|
|
Recent advances in memristors based on two-dimensional ferroelectric materials |
Wenbiao Niu1, Guanglong Ding1, Ziqi Jia1, Xin-Qi Ma1, JiYu Zhao1, Kui Zhou1, Su-Ting Han2, Chi-Ching Kuo3( ), Ye Zhou1( ) |
1. Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China 2. College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China 3. Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, Taipei University of Technology, Taipei 10608, Taiwan, China |
|
|
Abstract In this big data era, the explosive growth of information puts ultra-high demands on the data storage/computing, such as high computing power, low energy consumption, and excellent stability. However, facing this challenge, the traditional von Neumann architecture-based computing system is out of its depth owing to the separated memory and data processing unit architecture. One of the most effective ways to solve this challenge is building brain inspired computing system with in-memory computing and parallel processing ability based on neuromorphic devices. Therefore, there is a research trend toward the memristors, that can be applied to build neuromorphic computing systems due to their large switching ratio, high storage density, low power consumption, and high stability. Two-dimensional (2D) ferroelectric materials, as novel types of functional materials, show great potential in the preparations of memristors because of the atomic scale thickness, high carrier mobility, mechanical flexibility, and thermal stability. 2D ferroelectric materials can realize resistive switching (RS) because of the presence of natural dipoles whose direction can be flipped with the change of the applied electric field thus producing different polarizations, therefore, making them powerful candidates for future data storage and computing. In this review article, we introduce the physical mechanisms, characterizations, and synthetic methods of 2D ferroelectric materials, and then summarize the applications of 2D ferroelectric materials in memristors for memory and synaptic devices. At last, we deliberate the advantages and future challenges of 2D ferroelectric materials in the application of memristors devices.
|
Keywords
two-dimensional ferroelectric materials
synthesis strategies
memristors
artificial synapses
|
Corresponding Author(s):
Chi-Ching Kuo,Ye Zhou
|
Issue Date: 13 September 2023
|
|
1 |
Ajayan J., Nirmal D., K. Jebalin I. V B., Sreejith S.. Advances in neuromorphic devices for the hardware implementation of neuromorphic computing systems for future artificial intelligence applications: A critical review. Microelectron. J., 2022, 130: 105634
https://doi.org/10.1016/j.mejo.2022.105634
|
2 |
Sun B., Ranjan S., Zhou G., Guo T., Xia Y., Wei L., N. Zhou Y., A. Wu Y.. Multistate resistive switching behaviors for neuromorphic computing in memristor. Mater. Today Adv., 2021, 9: 100125
https://doi.org/10.1016/j.mtadv.2020.100125
|
3 |
Sun K., Chen J., Yan X.. The future of memristors: Materials engineering and neural networks. Adv. Funct. Mater., 2021, 31(8): 2006773
https://doi.org/10.1002/adfm.202006773
|
4 |
Misra D.. Special issue of Interface on Neuromorphic Computing: An introduction and state of the field. Electrochem. Soc. Interface, 2023, 32(1): 45
https://doi.org/10.1149/2.F08231IF
|
5 |
Ielmini D., Wang Z., Liu Y.. Brain-inspired computing via memory device physics. APL Mater., 2021, 9(5): 050702
https://doi.org/10.1063/5.0047641
|
6 |
Q. Yang J., Wang R., Ren Y., Y. Mao J., P. Wang Z., Zhou Y., T. Han S.. Neuromorphic engineering: From biological to spike-based hardware nervous systems. Adv. Mater., 2020, 32(52): 2003610
https://doi.org/10.1002/adma.202003610
|
7 |
Wang L., Shen X., Gao Z., Fu J., Yao S., Cheng L., Lian X.. Review of applications of 2D materials in memristive neuromorphic circuits. J. Mater. Sci., 2022, 57(8): 4915
https://doi.org/10.1007/s10853-022-06954-x
|
8 |
Wang Z., Wang L., Nagai M., Xie L., Yi M., Huang W.. Nanoionics‐enabled memristive devices: Strategies and materials for neuromorphic applications. Adv. Electron. Mater., 2017, 3(7): 1600510
https://doi.org/10.1002/aelm.201600510
|
9 |
Gao C., P. Lee M., Li M., C. Lee K., S. Yang F., Y. Lin C., Watanabe K., Taniguchi T., W. Chiu P., H. Lien C., W. Wu W., P. Lin S., Li W., F. Lin Y., Chu J.. Mimic drug dosage modulation for neuroplasticity based on charge‐trap layered electronics. Adv. Funct. Mater., 2021, 31(5): 2005182
https://doi.org/10.1002/adfm.202005182
|
10 |
Wang X., Shang Z., Zhang C., Kang J., Liu T., Wang X., Chen S., Liu H., Tang W., J. Zeng Y., Guo J., Cheng Z., Liu L., Pan D., Tong S., Wu B., Xie Y., Wang G., Deng J., Zhai T., X. Deng H., Hong J., Zhao J.. Electrical and magnetic anisotropies in van der Waals multiferroic CuCrP2S6. Nat. Commun., 2023, 14(1): 840
https://doi.org/10.1038/s41467-023-36512-1
|
11 |
Lin R., Shi G., Qiao F., Wang C., Wu S.. Research progress and applications of memristor emulator circuits. Microelectron. J., 2023, 133: 105702
https://doi.org/10.1016/j.mejo.2023.105702
|
12 |
Zuo Y., Lin H., Guo J., Yuan Y., He H., Li Y., Xiao Y., Li X., Zhu K., Wang T., Jing X., Wen C., Lanza M.. Effect of the pressure exerted by probe station tips in the electrical characteristics of memristors. Adv. Electron. Mater., 2020, 6(3): 1901226
https://doi.org/10.1002/aelm.201901226
|
13 |
Vaughan O., A history of memristors in five covers, Nat. Electron. 6(1), 7 (2023)
|
14 |
Chua L.. Memristor—The missing circuit element. IEEE Transactions on Circuit Theory, 1971, 18(5): 507
https://doi.org/10.1109/TCT.1971.1083337
|
15 |
Yan S., Zang J., Xu P., Zhu Y., Li G., Chen Q., Chen Z., Zhang Y., Tang M., Zheng X.. Recent progress in ferroelectric synapses and their applications. Sci. China Mater., 2023, 66(3): 877
https://doi.org/10.1007/s40843-022-2318-9
|
16 |
Chen W., Song L., Wang S., Zhang Z., Wang G., Hu G., Gao S.. Essential characteristics of memristors for neuromorphic computing. Adv. Electron. Mater., 2022, 9(2): 2200833
https://doi.org/10.1002/aelm.202200833
|
17 |
H. Sung S., Jeong Y., W. Oh J., J. Shin H., H. Lee J., J. Lee K.. Bio-plausible memristive neural components towards hardware implementation of brain-like intelligence. Mater. Today, 2023, 62: 251
https://doi.org/10.1016/j.mattod.2022.11.022
|
18 |
Yuan F.Li Y., A chaotic circuit constructed by a memristor, a memcapacitor and a meminductor, Chaos 29(10), 101101 (2019)
|
19 |
Biolek Z., Biolek D., Biolková V., Kolka Z., Ascoli A., Tetzlaff R.. Analysis of memristors with nonlinear memristance versus state maps. Int. J. Circuit Theory Appl., 2017, 45(11): 1814
https://doi.org/10.1002/cta.2314
|
20 |
Di Ventra M., V. Pershin Y., O. Chua L.. Circuit elements with memory: Memristors, memcapacitors, and meminductors. Proc. IEEE, 2009, 97(10): 1717
https://doi.org/10.1109/JPROC.2009.2021077
|
21 |
G. Kim S., S. Han J., Kim H., Y. Kim S., W. Jang H.. Recent advances in memristive materials for artificial synapses. Adv. Mater. Technol., 2018, 3(12): 1800457
https://doi.org/10.1002/admt.201800457
|
22 |
Yan X., Yan H., Liu G., Zhao J., Zhao Z., Wang H., He H., Hao M., Li Z., Wang L., Wang W., Jian Z., Li J., Chen J.. Silicon-based epitaxial ferroelectric memristor for high temperature operation in self-assembled vertically aligned BaTiO3-CeO2 films. Nano Res., 2022, 15(10): 9654
https://doi.org/10.1007/s12274-022-4604-z
|
23 |
Liu Z., Wang H., Li M., Tao L., R. Paudel T., Yu H., Wang Y., Hong S., Zhang M., Ren Z., Xie Y., Y. Tsymbal E., Chen J., Zhang Z., Tian H.. In-plane charged domain walls with memristive behaviour in a ferroelectric film. Nature, 2023, 613(7945): 656
https://doi.org/10.1038/s41586-022-05503-5
|
24 |
Yan X.Jia X.Zhang Y.Shi S.Wang L. Shao Y.Sun Y.Sun S.Zhao Z.Zhao J. Sun J.Guo Z.Guan Z.Zhang Z.Han X. Chen J., A low-power Si:HfO2 ferroelectric tunnel memristor for spiking neural networks, Nano Energy 107, 108091 (2023)
|
25 |
W. Fang Y., J. Yang Z., Y. Liao R., T. Chen P., B. Liu C., Y. Huang K., H. Hsu H., H. Cheng C., C. Chou W., H. Lin S., Zhou Y.. Electrical characteristics investigation of ferroelectric memories using stacked and mixed hafnium zirconium oxides. Thin Solid Films, 2022, 757: 139395
https://doi.org/10.1016/j.tsf.2022.139395
|
26 |
S. Yang F., Li M., P. Lee M., Y. Ho I., Y. Chen J., Ling H., Li Y., K. Chang J., H. Yang S., M. Chang Y., C. Lee K., C. Chou Y., H. Ho C., Li W., H. Lien C., F. Lin Y.. Oxidation-boosted charge trapping in ultra-sensitive van der Waals materials for artificial synaptic features. Nat. Commun., 2020, 11(1): 2972
https://doi.org/10.1038/s41467-020-16766-9
|
27 |
Yin L., Cheng R., Wen Y., Zhai B., Jiang J., Wang H., Liu C., He J.. High-performance memristors based on ultrathin 2D copper chalcogenides. Adv. Mater., 2022, 34(9): 2108313
https://doi.org/10.1002/adma.202108313
|
28 |
Qian F.S. Chen R.Wang R.Wang J.Xie P. Y. Mao J.Lv Z.Ye S.Q. Yang J.Wang Z. Zhou Y.T. Han S., A leaky integrate-and-fire neuron based on hexagonal boron nitride (h-BN) monocrystalline memristor, IEEE Trans. Electron Dev. 69(11), 6049 (2022)
|
29 |
P. Wang Z., Xie P., Y. Mao J., Wang R., Q. Yang J., Feng Z., Zhou Y., C. Kuo C., T. Han S.. The floating body effect of a WSe2 transistor with volatile memory performance. Mater. Horiz., 2022, 9(7): 1878
https://doi.org/10.1039/D2MH00151A
|
30 |
Wang Z., Wang W., Liu P., Liu G., Li J., Zhao J., Zhou Z., Wang J., Pei Y., Zhao Z., Li J., Wang L., Jian Z., Wang Y., Guo J., Yan X.. Superlow power consumption artificial synapses based on WSe2 quantum dots memristor for neuromorphic computing. Research, 2022, 2022: 9754876
https://doi.org/10.34133/2022/9754876
|
31 |
Cheng B., Lei Z., Wu P.. Bio-derived crystalline silk nanosheets for versatile macroscopic assemblies. Nano Res., 2022, 15(6): 5538
https://doi.org/10.1007/s12274-022-4124-x
|
32 |
Lee W.Zhou Z.Chen X.Qin N.Jiang J. Liu K.Liu M.H. Tao T.Li W., A rewritable optical storage medium of silk proteins using near-field nano-optics, Nat. Nanotechnol. 15(11), 941 (2020)
|
33 |
Z. Li M., C. Guo L., L. Ding G., Zhou K., Y. Xiong Z., T. Han S., Zhou Y.. Inorganic perovskite quantum dot-based strain sensors for data storage and in-sensor computing. ACS Appl. Mater. Interfaces, 2021, 13(26): 30861
https://doi.org/10.1021/acsami.1c07928
|
34 |
F. Cheng X., H. Qian W., Wang J., Yu C., H. He J., Li H., F. Xu Q., Y. Chen D., J. Li N., M. Lu J.. Environmentally robust memristor enabled by lead-free double perovskite for high-performance information storage. Small, 2019, 15(49): 1905731
https://doi.org/10.1002/smll.201905731
|
35 |
Liu Q., Yue W., Li Y., Wang W., Xu L., Wang Y., Gao S., Zhang C., Kan H., Li C.. Multifunctional optoelectronic random access memory device based on surface‐plasma‐treated inorganic halide perovskite. Adv. Electron. Mater., 2021, 7(7): 2100366
https://doi.org/10.1002/aelm.202100366
|
36 |
Zhu X., Wang Q., D. Lu W.. Memristor networks for real-time neural activity analysis. Nat. Commun., 2020, 11(1): 2439
https://doi.org/10.1038/s41467-020-16261-1
|
37 |
Zhao J., Li W., Wang X., Wei X., Zhu H., Qu W., Men D., Gao Z., Wei B., Gao H., Wu Y.. Organic memristor based on high planar cyanostilbene/polymer composite films. Chem. Res. Chin. Univ., 2023, 39(1): 121
https://doi.org/10.1007/s40242-023-2352-6
|
38 |
Feng Z., Comí M., Ren Y., Sredojević D., Attar S., Yang J., Wang Z., S. Chen R., T. Han S., Al-Hashimi M., Zhou Y.. Organic memory devices and synaptic simulation based on indacenodithienothiophene (IDTT) copolymers with improved planarity. J. Mater. Chem. C, 2022, 10(43): 16604
https://doi.org/10.1039/D2TC03484K
|
39 |
Wang W., Zhou G., Wang Y., Yan B., Sun B., Duan S., Song Q.. Multiphotoconductance levels of the organic semiconductor of polyimide-based memristor induced by interface charges. J. Phys. Chem. Lett., 2022, 13(42): 9941
https://doi.org/10.1021/acs.jpclett.2c02651
|
40 |
Qi L., Ruan S., J. Zeng Y.. Review on recent developments in 2D ferroelectrics: Theories and applications. Adv. Mater., 2021, 33(13): 2005098
https://doi.org/10.1002/adma.202005098
|
41 |
Wang C., You L., Cobden D., Wang J.. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater., 2023, 22(5): 542
https://doi.org/10.1038/s41563-022-01422-y
|
42 |
Wang J., Lou J., F. Wang J., B. Qu S., L. Du H., J. Cui T.. Ferroelectric composite artificially-structured functional material: Multifield control for tunable functional devices. J. Phys. D, 2022, 55(30): 303002
https://doi.org/10.1088/1361-6463/ac5e8b
|
43 |
Yang C., Wang C., Cheng Z.. Editorial for the special issue “Nanoscale ferroic materials — ferroelectric, piezoelectric, magnetic, and multiferroic materials”. Nanomaterials (Basel), 2022, 12(17): 2951
https://doi.org/10.3390/nano12172951
|
44 |
W. Martin L., M. Rappe A.. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater., 2016, 2(2): 16087
https://doi.org/10.1038/natrevmats.2016.87
|
45 |
Geirhos K., Reschke S., Ghara S., Krohns S., Lunkenheimer P., Kézsmárki I.. Optical, dielectric, and magnetoelectric properties of ferroelectric and antiferroelectric lacunar spinels. Phys. Status Solidi B, 2022, 259(5): 2100160
https://doi.org/10.1002/pssb.202100160
|
46 |
Xue F., He X., Liu W., Periyanagounder D., Zhang C., Chen M., H. Lin C., Luo L., Yengel E., Tung V., D. Anthopoulos T., J. Li L., H. He J., Zhang X.. Optoelectronic ferroelectric domain‐wall memories made from a single van der Waals ferroelectric. Adv. Funct. Mater., 2020, 30(52): 2004206
https://doi.org/10.1002/adfm.202004206
|
47 |
Nam J., Lee H., Lee M., H. Lee J.. Nonvolatile balanced ternary memory based on the multiferroelectric material GeSnTe2. J. Phys. Chem. Lett., 2019, 10(23): 7470
https://doi.org/10.1021/acs.jpclett.9b02956
|
48 |
Zhao D., Lenz T., H. Gelinck G., Groen P., Damjanovic D., M. de Leeuw D., Katsouras I.. Depolarization of multidomain ferroelectric materials. Nat. Commun., 2019, 10(1): 2547
https://doi.org/10.1038/s41467-019-10530-4
|
49 |
Baek S., H. Yoo H., H. Ju J., Sriboriboon P., Singh P., Niu J., H. Park J., Shin C., Kim Y., Lee S.. Ferroelectric field‐effect‐transistor integrated with ferroelectrics heterostructure. Adv. Sci. (Weinh.), 2022, 9(21): 2200566
https://doi.org/10.1002/advs.202200566
|
50 |
I. Khan A., Keshavarzi A., Datta S.. The future of ferroelectric field-effect transistor technology. Nat. Electron., 2020, 3(10): 588
https://doi.org/10.1038/s41928-020-00492-7
|
51 |
Cui C., Xue F., J. Hu W., J. Li L.. Two-dimensional materials with piezoelectric and ferroelectric functionalities. npj 2D Mater. Appl., 2018, 2(1): 18
https://doi.org/10.1038/s41699-018-0063-5
|
52 |
Dai M., Wang Z., Wang F., Qiu Y., Zhang J., Y. Xu C., Zhai T., Cao W., Fu Y., Jia D., Zhou Y., A. Hu P.. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Lett., 2019, 19(8): 5410
https://doi.org/10.1021/acs.nanolett.9b01907
|
53 |
Zhang D., Wu H., R. Bowen C., Yang Y.. Recent advances in pyroelectric materials and applications. Small, 2021, 17(51): 2103960
https://doi.org/10.1002/smll.202103960
|
54 |
Jiang J., Zhang L., Ming C., Zhou H., Bose P., Guo Y., Hu Y., Wang B., Chen Z., Jia R., Pendse S., Xiang Y., Xia Y., Lu Z., Wen X., Cai Y., Sun C., C. Wang G., M. Lu T., Gall D., Y. Sun Y., Koratkar N., Fohtung E., Shi Y., Shi J.. Giant pyroelectricity in nanomembranes. Nature, 2022, 607(7919): 480
https://doi.org/10.1038/s41586-022-04850-7
|
55 |
Li Y., Fu J., Mao X., Chen C., Liu H., Gong M., Zeng H.. Enhanced bulk photovoltaic effect in two-dimensional ferroelectric CuInP2S6. Nat. Commun., 2021, 12(1): 5896
https://doi.org/10.1038/s41467-021-26200-3
|
56 |
Wu D., Guo C., Zeng L., Ren X., Shi Z., Wen L., Chen Q., Zhang M., J. Li X., X. Shan C., Jie J.. Phase-controlled van der Waals growth of wafer-scale 2D MoTe2 layers for integrated high-sensitivity broadband infrared photodetection. Light Sci. Appl., 2023, 12(1): 5
https://doi.org/10.1038/s41377-022-01047-5
|
57 |
Tang K., Wang Y., Gong C., Yin C., Zhang M., Wang X., Xiong J.. Electronic and photoelectronic memristors based on 2D materials. Adv. Electron. Mater., 2022, 8(4): 2101099
https://doi.org/10.1002/aelm.202101099
|
58 |
Duan H., Cheng S., Qin L., Zhang X., Xie B., Zhang Y., Jie W.. Low-power memristor based on two-dimensional materials. J. Phys. Chem. Lett., 2022, 13(31): 7130
https://doi.org/10.1021/acs.jpclett.2c01962
|
59 |
M. Tsikriteas Z., I. Roscow J., R. Bowen C., Khanbareh H.. Flexible ferroelectric wearable devices for medical applications. iScience, 2021, 24(1): 101987
https://doi.org/10.1016/j.isci.2020.101987
|
60 |
Mao X., Fu J., Chen C., Li Y., Liu H., Gong M., Zeng H.. Nonvolatile electric control of exciton complexes in monolayer MoSe2 with two-dimensional ferroelectric CuInP2S6. ACS Appl. Mater. Interfaces, 2021, 13(20): 24250
https://doi.org/10.1021/acsami.1c03067
|
61 |
Chang K., Liu J., Lin H., Wang N., Zhao K., Zhang A., Jin F., Zhong Y., Hu X., Duan W., Zhang Q., Fu L., K. Xue Q., Chen X., H. Ji S.. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296): 274
https://doi.org/10.1126/science.aad8609
|
62 |
C. Chiang C., Ostwal V., Wu P., S. Pang C., Zhang F., Chen Z., Appenzeller J.. Memory applications from 2D materials. Appl. Phys. Rev., 2021, 8(2): 021306
https://doi.org/10.1063/5.0038013
|
63 |
Wang L., Wang X., Zhang Y., Li R., Ma T., Leng K., Chen Z., Abdelwahab I., P. Loh K.. Exploring ferroelectric switching in α‐In2Se3 for neuromorphic computing. Adv. Funct. Mater., 2020, 30(45): 2004609
https://doi.org/10.1002/adfm.202004609
|
64 |
Liu Y., Zhou W., Tang G., Yang C., Wang X., Hong J.. Coexistence of magnetism and ferroelectricity in 3D transition-metal-doped SnTe monolayer. J. Phys. Chem. C, 2019, 123(47): 28919
https://doi.org/10.1021/acs.jpcc.9b08990
|
65 |
Li T., Cao J., Gao H., Wang Z., Geiwitz M., S. Burch K., Ling X.. Epitaxial atomic substitution for MoS2−MoN heterostructure synthesis. ACS Appl. Mater. Interfaces, 2022, 14(51): 57144
https://doi.org/10.1021/acsami.2c16425
|
66 |
Qiao H., Wang C., S. Choi W., H. Park M., Kim Y.. Ultra-thin ferroelectrics. Mater. Sci. Eng. Rep., 2021, 145: 100622
https://doi.org/10.1016/j.mser.2021.100622
|
67 |
K. Vasudevan R., Balke N., Maksymovych P., Jesse S., V. Kalinin S.. Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale. Appl. Phys. Rev., 2017, 4(2): 021302
https://doi.org/10.1063/1.4979015
|
68 |
Jiang B., Iocozzia J., Zhao L., Zhang H., W. Harn Y., Chen Y., Lin Z.. Barium titanate at the nanoscale: controlled synthesis and dielectric and ferroelectric properties. Chem. Soc. Rev., 2019, 48(4): 1194
https://doi.org/10.1039/C8CS00583D
|
69 |
Zhao C., Huang Y., Wu J.. Multifunctional barium titanate ceramics via chemical modification tuning phase structure. InfoMat, 2020, 2(6): 1163
https://doi.org/10.1002/inf2.12147
|
70 |
Mikolajick T., H. Park M., Begon-Lours L., Slesazeck S.. From ferroelectric material optimization to neuromorphic devices. Adv. Mater., 2022, 35(27): 2206042
https://doi.org/10.1002/adma.202206042
|
71 |
Wu M., 100 years of ferroelectricity, Nat. Rev. Phys. 3(11), 726 (2021)
|
72 |
Sun H., Gu J., Li Y., R. Paudel T., Liu D., Wang J., Zang Y., Gu C., Yang J., Sun W., Gu Z., Y. Tsymbal E., Liu J., Huang H., Wu D., Nie Y.. Prominent size effects without a depolarization field observed in ultrathin ferroelectric oxide membranes. Phys. Rev. Lett., 2023, 130(12): 126801
https://doi.org/10.1103/PhysRevLett.130.126801
|
73 |
Jia X., Guo R., K. Tay B., Yan X.. Flexible ferroelectric devices: Status and applications. Adv. Funct. Mater., 2022, 32(45): 2205933
https://doi.org/10.1002/adfm.202205933
|
74 |
Zhang D., Schoenherr P., Sharma P., Seidel J.. Ferroelectric order in van der Waals layered materials. Nat. Rev. Mater., 2022, 8(1): 25
https://doi.org/10.1038/s41578-022-00484-3
|
75 |
L. Yuan Z.Sun Y.Wang D.Q. Chen K.M. Tang L., A review of ultra-thin ferroelectric films, J. Phys.: Condens. Matter 33(40), 403003 (2021)
|
76 |
Y. Li J., D. Li H., B. Niu X., M. Wang Z.. Low-dimensional In2Se3 compounds: From material preparations to device applications. ACS Nano, 2021, 15(12): 18683
https://doi.org/10.1021/acsnano.1c03836
|
77 |
Yang H., Q. Xiao M., Cui Y., F. Pan L., Zhao K., M. Wei Z.. Nonvolatile memristor based on heterostructure of 2D room-temperature ferroelectric alpha-In2Se3 and WSe2. Sci. China Inform. Sci., 2019, 62(12): 220404
https://doi.org/10.1007/s11432-019-1474-3
|
78 |
Zhou S., You L., Zhou H., Pu Y., Gui Z., Wang J.. Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
https://doi.org/10.1007/s11467-020-0986-0
|
79 |
Zhang D., D. Luo Z., Yao Y., Schoenherr P., Sha C., Pan Y., Sharma P., Alexe M., Seidel J.. Anisotropic ion migration and electronic conduction in van der Waals ferroelectric CuInP2S6. Nano Lett., 2021, 21(2): 995
https://doi.org/10.1021/acs.nanolett.0c04023
|
80 |
Lin B., Chaturvedi A., Di J., You L., Lai C., Duan R., Zhou J., Xu B., Chen Z., Song P., Peng J., Ma B., Liu H., Meng P., Yang G., Zhang H., Liu Z., Liu F.. Ferroelectric-field accelerated charge transfer in 2D CuInP2S6 heterostructure for enhanced photocatalytic H2 evolution. Nano Energy, 2020, 76: 104972
https://doi.org/10.1016/j.nanoen.2020.104972
|
81 |
Jindal A., Saha A., Li Z., Taniguchi T., Watanabe K., C. Hone J., Birol T., M. Fernandes R., R. Dean C., N. Pasupathy A., A. Rhodes D.. Coupled ferroelectricity and superconductivity in bilayer Td−MoTe2. Nature, 2023, 613(7942): 48
https://doi.org/10.1038/s41586-022-05521-3
|
82 |
Ahmed F., M. Shafi A., M. A. Mackenzie D., A. Qureshi M., A. Fernandez H., H. Yoon H., G. Uddin M., Kuittinen M., Sun Z., Lipsanen H.. Multilayer MoTe2 field-effect transistor at high temperatures. Adv. Mater. Interfaces, 2021, 8(22): 2100950
https://doi.org/10.1002/admi.202100950
|
83 |
R. Sokolov M.A. Tumbinskiy K.I. Zvyagina A.N. Senchikhin I.A. Averin A.E. Aleksandrov A.R. Tameev A.A. Ezhov A.A. Kalinina M., A new 2-methylimidazole-assisted liquid-exfoliation method for a rapid scalable fabrication of chemically pure MoS2 nanosheets, Colloid Interface Sci. Commun. 47, 100604 (2022)
|
84 |
N. Shirodkar S., V. Waghmare U.. Emergence of ferroelectricity at a metal−semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601
https://doi.org/10.1103/PhysRevLett.112.157601
|
85 |
Kumar S., Sharma A., T. Ho Y., Pandey A., Tomar M., K. Kapoor A., Y. Chang E., Gupta V.. High performance UV photodetector based on MoS2 layers grown by pulsed laser deposition technique. J. Alloys Compd., 2020, 835: 155222
https://doi.org/10.1016/j.jallcom.2020.155222
|
86 |
Zhu X., Li D., Liang X., D. Lu W.. Ionic modulation and ionic coupling effects in MoS2 devices for neuromorphic computing. Nat. Mater., 2019, 18(2): 141
https://doi.org/10.1038/s41563-018-0248-5
|
87 |
Sun Y., Niu G., Ren W., Meng X., Zhao J., Luo W., G. Ye Z., H. Xie Y.. Hybrid system combining two-dimensional materials and ferroelectrics and its application in photodetection. ACS Nano, 2021, 15(7): 10982
https://doi.org/10.1021/acsnano.1c01735
|
88 |
T. Huang Y.K. Chen N.Z. Li Z.P. Wang X.B. Sun H. Zhang S.B. Li X., Two-dimensional In2Se3: A rising advanced material for ferroelectric data storage, InfoMat 4(8) (2022)
|
89 |
Chen C., Liu H., Lai Q., Mao X., Fu J., Fu Z., Zeng H.. Large-scale domain engineering in two-dimensional ferroelectric CuInP2S6 via giant flexoelectric effect. Nano Lett., 2022, 22(8): 3275
https://doi.org/10.1021/acs.nanolett.2c00130
|
90 |
Cui C., J. Hu W., Yan X., Addiego C., Gao W., Wang Y., Wang Z., Li L., Cheng Y., Li P., Zhang X., N. Alshareef H., Wu T., Zhu W., Pan X., J. Li L.. Intercorrelated in-plane and out-of-plane ferroelectricity in ultrathin two-dimensional layered semiconductor In2Se3. Nano Lett., 2018, 18(2): 1253
https://doi.org/10.1021/acs.nanolett.7b04852
|
91 |
Yang J., Zhou J., Lu J., Luo Z., Yang J., Shen L.. Giant tunnelling electroresistance through 2D sliding ferroelectric materials. Mater. Horiz., 2022, 9(5): 1422
https://doi.org/10.1039/D2MH00080F
|
92 |
Li L., Wu M.. Binary compound bilayer and multilayer with vertical polarizations: Two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano, 2017, 11(6): 6382
https://doi.org/10.1021/acsnano.7b02756
|
93 |
V. Stern M., Waschitz Y., Cao W., Nevo I., Watanabe K., Taniguchi T., Sela E., Urbakh M., Hod O., B. Shalom M.. Interfacial ferroelectricity by van der Waals sliding. Science, 2021, 372(6549): 1462
https://doi.org/10.1126/science.abe8177
|
94 |
Hao X., Wang H., Zhang H.. Engineering application of nanomaterial and ferroelectric domain polarization to the dynamic structure of the surrounding rock of heavy-duty railway with small clear intersection tunnel. Adv. Mater. Sci. Eng., 2023, 2023: 8354167
https://doi.org/10.1155/2023/8354167
|
95 |
Schultheiß J., Picht G., Wang J., A. Genenko Y., Q. Chen L., E. Daniels J., Koruza J.. Ferroelectric polycrystals: Structural and microstructural levers for property-engineering via domain-wall dynamics. Prog. Mater. Sci., 2023, 136: 101101
https://doi.org/10.1016/j.pmatsci.2023.101101
|
96 |
Weymann C., Lichtensteiger C., Fernandez‐Peña S., B. Naden A., R. Dedon L., W. Martin L., M. Triscone J., Paruch P.. Full control of polarization in ferroelectric thin films using growth temperature to modulate defects. Adv. Electron. Mater., 2020, 6(12): 2000852
https://doi.org/10.1002/aelm.202000852
|
97 |
Wang W., Li J., Liu H., Ge S.. Advancing versatile ferroelectric materials toward biomedical applications. Adv. Sci. (Weinh.), 2021, 8(1): 2003074
https://doi.org/10.1002/advs.202003074
|
98 |
Ding W., Lu J., Tang X., Kou L., Liu L.. Ferroelectric materials and their applications in activation of small molecules. ACS Omega, 2023, 8(7): 6164
https://doi.org/10.1021/acsomega.2c06828
|
99 |
Guo Y., Zhu H., Wang Q.. Piezoelectric effects in surface-engineered two-dimensional group III nitrides. ACS Appl. Mater. Interfaces, 2019, 11(1): 1033
https://doi.org/10.1021/acsami.8b17341
|
100 |
Katsouras I., Asadi K., Li M., B. van Driel T., S. Kjaer K., Zhao D., Lenz T., Gu Y., W. Blom P., Damjanovic D., Nielsen M., M. de Leeuw D.. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). Nat. Mater., 2016, 15(1): 78
https://doi.org/10.1038/nmat4423
|
101 |
M. Yang M., D. Luo Z., Mi Z., Zhao J., P. E S., Alexe M.. Piezoelectric and pyroelectric effects induced by interface polar symmetry. Nature, 2020, 584(7821): 377
https://doi.org/10.1038/s41586-020-2602-4
|
102 |
Kumbhakar P., C. Gowda C., S. Tiwary C.. Advance optical properties and emerging applications of 2D materials. Front. Mater., 2021, 8: 721514
https://doi.org/10.3389/fmats.2021.721514
|
103 |
An J., Zhao X., Zhang Y., Liu M., Yuan J., Sun X., Zhang Z., Wang B., Li S., Li D.. Perspectives of 2D materials for optoelectronic integration. Adv. Funct. Mater., 2021, 32(14): 2110119
https://doi.org/10.1002/adfm.202110119
|
104 |
Qian Q.Lei J.Wei J.Zhang Z.Tang G. Zhong K.Zheng Z.J. Chen K., 2D materials as semiconducting gate for field-effect transistors with inherent over-voltage protection and boosted ON-current, npj 2D Mater. Appl. 3, 24 (2019)
|
105 |
Afaneh T., K. Sahoo P., A P. Nobrega I, Xin Y., R. Gutiérrez H.. Laser‐assisted chemical modification of monolayer transition metal dichalcogenides. Adv. Funct. Mater., 2018, 28(37): 1802949
https://doi.org/10.1002/adfm.201802949
|
106 |
Shautsova V., Sinha S., Hou L., Zhang Q., Tweedie M., Lu Y., Sheng Y., F. Porter B., Bhaskaran H., H. Warner J.. Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano, 2019, 13(12): 14162
https://doi.org/10.1021/acsnano.9b06892
|
107 |
G. Naumis G., Barraza-Lopez S., Oliva-Leyva M., Terrones H.. Electronic and optical properties of strained graphene and other strained 2D materials: A review. Rep. Prog. Phys., 2017, 80(9): 096501
https://doi.org/10.1088/1361-6633/aa74ef
|
108 |
Qiu H., Zhou W., Guo W.. Nanopores in graphene and other 2D materials: A decade’s journey toward sequencing. ACS Nano, 2021, 15(12): 18848
https://doi.org/10.1021/acsnano.1c07960
|
109 |
Ju H., Lee Y., T. Kim K., H. Choi I., J. Roh C., Son S., Park P., H. Kim J., S. Jung T., H. Kim J., H. Kim K., G. Park J., S. Lee J.. Possible persistence of multiferroic order down to bilayer limit of van der Waals material NiI2. Nano Lett., 2021, 21(12): 5126
https://doi.org/10.1021/acs.nanolett.1c01095
|
110 |
Kruse M., Petralanda U., N. Gjerding M., W. Jacobsen K., S. Thygesen K., Olsen T.. Two-dimensional ferroelectrics from high throughput computational screening. npj Comput Mater., 2023, 9(1): 45
https://doi.org/10.1038/s41524-023-00999-5
|
111 |
Liu J., T. Pantelides S.. Pyroelectric response and temperature-induced α-β phase transitions in α-In2Se3 and other α-III2VI3 (III = Al, Ga, In; VI = S, Se) monolayers. 2D Mater., 2019, 6(2): 025001
https://doi.org/10.1088/2053-1583/aaf946
|
112 |
Finkel P., G. Cain M., Mion T., Staruch M., Kolacz J., Mantri S., Newkirk C., Kavetsky K., Thornton J., Xia J., Currie M., Hase T., Moser A., Thompson P., A. Lucas C., Fitch A., M. Cairney J., D. Moss S., G. A. Nisbet A., E. Daniels J., E. Lofland S.. Simultaneous large optical and piezoelectric effects induced by domain reconfiguration related to ferroelectric phase transitions. Adv. Mater., 2022, 34(7): 2106827
https://doi.org/10.1002/adma.202106827
|
113 |
Gabel M., Gu Y.. Understanding microscopic operating mechanisms of a van der Waals planar ferroelectric memristor. Adv. Funct. Mater., 2021, 31(9): 2009999
https://doi.org/10.1002/adfm.202009999
|
114 |
Liu K., Zhang T., Dang B., Bao L., Xu L., Cheng C., Yang Z., Huang R., Yang Y.. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron., 2022, 5(11): 761
https://doi.org/10.1038/s41928-022-00847-2
|
115 |
Xiao S., Li X., Zhang W., Xiang Y., Li T., Niu X., S. Chen J., Yan Q.. Bilateral interfaces in In2Se3−CoIn2−CoSe2 heterostructures for high-rate reversible sodium storage. ACS Nano, 2021, 15(8): 13307
https://doi.org/10.1021/acsnano.1c03056
|
116 |
Xue R., Shao Z., Yang X., Zhang Y., Fu Z., Huang Y., Feng W.. Self-powered photoelectrochemical photodetectors based on electrochemically exfoliated In2Se3 nanosheets. ACS Appl. Nano Mater., 2022, 5(5): 7036
https://doi.org/10.1021/acsanm.2c00990
|
117 |
Moshwan R., Yang L., Zou J., G. Chen Z.. Eco‐friendly SnTe thermoelectric materials: Progress and future challenges. Adv. Funct. Mater., 2017, 27(43): 1703278
https://doi.org/10.1002/adfm.201703278
|
118 |
Chang K., Liu J., Lin H., Wang N., Zhao K., Zhang A., Jin F., Zhong Y., Hu X., Duan W., Zhang Q., Fu L., K. Xue Q., Chen X., H. Ji S.. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science, 2016, 353(6296): 274
https://doi.org/10.1126/science.aad8609
|
119 |
R. Guo C., C. Qin B., Y. Wang D., D. Zhao L.. Investigation on halogen-doped n-type SnTe thermoelectrics. Rare Met., 2022, 41(11): 3803
https://doi.org/10.1007/s12598-022-02076-0
|
120 |
Xiong F., B. Tan H., Xia C., Chen Y.. Strain and doping in two-dimensional SnTe nanosheets: Implications for thermoelectric conversion. ACS Appl. Nano Mater., 2020, 3(1): 114
https://doi.org/10.1021/acsanm.9b01793
|
121 |
Pang H., Qiu Y., Wang D., Qin Y., Huang R., Yang Z., Zhang X., D. Zhao L.. Realizing N-type SnTe thermoelectrics with competitive performance through suppressing Sn vacancies. J. Am. Chem. Soc., 2021, 143(23): 8538
https://doi.org/10.1021/jacs.1c02346
|
122 |
Chen J., Zhu C., Cao G., Liu H., Bian R., Wang J., Li C., Chen J., Fu Q., Liu Q., Meng P., Li W., Liu F., Liu Z.. Mimicking neuroplasticity via ion migration in van der Waals layered copper indium thiophosphate. Adv. Mater., 2022, 34(25): 2104676
https://doi.org/10.1002/adma.202104676
|
123 |
Jiang X., Wang X., Wang X., Zhang X., Niu R., Deng J., Xu S., Lun Y., Liu Y., Xia T., Lu J., Hong J.. Manipulation of current rectification in van der Waals ferroionic CuInP2S6. Nat. Commun., 2022, 13(1): 574
https://doi.org/10.1038/s41467-022-28235-6
|
124 |
Wijethunge D., Zhang L., Du A.. Prediction of two-dimensional ferroelectric metal Mxenes. J. Mater. Chem. C, 2021, 9(34): 11343
https://doi.org/10.1039/D1TC02213J
|
125 |
Tahir R., A. Zahra S., Naeem U., Akinwande D., Rizwan S.. First observation on emergence of strong room-temperature ferroelectricity and multiferroicity in 2D-Ti3C2Tx free-standing MXene film. RSC Adv., 2022, 12(38): 24571
https://doi.org/10.1039/D2RA04428E
|
126 |
Tahir R., Fatima S., A. Zahra S., Akinwande D., Li H., H. M. Jafri S., Rizwan S.. Multiferroic and ferroelectric phases revealed in 2D Ti3C2Tx MXene film for high performance resistive data storage devices. npj 2D Mater. Appl., 2023, 7(1): 7
https://doi.org/10.1038/s41699-023-00368-2
|
127 |
Yuan S., Luo X., L. Chan H., Xiao C., Dai Y., Xie M., Hao J.. Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
https://doi.org/10.1038/s41467-019-09669-x
|
128 |
Weston A., G. Castanon E., Enaldiev V., Ferreira F., Bhattacharjee S., Xu S., Corte-Leon H., Wu Z., Clark N., Summerfield A., Hashimoto T., Gao Y., Wang W., Hamer M., Read H., Fumagalli L., V. Kretinin A., J. Haigh S., Kazakova O., K. Geim A., I. Fal’ko V., Gorbachev R.. Interfacial ferroelectricity in marginally twisted 2D semiconductors. Nat. Nanotechnol., 2022, 17(4): 390
https://doi.org/10.1038/s41565-022-01072-w
|
129 |
Han M., Wang C., Niu K., Yang Q., Wang C., Zhang X., Dai J., Wang Y., Ma X., Wang J., Kang L., Ji W., Lin J.. Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite. Nat. Commun., 2022, 13(1): 5903
https://doi.org/10.1038/s41467-022-33617-x
|
130 |
Fei R., Kang W., Yang L.. Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett., 2016, 117(9): 097601
https://doi.org/10.1103/PhysRevLett.117.097601
|
131 |
Chang K., S. P. Parkin S.. Experimental formation of monolayer group-IV monochalcogenides. J. Appl. Phys., 2020, 127(22): 220902
https://doi.org/10.1063/5.0012300
|
132 |
Higashitarumizu N., Kawamoto H., J. Lee C., H. Lin B., H. Chu F., Yonemori I., Nishimura T., Wakabayashi K., H. Chang W., Nagashio K.. Purely in-plane ferroelectricity in monolayer SnS at room temperature. Nat. Commun., 2020, 11(1): 2428
https://doi.org/10.1038/s41467-020-16291-9
|
133 |
F. Lu X., Zhang Y., Wang N., Luo S., Peng K., Wang L., Chen H., Gao W., H. Chen X., Bao Y., Liang G., P. Loh K.. Exploring low power and ultrafast memristor on p-type van der Waals SnS. Nano Lett., 2021, 21(20): 8800
https://doi.org/10.1021/acs.nanolett.1c03169
|
134 |
Luo Y., Mao N., Ding D., H. Chiu M., Ji X., Watanabe K., Taniguchi T., Tung V., Park H., Kim P., Kong J., L. Wilson W.. Electrically switchable anisotropic polariton propagation in a ferroelectric van der Waals semiconductor. Nat. Nanotechnol., 2023, 18(4): 350
https://doi.org/10.1038/s41565-022-01312-z
|
135 |
Chang K., Kuster F., J. Miller B., R. Ji J., L. Zhang J., Sessi P., Barraza-Lopez S., S. P. Parkin S.. Microscopic manipulation of ferroelectric domains in SnSe monolayers at room temperature. Nano Lett., 2020, 20(9): 6590
https://doi.org/10.1021/acs.nanolett.0c02357
|
136 |
Li H., Zhang Q., C. R. Yap C., K. Tay B., H. T. Edwin T., Olivier A., Baillargeat D.. From bulk to monolayer MoS2: Evolution of Raman scattering. Adv. Funct. Mater., 2012, 22(7): 1385
https://doi.org/10.1002/adfm.201102111
|
137 |
Gao E., Z. Lin S., Qin Z., J. Buehler M., Q. Feng X., Xu Z.. Mechanical exfoliation of two-dimensional materials. J. Mech. Phys. Solids, 2018, 115: 248
https://doi.org/10.1016/j.jmps.2018.03.014
|
138 |
S. Novoselov K., V. Morozov S., Jiang D., Zhang Y., V. Dubonos S., V. Grigorieva I., A. Firsov A.. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
|
139 |
N. Coleman J., Lotya M., O’Neill A., D. Bergin S., J. King P.. et al.. Liquid exfoliation of layered materials. Science, 2013, 331(6017): 568
https://doi.org/10.1126/science.1194975
|
140 |
Chang C., Chen W., Chen Y., Chen Y., Chen Y.. et al.. Recent progress on two-dimensional materials. Acta Phys.-Chim. Sin., 2021, 37(12): 2108017
https://doi.org/10.3866/PKU.WHXB202108017
|
141 |
Lin Z., Liu Y., Halim U., Ding M., Liu Y., Wang Y., Jia C., Chen P., Duan X., Wang C., Song F., Li M., Wan C., Huang Y., Duan X.. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature, 2018, 562(7726): 254
https://doi.org/10.1038/s41586-018-0574-4
|
142 |
N. Coleman J., Lotya M., O’Neill A., D. Bergin S., J. King P.. et al.. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331(6017): 568
https://doi.org/10.1126/science.1194975
|
143 |
Cai X., Luo Y., Liu B., M. Cheng H.. Preparation of 2D material dispersions and their applications. Chem. Soc. Rev., 2018, 47(16): 6224
https://doi.org/10.1039/C8CS00254A
|
144 |
Chhowalla M., S. Shin H., Eda G., J. Li L., P. Loh K., Zhang H.. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem., 2013, 5(4): 263
https://doi.org/10.1038/nchem.1589
|
145 |
D. Yao J., Q. Zheng Z., W. Yang G.. Production of large-area 2D materials for high-performance photodetectors by pulsed-laser deposition. Prog. Mater. Sci., 2019, 106: 100573
https://doi.org/10.1016/j.pmatsci.2019.100573
|
146 |
A. Shepelin N.P. Tehrani Z.Ohannessian N.W. Schneider C.Pergolesi D.Lippert T., A practical guide to pulsed laser deposition, Chem. Soc. Rev. 52(7), 2294 (2023)
|
147 |
Rashid R.C. C. Ling F.P. Wang S.Xiao K.Cui X. Rao Q.K. Ki D., IP and OOP ferroelectricity in hexagonal γ-In2Se3 nanoflakes grown by chemical vapor deposition, J. Alloys Compd. 870, 159344 (2021)
|
148 |
Zhou J., Zeng Q., Lv D., Sun L., Niu L., Fu W., Liu F., Shen Z., Jin C., Liu Z.. Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition. Nano Lett., 2015, 15(10): 6400
https://doi.org/10.1021/acs.nanolett.5b01590
|
149 |
Huang Y., H. Pan Y., Yang R., H. Bao L., Meng L.. et al.. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun., 2020, 11(1): 2453
https://doi.org/10.1038/s41467-020-16266-w
|
150 |
Gao J., Zheng Y., Yu W., Wang Y., Jin T., Pan X., P. Loh K., Chen W.. Intrinsic polarization coupling in 2D α‐In2Se3 toward artificial synapse with multimode operations. SmartMat, 2021, 2(1): 88
https://doi.org/10.1002/smm2.1020
|
151 |
Wang Z., Zhu W.. Tunable band alignments in 2D ferroelectric α-In2Se3 based van der Waals heterostructures. ACS Appl. Electron. Mater., 2021, 3(11): 5114
https://doi.org/10.1021/acsaelm.1c00855
|
152 |
Lv B., Xue W., Yan Z., Yang R., Wu H., Wang P., Zhang Y., Hou J., Zhu W., Xu X.. Control of photocurrent and multi-state memory by polar order engineering in 2H-stacked α-In2Se3 ferroelectric. Sci. China Mater., 2022, 65(6): 1639
https://doi.org/10.1007/s40843-021-1920-9
|
153 |
Zhang Y., Wang L., Chen H., Ma T., Lu X., P. Loh K.. Analog and digital mode α-In2Se3 memristive devices for neuromorphic and memory applications. Adv. Electron. Mater., 2021, 7(12): 2100609
https://doi.org/10.1002/aelm.202100609
|
154 |
Wan S., Peng Q., Wu Z., Zhou Y.. Nonvolatile ferroelectric memory with lateral β/α/β In2Se3 heterojunctions. ACS Appl. Mater. Interfaces, 2022, 14(22): 25693
https://doi.org/10.1021/acsami.2c04032
|
155 |
Liu Y.Wu Y.Wang B.Chen H.Yi D. Liu K., Versatile memristor implemented in van der Waals CuInP2S6, Nano Res. 16(6), (2023)
|
156 |
Li B., Li S., Wang H., Chen L., Liu L., Feng X., Li Y., Chen J., Gong X., W. Ang K.. An electronic synapse based on 2D ferroelectric CuInP2S6. Adv. Electron. Mater., 2020, 6(12): 2000760
https://doi.org/10.1002/aelm.202000760
|
157 |
Li P., Chaturvedi A., Zhou H., Zhang G., Li Q., Xue J., Zhou Z., Wang S., Zhou K., Weng Y., Zheng F., Shi Z., H. T. Teo E., Fang L., You L.. Electrostatic coupling in MoS2/CuInP2S6 ferroelectric vdW heterostructures. Adv. Funct. Mater., 2022, 32(29): 2201359
https://doi.org/10.1002/adfm.202201359
|
158 |
R. Jian S., Y. Juang J., W. Luo C., A. Ku S., H. Wu K.. Nanomechanical properties of GaSe thin films deposited on Si(111) substrates by pulsed laser deposition. J. Alloys Compd., 2012, 542: 124
https://doi.org/10.1016/j.jallcom.2012.07.089
|
159 |
C. Kwon K., Zhang Y., Wang L., Yu W., Wang X., H. Park I., S. Choi H., Ma T., Zhu Z., Tian B., Su C., P. Loh K.. In-plane ferroelectric tin monosulfide and its application in a ferroelectric analog synaptic device. ACS Nano, 2020, 14(6): 7628
https://doi.org/10.1021/acsnano.0c03869
|
160 |
C. Shen P.Lin Y.Wang H.H. Park J.S. Leong W. Y. Lu A.Palacios T.Kong J., CVD technology for 2-D materials, IEEE Trans. Electron Dev. 65(10), 4040 (2018)
|
161 |
Vernardou D.. Special issue: Advances in chemical vapor deposition. Materials (Basel), 2020, 13(18): 4167
https://doi.org/10.3390/ma13184167
|
162 |
F. Io W., Yuan S., Y. Pang S., W. Wong L., Zhao J., Hao J.. Temperature- and thickness-dependence of robust out-of-plane ferroelectricity in CVD grown ultrathin van der Waals α-In2Se3 layers. Nano Res., 2020, 13(7): 1897
https://doi.org/10.1007/s12274-020-2640-0
|
163 |
Muratore C., A. Voevodin A., R. Glavin N.. Physical vapor deposition of 2D van der Waals materials: A review. Thin Solid Films, 2019, 688: 137500
https://doi.org/10.1016/j.tsf.2019.137500
|
164 |
Liu B., Han Q., Li L., Zheng S., Shu Y., A. Pedersen J., Wang Z.. Synergistic effect of metal cations and visible light on 2D MoS2 nanosheet aggregation. Environ. Sci. Technol., 2021, 55(24): 16379
https://doi.org/10.1021/acs.est.1c03576
|
165 |
D. Taylor P., A. Tawfik S., J. S. Spencer M.. Ferroelectric van der Waals heterostructures of CuInP2S6 for non-volatile memory device applications. Nanotechnology, 2023, 34(6): 065701
https://doi.org/10.1088/1361-6528/aca0a5
|
166 |
Yang W., Cheng B., Hou J., Deng J., Ding X., Sun J., Z. Liu J.. Writing-speed dependent thresholds of ferroelectric domain switching in monolayer α-In2Se3. Small Methods, 2023, 7(6): 2300050
https://doi.org/10.1002/smtd.202300050
|
167 |
Yan Y., Xiang M., Wang X., Xu T., Xuan F.. Ferroelectric domain wall in two-dimensional GeS. J. Appl. Phys., 2022, 132(7): 074302
https://doi.org/10.1063/5.0094689
|
168 |
Xue F., He X., Ma Y., Zheng D., Zhang C., J. Li L., H. He J., Yu B., Zhang X.. Unraveling the origin of ferroelectric resistance switching through the interfacial engineering of layered ferroelectric-metal junctions. Nat. Commun., 2021, 12(1): 7291
https://doi.org/10.1038/s41467-021-27617-6
|
169 |
Zhou S., Liao L., Chen J., Yu Y., Lv Z., Yang M., Yao B., Zhang S., Peng G., Huang Z., Liu Y., Qi X., Wang G.. Periodic ferroelectric stripe domains in α-In2Se3 nanoflakes grown via reverse-flow chemical vapor deposition. ACS Appl. Mater. Interfaces, 2023, 15(19): 23613
https://doi.org/10.1021/acsami.3c01886
|
170 |
Zhai Y., Xie P., Hu J., Chen X., Feng Z., Lv Z., Ding G., Zhou K., Zhou Y., T. Han S.. Reconfigurable 2D-ferroelectric platform for neuromorphic computing. Phys. Rev. Appl., 2023, 10(1): 011408
https://doi.org/10.1063/5.0131838
|
171 |
Li W.Guo Y. Luo Z.Wu S.Han B.Hu W.You L. Watanabe K.Taniguchi T.Alava T.Chen J.Gao P. Li X.Wei Z. W. Wang L.Y. Liu Y.Zhao C.Zhan X.V. Han Z. Wang H., A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory, Adv. Mater. 35(5), 2208266 (2023)
|
172 |
Wang Y.Li W.Guo Y.Huang X.Luo Z. Wu S.Wang H. Chen J.Li X.Zhan X.Wang H., A gate-tunable artificial synapse based on vertically assembled van der Waals ferroelectric heterojunction, J. Mater. Sci. Technol. 128, 239 (2022)
|
173 |
Abnavi A., Ahmadi R., Hasani A., Fawzy M., R. Mohammadzadeh M., De Silva T., Yu N., M. Adachi M.. Free-standing multilayer molybdenum disulfide memristor for brain-inspired neuromorphic applications. ACS Appl. Mater. Interfaces, 2021, 13(38): 45843
https://doi.org/10.1021/acsami.1c11359
|
174 |
Wang K., Chen J., Yan X.. MXene Ti3C2 memristor for neuromorphic behavior and decimal arithmetic operation applications. Nano Energy, 2021, 79: 105453
https://doi.org/10.1016/j.nanoen.2020.105453
|
175 |
Yoon Y., Ganapathi K., Salahuddin S.. How good can monolayer MoS2 transistors be. Nano Lett., 2011, 11(9): 3768
https://doi.org/10.1021/nl2018178
|
176 |
B. Loginov A., V. Fedotov P., N. Bokova-Sirosh S., V. Sapkov I., N. Chmelenin D., R. Ismagilov R., D. Obraztsova E., A. Loginov B., N. Obraztsov A.. Synthesis, structural, and photoluminescence properties of MoS2 nanowall films. Phys. Status Solidi B, 2022, 260(6): 2200481
https://doi.org/10.1002/pssb.202200481
|
177 |
Shimada T.Minaguro K.Xu T.Wang J.Kitamura T., Ab initio study of ferroelectric critical size of SnTe low-dimensional nanostructures, Nanomaterials (Basel) 10(4), 732 (2020)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|