki I.. Optical, dielectric, and magnetoelectric properties of ferroelectric and antiferroelectric lacunar spinels. Phys. Status Solidi B, 2022, 259(5): 2100160
https://doi.org/10.1002/pssb.202100160
46 Xue F., He X., Liu W., Periyanagounder D., Zhang C., Chen M., H. Lin C., Luo L., Yengel E., Tung V., D. Anthopoulos T., J. Li L., H. He J., Zhang X.. Optoelectronic ferroelectric domain‐wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater., 2020, 30(52): 2004206
https://doi.org/10.1002/adfm.202004206
47 Nam J., Lee H., Lee M., H. Lee J.. Nonvolatile balanced ternary memory based on the multiferroelectric material GeSnTe2. J. Phys. Chem. Lett., 2019, 10(23): 7470
https://doi.org/10.1021/acs.jpclett.9b02956
48 Zhao D., Lenz T., H. Gelinck G., Groen P., Damjanovic D., M. de Leeuw D., Katsouras I.. Depolarization of multidomain ferroelectric materials. Nat. Commun., 2019, 10(1): 2547
https://doi.org/10.1038/s41467-019-10530-4
49 Baek S., H. Yoo H., H. Ju J., Sriboriboon P., Singh P., Niu J., H. Park J., Shin C., Kim Y., Lee S.. Ferroelectric field‐effect‐transistor integrated with ferroelectrics heterostructure. Adv. Sci. (Weinh.), 2022, 9(21): 2200566
https://doi.org/10.1002/advs.202200566
50 I. Khan A., Keshavarzi A., Datta S.. The future of ferroelectric field-effect transistor technology. Nat. Electron., 2020, 3(10): 588
https://doi.org/10.1038/s41928-020-00492-7
51 Cui C., Xue F., J. Hu W., J. Li L.. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl., 2018, 2(1): 18
https://doi.org/10.1038/s41699-018-0063-5
52 Dai M., Wang Z., Wang F., Qiu Y., Zhang J., Y. Xu C., Zhai T., Cao W., Fu Y., Jia D., Zhou Y., A. Hu P.. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett., 2019, 19(8): 5410
https://doi.org/10.1021/acs.nanolett.9b01907
53 Zhang D., Wu H., R. Bowen C., Yang Y.. Recent advances in pyroelectric materials and applications. Small, 2021, 17(51): 2103960
https://doi.org/10.1002/smll.202103960
54 Jiang J., Zhang L., Ming C., Zhou H., Bose P., Guo Y., Hu Y., Wang B., Chen Z., Jia R., Pendse S., Xiang Y., Xia Y., Lu Z., Wen X., Cai Y., Sun C., C. Wang G., M. Lu T., Gall D., Y. Sun Y., Koratkar N., Fohtung E., Shi Y., Shi J.. Giant pyroelectricity in nanomembranes. Nature, 2022, 607(7919): 480
https://doi.org/10.1038/s41586-022-04850-7
55 Li Y., Fu J., Mao X., Chen C., Liu H., Gong M., Zeng H.. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
https://doi.org/10.1038/s41467-021-26200-3
56 Wu D., Guo C., Zeng L., Ren X., Shi Z., Wen L., Chen Q., Zhang M., J. Li X., X. Shan C., Jie J.. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl., 2023, 12(1): 5
https://doi.org/10.1038/s41377-022-01047-5
57 Tang K., Wang Y., Gong C., Yin C., Zhang M., Wang X., Xiong J.. Electronic and photoelectronic memristors based on 2D materials. Adv. Electron. Mater., 2022, 8(4): 2101099
https://doi.org/10.1002/aelm.202101099
58 Duan H., Cheng S., Qin L., Zhang X., Xie B., Zhang Y., Jie W.. Low-power memristor based on two-dimensional materials. J. Phys. Chem. Lett., 2022, 13(31): 7130
https://doi.org/10.1021/acs.jpclett.2c01962
59 M. Tsikriteas Z., I. Roscow J., R. Bowen C., Khanbareh H.. Flexible ferroelectric wearable devices for medical applications. iScience, 2021, 24(1): 101987
https://doi.org/10.1016/j.isci.2020.101987
60 Mao X., Fu J., Chen C., Li Y., Liu H., Gong M., Zeng H.. Nonvolatile electric control of exciton complexes in monolayer MoSe2 with two-dimensional ferroelectric CuInP2S6. ACS Appl. Mater. Interfaces, 2021, 13(20): 24250
https://doi.org/10.1021/acsami.1c03067
61 Chang K., Liu J., Lin H., Wang N., Zhao K., Zhang A., Jin F., Zhong Y., Hu X., Duan W., Zhang Q., Fu L., K. Xue Q., Chen X., H. Ji S.. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296): 274
https://doi.org/10.1126/science.aad8609
62 C. Chiang C., Ostwal V., Wu P., S. Pang C., Zhang F., Chen Z., Appenzeller J.. Memory applications from 2D materials. Appl. Phys. Rev., 2021, 8(2): 021306
https://doi.org/10.1063/5.0038013
63 Wang L., Wang X., Zhang Y., Li R., Ma T., Leng K., Chen Z., Abdelwahab I., P. Loh K.. Exploring ferroelectric switching in α‐In2Se3 for neuromorphic computing. Adv. Funct. Mater., 2020, 30(45): 2004609
https://doi.org/10.1002/adfm.202004609
64 Liu Y., Zhou W., Tang G., Yang C., Wang X., Hong J.. Coexistence of magnetism and ferroelectricity in 3D transition-metal-doped SnTe monolayer. J. Phys. Chem. C, 2019, 123(47): 28919
https://doi.org/10.1021/acs.jpcc.9b08990
65 Li T., Cao J., Gao H., Wang Z., Geiwitz M., S. Burch K., Ling X.. Epitaxial atomic substitution for MoS2−MoN heterostructure synthesis. ACS Appl. Mater. Interfaces, 2022, 14(51): 57144
https://doi.org/10.1021/acsami.2c16425
66 Qiao H., Wang C., S. Choi W., H. Park M., Kim Y.. Ultra-thin ferroelectrics. Mater. Sci. Eng. Rep., 2021, 145: 100622
https://doi.org/10.1016/j.mser.2021.100622
67 K. Vasudevan R., Balke N., Maksymovych P., Jesse S., V. Kalinin S.. Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale. Appl. Phys. Rev., 2017, 4(2): 021302
https://doi.org/10.1063/1.4979015
68 Jiang B., Iocozzia J., Zhao L., Zhang H., W. Harn Y., Chen Y., Lin Z.. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev., 2019, 48(4): 1194
https://doi.org/10.1039/C8CS00583D
69 Zhao C., Huang Y., Wu J.. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat, 2020, 2(6): 1163
https://doi.org/10.1002/inf2.12147
70 Mikolajick T., H. Park M., Begon-Lours L., Slesazeck S.. From ferroelectric material optimization to neuromorphic devices. Adv. Mater., 2022, 35(27): 2206042
https://doi.org/10.1002/adma.202206042
71 Wu M., 100 years of ferroelectricity, Nat. Rev. Phys. 3(11), 726 (2021)
72 Sun H., Gu J., Li Y., R. Paudel T., Liu D., Wang J., Zang Y., Gu C., Yang J., Sun W., Gu Z., Y. Tsymbal E., Liu J., Huang H., Wu D., Nie Y.. Prominent size effects without a depolarization field observed in ultrathin ferroelectric oxide membranes. Phys. Rev. Lett., 2023, 130(12): 126801
https://doi.org/10.1103/PhysRevLett.130.126801
73 Jia X., Guo R., K. Tay B., Yan X.. Flexible ferroelectric devices: Status and applications. Adv. Funct. Mater., 2022, 32(45): 2205933
https://doi.org/10.1002/adfm.202205933
74 Zhang D., Schoenherr P., Sharma P., Seidel J.. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater., 2022, 8(1): 25
https://doi.org/10.1038/s41578-022-00484-3
75 L. Yuan Z.Sun Y.Wang D.Q. Chen K.M. Tang L., A review of ultra-thin ferroelectric films, J. Phys.: Condens. Matter 33(40), 403003 (2021)
76 Y. Li J., D. Li H., B. Niu X., M. Wang Z.. Low-dimensional In2Se3 compounds: From material preparations to device applications. ACS Nano, 2021, 15(12): 18683
https://doi.org/10.1021/acsnano.1c03836
77 Yang H., Q. Xiao M., Cui Y., F. Pan L., Zhao K., M. Wei Z.. Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric alpha-In2Se3 and WSe2. Sci. China Inform. Sci., 2019, 62(12): 220404
https://doi.org/10.1007/s11432-019-1474-3
78 Zhou S., You L., Zhou H., Pu Y., Gui Z., Wang J.. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
https://doi.org/10.1007/s11467-020-0986-0
79 Zhang D., D. Luo Z., Yao Y., Schoenherr P., Sha C., Pan Y., Sharma P., Alexe M., Seidel J.. Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP2S6. Nano Lett., 2021, 21(2): 995
https://doi.org/10.1021/acs.nanolett.0c04023
80 Lin B., Chaturvedi A., Di J., You L., Lai C., Duan R., Zhou J., Xu B., Chen Z., Song P., Peng J., Ma B., Liu H., Meng P., Yang G., Zhang H., Liu Z., Liu F.. Ferroelectric-field accelerated charge transfer in 2D CuInP2S6 heterostructure for enhanced photocatalytic H2 evolution. Nano Energy, 2020, 76: 104972
https://doi.org/10.1016/j.nanoen.2020.104972
81 Jindal A., Saha A., Li Z., Taniguchi T., Watanabe K., C. Hone J., Birol T., M. Fernandes R., R. Dean C., N. Pasupathy A., A. Rhodes D.. Coupled ferroelectricity and superconductivity in bilayer Td−MoTe2. Nature, 2023, 613(7942): 48
https://doi.org/10.1038/s41586-022-05521-3
82 Ahmed F., M. Shafi A., M. A. Mackenzie D., A. Qureshi M., A. Fernandez H., H. Yoon H., G. Uddin M., Kuittinen M., Sun Z., Lipsanen H.. Multilayer MoTe2 field-effect transistor at high temperatures. Adv. Mater. Interfaces, 2021, 8(22): 2100950
https://doi.org/10.1002/admi.202100950
83 R. Sokolov M.A. Tumbinskiy K.I. Zvyagina A.N. Senchikhin I.A. Averin A.E. Aleksandrov A.R. Tameev A.A. Ezhov A.A. Kalinina M., A new 2-methylimidazole-assisted liquid-exfoliation method for a rapid scalable fabrication of chemically pure MoS2 nanosheets, Colloid Interface Sci. Commun. 47, 100604 (2022)
84 N. Shirodkar S., V. Waghmare U.. Emergence of ferroelectricity at a metal−semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601
https://doi.org/10.1103/PhysRevLett.112.157601
85 Kumar S., Sharma A., T. Ho Y., Pandey A., Tomar M., K. Kapoor A., Y. Chang E., Gupta V.. High performance UV photodetector based on MoS2 layers grown by pulsed laser deposition technique. J. Alloys Compd., 2020, 835: 155222
https://doi.org/10.1016/j.jallcom.2020.155222
86 Zhu X., Li D., Liang X., D. Lu W.. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater., 2019, 18(2): 141
https://doi.org/10.1038/s41563-018-0248-5
87 Sun Y., Niu G., Ren W., Meng X., Zhao J., Luo W., G. Ye Z., H. Xie Y.. Hybrid system combining two-dimensional materials and ferroelectrics and its application in photodetection. ACS Nano, 2021, 15(7): 10982
https://doi.org/10.1021/acsnano.1c01735
88 T. Huang Y.K. Chen N.Z. Li Z.P. Wang X.B. Sun H. Zhang S.B. Li X., Two-dimensional In2Se3: A rising advanced material for ferroelectric data storage, InfoMat 4(8) (2022)
89 Chen C., Liu H., Lai Q., Mao X., Fu J., Fu Z., Zeng H.. Large-scale domain engineering in two-dimensional ferroelectric CuInP2S6 via giant flexoelectric effect. Nano Lett., 2022, 22(8): 3275
https://doi.org/10.1021/acs.nanolett.2c00130
90 Cui C., J. Hu W., Yan X., Addiego C., Gao W., Wang Y., Wang Z., Li L., Cheng Y., Li P., Zhang X., N. Alshareef H., Wu T., Zhu W., Pan X., J. Li L.. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett., 2018, 18(2): 1253
https://doi.org/10.1021/acs.nanolett.7b04852
91 Yang J., Zhou J., Lu J., Luo Z., Yang J., Shen L.. Giant tunnelling electroresistance through 2D sliding ferroelectric materials. Mater. Horiz., 2022, 9(5): 1422
https://doi.org/10.1039/D2MH00080F
92 Li L., Wu M.. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 2017, 11(6): 6382
https://doi.org/10.1021/acsnano.7b02756
93 V. Stern M., Waschitz Y., Cao W., Nevo I., Watanabe K., Taniguchi T., Sela E., Urbakh M., Hod O., B. Shalom M.. Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372(6549): 1462
https://doi.org/10.1126/science.abe8177
94 Hao X., Wang H., Zhang H.. Engineering application of nanomaterial and ferroelectric domain polarization to the dynamic structure of the surrounding rock of heavy-duty railway with small clear intersection tunnel. Adv. Mater. Sci. Eng., 2023, 2023: 8354167
https://doi.org/10.1155/2023/8354167
95 Schultheiß J., Picht G., Wang J., A. Genenko Y., Q. Chen L., E. Daniels J., Koruza J.. Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics. Prog. Mater. Sci., 2023, 136: 101101
https://doi.org/10.1016/j.pmatsci.2023.101101
96 Weymann C., Lichtensteiger C., Fernandez‐Peña S., B. Naden A., R. Dedon L., W. Martin L., M. Triscone J., Paruch P.. Full control of polarization in ferroelectric thin films using growth temperature to modulate defects. Adv. Electron. Mater., 2020, 6(12): 2000852
https://doi.org/10.1002/aelm.202000852
97 Wang W., Li J., Liu H., Ge S.. Advancing versatile ferroelectric materials toward biomedical applications. Adv. Sci. (Weinh.), 2021, 8(1): 2003074
https://doi.org/10.1002/advs.202003074
98 Ding W., Lu J., Tang X., Kou L., Liu L.. Ferroelectric materials and their applications in activation of small molecules. ACS Omega, 2023, 8(7): 6164
https://doi.org/10.1021/acsomega.2c06828
99 Guo Y., Zhu H., Wang Q.. Piezoelectric effects in surface-engineered two-dimensional group III nitrides. ACS Appl. Mater. Interfaces, 2019, 11(1): 1033
https://doi.org/10.1021/acsami.8b17341
100 Katsouras I., Asadi K., Li M., B. van Driel T., S. Kjaer K., Zhao D., Lenz T., Gu Y., W. Blom P., Damjanovic D., Nielsen M., M. de Leeuw D.. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater., 2016, 15(1): 78
https://doi.org/10.1038/nmat4423
101 M. Yang M., D. Luo Z., Mi Z., Zhao J., P. E S., Alexe M.. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature, 2020, 584(7821): 377
https://doi.org/10.1038/s41586-020-2602-4
102 Kumbhakar P., C. Gowda C., S. Tiwary C.. Advance optical properties and emerging applications of 2D materials. Front. Mater., 2021, 8: 721514
https://doi.org/10.3389/fmats.2021.721514
103 An J., Zhao X., Zhang Y., Liu M., Yuan J., Sun X., Zhang Z., Wang B., Li S., Li D.. Perspectives of 2D materials for optoelectronic integration. Adv. Funct. Mater., 2021, 32(14): 2110119
https://doi.org/10.1002/adfm.202110119
104 Qian Q.Lei J.Wei J.Zhang Z.Tang G. Zhong K.Zheng Z.J. Chen K., 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current, npj 2D Mater. Appl. 3, 24 (2019)
105 Afaneh T., K. Sahoo P., A P. Nobrega I, Xin Y., R. Gutiérrez H.. Laser‐assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater., 2018, 28(37): 1802949
https://doi.org/10.1002/adfm.201802949
106 Shautsova V., Sinha S., Hou L., Zhang Q., Tweedie M., Lu Y., Sheng Y., F. Porter B., Bhaskaran H., H. Warner J.. Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano, 2019, 13(12): 14162
https://doi.org/10.1021/acsnano.9b06892
107 G. Naumis G., Barraza-Lopez S., Oliva-Leyva M., Terrones H.. Electronic and optical properties of strained graphene and other strained 2D materials: A review. Rep. Prog. Phys., 2017, 80(9): 096501
https://doi.org/10.1088/1361-6633/aa74ef
108 Qiu H., Zhou W., Guo W.. Nanopores in graphene and other 2D materials: A decade’s journey toward sequencing. ACS Nano, 2021, 15(12): 18848
https://doi.org/10.1021/acsnano.1c07960
109 Ju H., Lee Y., T. Kim K., H. Choi I., J. Roh C., Son S., Park P., H. Kim J., S. Jung T., H. Kim J., H. Kim K., G. Park J., S. Lee J.. Possible persistence of multiferroic order down to bilayer limit of van der Waals material NiI2. Nano Lett., 2021, 21(12): 5126
https://doi.org/10.1021/acs.nanolett.1c01095
110 Kruse M., Petralanda U., N. Gjerding M., W. Jacobsen K., S. Thygesen K., Olsen T.. Two-dimensional ferroelectrics from high throughput computational screening. npj Comput Mater., 2023, 9(1): 45
https://doi.org/10.1038/s41524-023-00999-5
111 Liu J., T. Pantelides S.. Pyroelectric response and temperature-induced α-β phase transitions in α-In2Se3 and other α-III2VI3 (III  =  Al, Ga, In; VI  =  S, Se) monolayers. 2D Mater., 2019, 6(2): 025001
https://doi.org/10.1088/2053-1583/aaf946
112 Finkel P., G. Cain M., Mion T., Staruch M., Kolacz J., Mantri S., Newkirk C., Kavetsky K., Thornton J., Xia J., Currie M., Hase T., Moser A., Thompson P., A. Lucas C., Fitch A., M. Cairney J., D. Moss S., G. A. Nisbet A., E. Daniels J., E. Lofland S.. Simultaneous large optical and piezoelectric effects induced by domain reconfiguration related to ferroelectric phase transitions. Adv. Mater., 2022, 34(7): 2106827
https://doi.org/10.1002/adma.202106827
113 Gabel M., Gu Y.. Understanding microscopic operating mechanisms of a van der Waals planar ferroelectric memristor. Adv. Funct. Mater., 2021, 31(9): 2009999
https://doi.org/10.1002/adfm.202009999
114 Liu K., Zhang T., Dang B., Bao L., Xu L., Cheng C., Yang Z., Huang R., Yang Y.. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron., 2022, 5(11): 761
https://doi.org/10.1038/s41928-022-00847-2
115 Xiao S., Li X., Zhang W., Xiang Y., Li T., Niu X., S. Chen J., Yan Q.. Bilateral interfaces in In2Se3−CoIn2−CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano, 2021, 15(8): 13307
https://doi.org/10.1021/acsnano.1c03056
116 Xue R., Shao Z., Yang X., Zhang Y., Fu Z., Huang Y., Feng W.. Self-powered photoelectrochemical photodetectors based on electrochemically exfoliated In2Se3 nanosheets. ACS Appl. Nano Mater., 2022, 5(5): 7036
https://doi.org/10.1021/acsanm.2c00990
117 Moshwan R., Yang L., Zou J., G. Chen Z.. Eco‐friendly SnTe thermoelectric materials: Progress and future challenges. Adv. Funct. Mater., 2017, 27(43): 1703278
https://doi.org/10.1002/adfm.201703278
118 Chang K., Liu J., Lin H., Wang N., Zhao K., Zhang A., Jin F., Zhong Y., Hu X., Duan W., Zhang Q., Fu L., K. Xue Q., Chen X., H. Ji S.. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296): 274
https://doi.org/10.1126/science.aad8609
119 R. Guo C., C. Qin B., Y. Wang D., D. Zhao L.. Investigation on halogen-doped n-type SnTe thermoelectrics. Rare Met., 2022, 41(11): 3803
https://doi.org/10.1007/s12598-022-02076-0
120 Xiong F., B. Tan H., Xia C., Chen Y.. Strain and doping in two-dimensional SnTe nanosheets: Implications for thermoelectric conversion. ACS Appl. Nano Mater., 2020, 3(1): 114
https://doi.org/10.1021/acsanm.9b01793
121 Pang H., Qiu Y., Wang D., Qin Y., Huang R., Yang Z., Zhang X., D. Zhao L.. Realizing N-type SnTe thermoelectrics with competitive performance through suppressing Sn vacancies. J. Am. Chem. Soc., 2021, 143(23): 8538
https://doi.org/10.1021/jacs.1c02346
122 Chen J., Zhu C., Cao G., Liu H., Bian R., Wang J., Li C., Chen J., Fu Q., Liu Q., Meng P., Li W., Liu F., Liu Z.. Mimicking neuroplasticity via ion migration in van der Waals layered copper indium thiophosphate. Adv. Mater., 2022, 34(25): 2104676
https://doi.org/10.1002/adma.202104676
123 Jiang X., Wang X., Wang X., Zhang X., Niu R., Deng J., Xu S., Lun Y., Liu Y., Xia T., Lu J., Hong J.. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat. Commun., 2022, 13(1): 574
https://doi.org/10.1038/s41467-022-28235-6
124 Wijethunge D., Zhang L., Du A.. Prediction of two-dimensional ferroelectric metal Mxenes. J. Mater. Chem. C, 2021, 9(34): 11343
https://doi.org/10.1039/D1TC02213J
125 Tahir R., A. Zahra S., Naeem U., Akinwande D., Rizwan S.. First observation on emergence of strong room-temperature ferroelectricity and multiferroicity in 2D-Ti3C2Tx free-standing MXene film. RSC Adv., 2022, 12(38): 24571
https://doi.org/10.1039/D2RA04428E
126 Tahir R., Fatima S., A. Zahra S., Akinwande D., Li H., H. M. Jafri S., Rizwan S.. Multiferroic and ferroelectric phases revealed in 2D Ti3C2Tx MXene film for high performance resistive data storage devices. npj 2D Mater. Appl., 2023, 7(1): 7
https://doi.org/10.1038/s41699-023-00368-2
127 Yuan S., Luo X., L. Chan H., Xiao C., Dai Y., Xie M., Hao J.. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
https://doi.org/10.1038/s41467-019-09669-x
128 Weston A., G. Castanon E., Enaldiev V., Ferreira F., Bhattacharjee S., Xu S., Corte-Leon H., Wu Z., Clark N., Summerfield A., Hashimoto T., Gao Y., Wang W., Hamer M., Read H., Fumagalli L., V. Kretinin A., J. Haigh S., Kazakova O., K. Geim A., I. Fal’ko V., Gorbachev R.. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol., 2022, 17(4): 390
https://doi.org/10.1038/s41565-022-01072-w
129 Han M., Wang C., Niu K., Yang Q., Wang C., Zhang X., Dai J., Wang Y., Ma X., Wang J., Kang L., Ji W., Lin J.. Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite. Nat. Commun., 2022, 13(1): 5903
https://doi.org/10.1038/s41467-022-33617-x
130 Fei R., Kang W., Yang L.. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett., 2016, 117(9): 097601
https://doi.org/10.1103/PhysRevLett.117.097601
131 Chang K., S. P. Parkin S.. Experimental formation of monolayer group-IV monochalcogenides. J. Appl. Phys., 2020, 127(22): 220902
https://doi.org/10.1063/5.0012300
132 Higashitarumizu N., Kawamoto H., J. Lee C., H. Lin B., H. Chu F., Yonemori I., Nishimura T., Wakabayashi K., H. Chang W., Nagashio K.. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun., 2020, 11(1): 2428
https://doi.org/10.1038/s41467-020-16291-9
133 F. Lu X., Zhang Y., Wang N., Luo S., Peng K., Wang L., Chen H., Gao W., H. Chen X., Bao Y., Liang G., P. Loh K.. Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett., 2021, 21(20): 8800
https://doi.org/10.1021/acs.nanolett.1c03169
134 Luo Y., Mao N., Ding D., H. Chiu M., Ji X., Watanabe K., Taniguchi T., Tung V., Park H., Kim P., Kong J., L. Wilson W.. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol., 2023, 18(4): 350
https://doi.org/10.1038/s41565-022-01312-z
135 Chang K., Kuster F., J. Miller B., R. Ji J., L. Zhang J., Sessi P., Barraza-Lopez S., S. P. Parkin S.. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett., 2020, 20(9): 6590
https://doi.org/10.1021/acs.nanolett.0c02357
136 Li H., Zhang Q., C. R. Yap C., K. Tay B., H. T. Edwin T., Olivier A., Baillargeat D.. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 2012, 22(7): 1385
https://doi.org/10.1002/adfm.201102111
137 Gao E., Z. Lin S., Qin Z., J. Buehler M., Q. Feng X., Xu Z.. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids, 2018, 115: 248
https://doi.org/10.1016/j.jmps.2018.03.014
138 S. Novoselov K., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
139 N. Coleman J., Lotya M., O’Neill A., D. Bergin S., J. King P.. et al.. Liquid exfoliation of layered materials. Science, 2013, 331(6017): 568
https://doi.org/10.1126/science.1194975
140 Chang C., Chen W., Chen Y., Chen Y., Chen Y.. et al.. Recent progress on two-dimensional materials. Acta Phys.-Chim. Sin., 2021, 37(12): 2108017
https://doi.org/10.3866/PKU.WHXB202108017
141 Lin Z., Liu Y., Halim U., Ding M., Liu Y., Wang Y., Jia C., Chen P., Duan X., Wang C., Song F., Li M., Wan C., Huang Y., Duan X.. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562(7726): 254
https://doi.org/10.1038/s41586-018-0574-4
142 N. Coleman J., Lotya M., O’Neill A., D. Bergin S., J. King P.. et al.. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568
https://doi.org/10.1126/science.1194975
143 Cai X., Luo Y., Liu B., M. Cheng H.. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev., 2018, 47(16): 6224
https://doi.org/10.1039/C8CS00254A
144 Chhowalla M., S. Shin H., Eda G., J. Li L., P. Loh K., Zhang H.. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5(4): 263
https://doi.org/10.1038/nchem.1589
145 D. Yao J., Q. Zheng Z., W. Yang G.. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci., 2019, 106: 100573
https://doi.org/10.1016/j.pmatsci.2019.100573
146 A. Shepelin N.P. Tehrani Z.Ohannessian N.W. Schneider C.Pergolesi D.Lippert T., A practical guide to pulsed laser deposition, Chem. Soc. Rev. 52(7), 2294 (2023)
147 Rashid R.C. C. Ling F.P. Wang S.Xiao K.Cui X. Rao Q.K. Ki D., IP and OOP ferroelectricity in hexagonal γ-In2Se3 nanoflakes grown by chemical vapor deposition, J. Alloys Compd. 870, 159344 (2021)
148 Zhou J., Zeng Q., Lv D., Sun L., Niu L., Fu W., Liu F., Shen Z., Jin C., Liu Z.. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett., 2015, 15(10): 6400
https://doi.org/10.1021/acs.nanolett.5b01590
149 Huang Y., H. Pan Y., Yang R., H. Bao L., Meng L.. et al.. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun., 2020, 11(1): 2453
https://doi.org/10.1038/s41467-020-16266-w
150 Gao J., Zheng Y., Yu W., Wang Y., Jin T., Pan X., P. Loh K., Chen W.. Intrinsic polarization coupling in 2D α‐In2Se3 toward artificial synapse with multimode operations. SmartMat, 2021, 2(1): 88
https://doi.org/10.1002/smm2.1020
151 Wang Z., Zhu W.. Tunable band alignments in 2D ferroelectric α-In2Se3 based van der Waals heterostructures. ACS Appl. Electron. Mater., 2021, 3(11): 5114
https://doi.org/10.1021/acsaelm.1c00855
152 Lv B., Xue W., Yan Z., Yang R., Wu H., Wang P., Zhang Y., Hou J., Zhu W., Xu X.. Control of photocurrent and multi-state memory by polar order engineering in 2H-stacked α-In2Se3 ferroelectric. Sci. China Mater., 2022, 65(6): 1639
https://doi.org/10.1007/s40843-021-1920-9
153 Zhang Y., Wang L., Chen H., Ma T., Lu X., P. Loh K.. Analog and digital mode α-In2Se3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater., 2021, 7(12): 2100609
https://doi.org/10.1002/aelm.202100609
154 Wan S., Peng Q., Wu Z., Zhou Y.. Nonvolatile ferroelectric memory with lateral β/α/β In2Se3 heterojunctions. ACS Appl. Mater. Interfaces, 2022, 14(22): 25693
https://doi.org/10.1021/acsami.2c04032
155 Liu Y.Wu Y.Wang B.Chen H.Yi D. Liu K., Versatile memristor implemented in van der Waals CuInP2S6, Nano Res. 16(6), (2023)
156 Li B., Li S., Wang H., Chen L., Liu L., Feng X., Li Y., Chen J., Gong X., W. Ang K.. An electronic synapse based on 2D ferroelectric CuInP2S6. Adv. Electron. Mater., 2020, 6(12): 2000760
https://doi.org/10.1002/aelm.202000760
157 Li P., Chaturvedi A., Zhou H., Zhang G., Li Q., Xue J., Zhou Z., Wang S., Zhou K., Weng Y., Zheng F., Shi Z., H. T. Teo E., Fang L., You L.. Electrostatic coupling in MoS2/CuInP2S6 ferroelectric vdW heterostructures. Adv. Funct. Mater., 2022, 32(29): 2201359
https://doi.org/10.1002/adfm.202201359
158 R. Jian S., Y. Juang J., W. Luo C., A. Ku S., H. Wu K.. Nanomechanical properties of GaSe thin films deposited on Si(111) substrates by pulsed laser deposition. J. Alloys Compd., 2012, 542: 124
https://doi.org/10.1016/j.jallcom.2012.07.089
159 C. Kwon K., Zhang Y., Wang L., Yu W., Wang X., H. Park I., S. Choi H., Ma T., Zhu Z., Tian B., Su C., P. Loh K.. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano, 2020, 14(6): 7628
https://doi.org/10.1021/acsnano.0c03869
160 C. Shen P.Lin Y.Wang H.H. Park J.S. Leong W. Y. Lu A.Palacios T.Kong J., CVD technology for 2-D materials, IEEE Trans. Electron Dev. 65(10), 4040 (2018)
161 Vernardou D.. Special issue: Advances in chemical vapor deposition. Materials (Basel), 2020, 13(18): 4167
https://doi.org/10.3390/ma13184167
162 F. Io W., Yuan S., Y. Pang S., W. Wong L., Zhao J., Hao J.. Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers. Nano Res., 2020, 13(7): 1897
https://doi.org/10.1007/s12274-020-2640-0
163 Muratore C., A. Voevodin A., R. Glavin N.. Physical vapor deposition of 2D van der Waals materials: A review. Thin Solid Films, 2019, 688: 137500
https://doi.org/10.1016/j.tsf.2019.137500
164 Liu B., Han Q., Li L., Zheng S., Shu Y., A. Pedersen J., Wang Z.. Synergistic effect of metal cations and visible light on 2D MoS2 nanosheet aggregation. Environ. Sci. Technol., 2021, 55(24): 16379
https://doi.org/10.1021/acs.est.1c03576
165 D. Taylor P., A. Tawfik S., J. S. Spencer M.. Ferroelectric van der Waals heterostructures of CuInP2S6 for non-volatile memory device applications. Nanotechnology, 2023, 34(6): 065701
https://doi.org/10.1088/1361-6528/aca0a5
166 Yang W., Cheng B., Hou J., Deng J., Ding X., Sun J., Z. Liu J.. Writing-speed dependent thresholds of ferroelectric domain switching in monolayer α-In2Se3. Small Methods, 2023, 7(6): 2300050
https://doi.org/10.1002/smtd.202300050
167 Yan Y., Xiang M., Wang X., Xu T., Xuan F.. Ferroelectric domain wall in two-dimensional GeS. J. Appl. Phys., 2022, 132(7): 074302
https://doi.org/10.1063/5.0094689
168 Xue F., He X., Ma Y., Zheng D., Zhang C., J. Li L., H. He J., Yu B., Zhang X.. Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions. Nat. Commun., 2021, 12(1): 7291
https://doi.org/10.1038/s41467-021-27617-6
169 Zhou S., Liao L., Chen J., Yu Y., Lv Z., Yang M., Yao B., Zhang S., Peng G., Huang Z., Liu Y., Qi X., Wang G.. Periodic ferroelectric stripe domains in α-In2Se3 nanoflakes grown via reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces, 2023, 15(19): 23613
https://doi.org/10.1021/acsami.3c01886
170 Zhai Y., Xie P., Hu J., Chen X., Feng Z., Lv Z., Ding G., Zhou K., Zhou Y., T. Han S.. Reconfigurable 2D-ferroelectric platform for neuromorphic computing. Phys. Rev. Appl., 2023, 10(1): 011408
https://doi.org/10.1063/5.0131838
171 Li W.Guo Y. Luo Z.Wu S.Han B.Hu W.You L. Watanabe K.Taniguchi T.Alava T.Chen J.Gao P. Li X.Wei Z. W. Wang L.Y. Liu Y.Zhao C.Zhan X.V. Han Z. Wang H., A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory, Adv. Mater. 35(5), 2208266 (2023)
172 Wang Y.Li W.Guo Y.Huang X.Luo Z. Wu S.Wang H. Chen J.Li X.Zhan X.Wang H., A gate-tunable artificial synapse based on vertically assembled van der Waals ferroelectric heterojunction, J. Mater. Sci. Technol. 128, 239 (2022)
173 Abnavi A., Ahmadi R., Hasani A., Fawzy M., R. Mohammadzadeh M., De Silva T., Yu N., M. Adachi M.. Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications. ACS Appl. Mater. Interfaces, 2021, 13(38): 45843
https://doi.org/10.1021/acsami.1c11359
174 Wang K., Chen J., Yan X.. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy, 2021, 79: 105453
https://doi.org/10.1016/j.nanoen.2020.105453
175 Yoon Y., Ganapathi K., Salahuddin S.. How good can monolayer MoS2 transistors be. Nano Lett., 2011, 11(9): 3768
https://doi.org/10.1021/nl2018178
176 B. Loginov A., V. Fedotov P., N. Bokova-Sirosh S., V. Sapkov I., N. Chmelenin D., R. Ismagilov R., D. Obraztsova E., A. Loginov B., N. Obraztsov A.. Synthesis, structural, and photoluminescence properties of MoS2 nanowall films. Phys. Status Solidi B, 2022, 260(6): 2200481
https://doi.org/10.1002/pssb.202200481
177 Shimada T.Minaguro K.Xu T.Wang J.Kitamura T., Ab initio study of ferroelectric critical size of SnTe low-dimensional nanostructures, Nanomaterials (Basel) 10(4), 732 (2020)
[1] Chaowei He, Jiantian Zhang, Li Gong, Peng Yu. Room-temperature ferroelectricity in van der Waals SnP2S6[J]. Front. Phys. , 2024, 19(4): 43202-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed