Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 43202    https://doi.org/10.1007/s11467-023-1369-0
RESEARCH ARTICLE
Room-temperature ferroelectricity in van der Waals SnP2S6
Chaowei He1, Jiantian Zhang1, Li Gong2, Peng Yu1()
1. State Key Laboratory of Optoelectronic Materials and Technologies Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
2. Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(7343 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-dimensional (2D) ferroelectric materials, which possess electrically switchable spontaneous polarization and can be easily integrated with semiconductor technologies, is of utmost importance in the advancement of high-integration low-power nanoelectronics. Despite the experimental discovery of certain 2D ferroelectric materials such as CuInP2S6 and In2Se3, achieving stable ferroelectricity at room temperature in these materials continues to present a significant challenge. Herein, stable ferroelectric order at room temperature in the 2D limit is demonstrated in van der Waals SnP2S6 atom layers, which can be fabricated via mechanical exfoliation of bulk SnP2S6 crystals. Switchable polarization is observed in thin SnP2S6 of ~7 nm. Importantly, a van der Waals ferroelectric field-effect transistor (Fe-FET) with ferroelectric SnP2S6 as top-gate insulator and p-type WTe0.6Se1.4 as the channel was designed and fabricated successfully, which exhibits a clear clockwise hysteresis loop in transfer characteristics, demonstrating ferroelectric properties of SnP2S6 atomic layers. In addition, a multilayer graphene/SnP2S6/multilayer graphene van der Waals vertical heterostructure phototransistor was also fabricated successfully, exhibiting improved optoelectronic performances with a responsivity (R) of 2.9 A/W and a detectivity (D) of 1.4 × 1012 Jones. Our results show that SnP2S6 is a promising 2D ferroelectric material for ferroelectric-integrated low-power 2D devices.

Keywords two-dimensional ferroelectric materials      ferroelectric field-effect transistors      photodetectors     
Corresponding Author(s): Peng Yu   
Issue Date: 27 December 2023
 Cite this article:   
Chaowei He,Jiantian Zhang,Li Gong, et al. Room-temperature ferroelectricity in van der Waals SnP2S6[J]. Front. Phys. , 2024, 19(4): 43202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1369-0
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/43202
Fig.1  Preparation and basic characterization of SnP2S6 crystal. (a) Crystal structure of SnP2S6 viewed along the b-axis and (b) the projection of the structure onto the (001) plane. Black dashed lines indicate unit cells. Blue sphere: Sn atoms; yellow sphere: P atoms; green sphere: S atoms. (c) Illustration of the growth of high-quality SnP2S6 single crystals from high-purity tin, phosphorus, and sulfur powders with iodine. (d) Optical image of high-quality SnP2S6 single crystal. (e) XRD patterns of SnP2S6 powder.
Fig.2  Characterization of SnP2S6 thin film. (a) The EDS analysis and the atomic ratio result. Upper left panel: Scanning electron microscopy (SEM) image for SnP2S6 thin film. Upper right panel: The EDS analysis and the atomic ratio result. Lower panel: EDS elemental mapping of the upper left panel. (b) STEM image and matched crystal structures of SnP2S6. Blue sphere: Sn atoms; yellow sphere: P atoms; green sphere: S atoms. (c) Optical images of exfoliated SnP2S6 large area thin films, the area within the dashed line is a single atomic layer. (d) UV–Vis–NIR absorption spectrum of SnP2S6. (e) Absorption bandgap as a function of thickness. (f?h) PL spectra of 1?3 L at 78 K (f), 150 K (g) and 295 K (h). (i) SHG under 800 nm wavelength laser. (j) Polar plots of the SHG intensity as a function of the excitation laser linear polarization. (k) Peak center position as a function of the excitation laser linear polarization.
Fig.3  Atomic force microscope (AFM) and piezoresponse force microscope (PFM) characterozations of SnP2S6. (a–c) AFM topography (a) PFM amplitude (b) and PFM phase (c) of a SnP2S6 thin film at room temperature. (d) Height of the thin film for (a). (e) PFM amplitude and (f) PFM phase measurement of ferroelectric domains in thin films. (g) AFM topography for 7 nm SnP2S6 thin film. (h) PFM phase images of thin film for (g) with written box-in-box patterns at room temperature with reverse DC bias of +2 V, ?2 V and +2 V. (i) The corresponding PFM amplitude and phase hysteresis loops during the switching process for 7 nm SnP2S6 thin film.
Fig.4  A SnP2S6/WTe0.6Se1.4 van der Waals ferroelectric field-effect transistor (Fe-FET). (a) Schematic diagram of the Fe-FET. Few-layer WTe0.6Se1.4 is applied as the channel material. The top-gate stack consists of CIPS as the ferroelectric gate insulator and h-BN as the gate insulator. Few-layer graphene and Ni/Au act as the gate electrodes. (b) Top-view optical image of 2D heterostructure, the inset is top-view image of as-fabricated device. (c) Output curves for different gate voltages at room temperature. (d) Top-gate transfer curves of the Fe-FET measured at room temperature with a floating gate (scanning from 0.5 V to ?0.5 V, then ?0.5 V to 0.5 V).
Fig.5  Optoelelctronic characterization of SnP2S6 parallel phototransistor under 405 nm laser. (a) Top-view optical image of the SnP2S6 parallel phototransistor, height of SnP2S6 thin film is 75 nm. The active channel area of parallel phototransistor is 1.79 × 10?7 cm2. (b) The AFM characterization of thin film shown in (a). (c) Output curves for different light power densities at temperature. (d) Responsivity and detectivity as functions of light power density for Vbias = 1 V at room temperature. (e) Photocurrent dependent on light power density at room temperature, where the light power density is on the logarithmic coordinate axis. (f) Time-resolved photoresponse of the parallel transistors at Vbias = 1 V under laser (λ = 405 nm) illumination, the rise time τ1 is 100 ms and the decay time τ2 is 200 ms.
Fig.6  Optoelelctronic characterization of SnP2S6 vertical transistor under 405 nm laser. (a) Top-view optical image of the vertical transistor. Yellow area of G-bottom is single layer bottom graphene, green area of G-top is top graphene with a thickness of 6 nm, and red area of SPS is few-layer SnP2S6 with a thickness of 15 nm. The active channel area of vertical transistor is 3.77 × 10?7 cm2. (b) Output curves for different light power densities at temperature. (c) Responsivity and detectivity as functions of light power density for Vbias = 1 V at room temperature. (d) Photocurrent dependent on light power density at room temperature, where the light power density is on the logarithmic coordinate axis. (e) Time-resolved photoresponse of the parallel transistors at Vbias = 1 V under laser (λ = 405 nm) illumination, the rise time τ1 is 20 ms and the decay time τ2 is 40 ms.
1 D. Wenbiao Niu G. , Jia Z. , Q. Ma X. , Y. Zhao J. , Zhou K. , T. Han S. , C. Kuo C. , Zhou Y. . Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys., 2024, 19(1): 13402
https://doi.org/10.1007/s11467-023-1329-8
2 Sano T. , Nishio Y. , Hamada Y. , Takahashi H. , Usuki T. , Shibata K. . Design of conjugated molecular materials for optoelectronics. J. Mater. Chem., 2000, 10(1): 157
https://doi.org/10.1039/a903239h
3 B. Bersuker I. , Y. Ogurtsov I. , V. Shaparev Y. . Temperature dependence of the mean dipole moment of symmetrical molecular systems. Theor. Exp. Chem., 1975, 9(4): 351
https://doi.org/10.1007/BF00523746
4 Li P. , M. Gao Z. , S. Huang X. , F. Wang L. , F. Zhang W. , Z. Guo H. . Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction. Front. Phys., 2018, 13: 136803
https://doi.org/10.1007/s11467-018-0819-6
5 M. D. Coey J. , Venkatesan M. , Stamenov P. , B. Fitzgerald C. , S. Dorneles L. . Magnetism in hafnium dioxide. Phys. Rev. B, 2005, 72(2): 024450
https://doi.org/10.1103/PhysRevB.72.024450
6 E. Aspnes D. . Electric field effects on the dielectric constant of solids. Phys. Rev., 1967, 153(3): 972
https://doi.org/10.1103/PhysRev.153.972
7 G. Schlom D. , Q. Chen L. , B. Eom C. , M. Rabe K. , K. Streiffer S. , M. Triscone J. . Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res., 2007, 37(1): 589
https://doi.org/10.1146/annurev.matsci.37.061206.113016
8 H. Wu M. . Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities. ACS Nano, 2021, 15(6): 9229
https://doi.org/10.1021/acsnano.0c08483
9 Liu Y. , Huang Y. , F. Duan X. . Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323
https://doi.org/10.1038/s41586-019-1013-x
10 H. Wu M. , D. Burton J. , Y. Tsymbal E. , C. Zeng X. , Jena P. . Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Phys. Rev. B, 2013, 87(8): 081406
https://doi.org/10.1103/PhysRevB.87.081406
11 G. Yuan S. , Luo X. , L. Chan H. , C. Xiao C. , W. Dai Y. , H. Xie M. , H. Hao J. . Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
https://doi.org/10.1038/s41467-019-09669-x
12 N. Shirodkar S. , V. Waghmare U. . Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601
https://doi.org/10.1103/PhysRevLett.112.157601
13 X. Zheng C. , Yu L. , Zhu L. , L. Collins J. , Kim D. , D. Lou Y. , Xu C. , Li M. , Wei Z. , P. Zhang Y. , T. Edmonds M. , Q. Li S. , Seidel J. , Zhu Y. , Z. Liu J. , X. Tang W. , S. Fuhrer M. . Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv., 2018, 4(7): eaar7720
https://doi.org/10.1126/sciadv.aar7720
14 J. Ding W. , B. Zhu J. , Wang Z. , F. Gao Y. , Xiao D. , Gu Y. , Y. Zhang Z. , G. Zhu W. . Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2‒VI3 van der Waals materials. Nat. Commun., 2017, 8(1): 14956
https://doi.org/10.1038/ncomms14956
15 C. Liu F. , You L. , L. Seyler K. , B. Li X. , Yu P. , H. Lin J. , W. Wang X. , D. Zhou J. , Wang H. , Y. He H. , T. Pantelides S. , Zhou W. , Sharma P. , D. Xu X. , M. Ajayan P. , L. Wang J. , Liu Z. . Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun., 2016, 7: 12357
https://doi.org/10.1038/ncomms12357
16 Belianinov A. , He Q. , Dziaugys A. , Maksymovych P. , Eliseev E. , Borisevich A. , Morozovska A. , Banys J. , Vysochanskii Y. , V. Kalinin S. . CuInP2S6 room temperature layered ferroelectric. Nano Lett., 2015, 15(6): 3808
https://doi.org/10.1021/acs.nanolett.5b00491
17 Z. Hanakata P. , Carvalho A. , K. Campbell D. , S. Park H. . Polarization and valley switching in monolayer group-IV monochalcogenides. Phys. Rev. B, 2016, 94(3): 035304
https://doi.org/10.1103/PhysRevB.94.035304
18 X. Fei R. , Kang W. , Yang L. . Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett., 2016, 117(9): 097601
https://doi.org/10.1103/PhysRevLett.117.097601
19 Alsubaie F. , Muraykhan M. , Zhang L. , C. Qi D. , Liao T. , Z. Kou L. , J. Du A. , Tang C. . Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material. Front. Phys., 2024, 19(1): 13201
https://doi.org/10.1007/s11467-023-1330-2
20 Y. Shuang Zhou L. , Zhou H. , Pu Y. , Gui Z. , Wang J. . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
https://doi.org/10.1007/s11467-020-0986-0
21 Niu L. , C. Liu F. , S. Zeng Q. , Y. Zhu X. , L. Wang Y. , Yu P. , Shi J. , H. Lin J. , D. Zhou J. , D. Fu Q. , Zhou W. , Yu T. , F. Liu X. , Liu Z. . Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy, 2019, 58: 596
https://doi.org/10.1016/j.nanoen.2019.01.085
22 Wang J. , L. Liu C. , B. Zhang L. , Chen J. , Chen J. , L. Yu F. , Y. Zhao Z. , W. Tang W. , Li X. , Zhang S. , H. Li G. , Wang L. , Cheng Y. , S. Chen X. . Selective enhancement of photoresponse with ferroelectric-controlled BP/In2Se3 vdW heterojunction. Adv. Sci. (Weinh.), 2023, 10(11): 2205813
https://doi.org/10.1002/advs.202205813
23 Cai Y. , Yang J. , Wang F. , Li S. , Wang Y. , Zhan X. , Wang F. , Cheng R. , Wang Z. , He J. . Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
https://doi.org/10.1007/s11467-022-1241-7
24 Liang Q. , Zheng Y. , Du C. , Luo Y. , Zhao J. , Ren H. , Xu J. , Yan Q. . Asymmetric-layered tin thiophosphate: An emerging 2D ternary anode for high-performance sodium ion full cell. ACS Nano, 2018, 12(12): 12902
https://doi.org/10.1021/acsnano.8b08229
25 Zhang Y. , K. Wang F. , Feng X. , D. Sun Z. , W. Su J. , Zhao M. , Z. Wang S. , Z. Hu X. , Y. Zhai T. . Inversion symmetry broken 2D SnP2S6 with strong nonlinear optical response. Nano Res., 2022, 15(3): 2391
https://doi.org/10.1007/s12274-021-3806-0
26 Wang Z. , D. Willett R. , A. Laitinen R. , A. Cleary D. . Synthesis and crystal structure of SnP2S6. Chem. Mater., 1995, 7(5): 856
https://doi.org/10.1021/cm00053a007
27 P. Studenyak I. , V. Mitrovcij V. , S. Kovacs G. , A. Mykajlo O. , I. Gurzan M. , M. Vysochanskii Y. . Temperature variation of optical absorption edge in Sn2P2S6 and SnP2S6 crystals. Ferroelectrics, 2001, 254(1): 295
https://doi.org/10.1080/00150190108215009
28 S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
29 Zhang Y. , K. Wang F. , Feng X. , Zhang Z. , L. Liu K. , F. Xia F. , X. Liang W. , Z. Hu X. , Ma Y. , Q. Li H. , C. Xing G. , Y. Zhai T. . Self-trapped excitons in 2D SnP2S6 crystal with intrinsic structural distortion. Adv. Funct. Mater., 2022, 32(38): 2205757
https://doi.org/10.1002/adfm.202205757
30 Y. He J. , H. Lee S. , Naccarato F. , Brunin G. , Zu R. , X. Wang Y. , X. Miao L. , Y. Wang H. , Alem N. , Hautier G. , M. Rignanese G. , Q. Mao Z. , Gopalan V. . SnP2S6: A promising infrared nonlinear optical crystal with strongnonresonant second harmonic generation and phase-matchability. ACS Photonics, 2022, 9(5): 1724
https://doi.org/10.1021/acsphotonics.2c00131
31 Bourdon X. , B. Cajipe V. . Soft-chemistry forms of Sn2P2S6 and CuInP2S6. J. Solid State Chem., 1998, 141(1): 290
https://doi.org/10.1006/jssc.1998.7919
32 S. Cheema S. , Kwon D. , Shanker N. , dos Reis R. , L. Hsu S. , Xiao J. , Zhang H. , Wagner R. , Datar A. , R. McCarter M. , R. Serrao C. , K. Yadav A. , Karbasian G. , H. Hsu C. , J. Tan A. , C. Wang L. , Thakare V. , Zhang X. , Mehta A. , Karapetrova E. , V. Chopdekar R. , Shafer P. , Arenholz E. , Hu C. , Proksch R. , Ramesh R. , Ciston J. , Salahuddin S. . Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 2020, 580(7804): 478
https://doi.org/10.1038/s41586-020-2208-x
33 G. Han M. , S. J. Marshall M. , J. Wu L. , A. Schofield M. , Aoki T. , Twesten R. , Hoffman J. , J. Walker F. , H. Ahn C. , M. Zhu Y. . Interface-induced nonswitchable domains in ferroelectric thin films. Nat. Commun., 2014, 5(1): 4693
https://doi.org/10.1038/ncomms5693
34 Stengel M. , A. Spaldin N. . Origin of the dielectric dead layer in nanoscale capacitors. Nature, 2006, 443(7112): 679
https://doi.org/10.1038/nature05148
35 Tokumitsu E. , Okamoto K. , Ishiwara H. . Low voltage operation of nonvolatile metal‒ferroelectric‒metal‒insulator‒semiconductor (MFMIS)-field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn. J. Appl. Phys., 2001, 40(4S): 2917
https://doi.org/10.1143/JJAP.40.2917
36 M. Xue J. , Sanchez-Yamagishi J. , Bulmash D. , Jacquod P. , Deshpande A. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. , J. Leroy B. . Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater., 2011, 10(4): 282
https://doi.org/10.1038/nmat2968
37 Wang C. , J. Jin K. , T. Xu Z. , Wang L. , Ge C. , B. Lu H. , Z. Guo H. , He M. , Z. Yang G. . Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films. Appl. Phys. Lett., 2011, 98(19): 192901
https://doi.org/10.1063/1.3589814
38 O. Island J. , I. Blanter S. , Buscema M. , S. J. van der Zant H. , Castellanos-Gomez A. . Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett., 2015, 15(12): 7853
https://doi.org/10.1021/acs.nanolett.5b02523
39 H. Fang H. , D. Hu W. . Photogating in low dimensional photodetectors. Adv. Sci. (Weinh.), 2017, 4(12): 1700323
https://doi.org/10.1002/advs.201700323
40 Yu P. , S. Zeng Q. , Zhu C. , J. Zhou L. , N. Zhao W. , C. Tong J. , Liu Z. , W. Yang G. . Ternary Ta2PdS6 atomic layers for an ultrahigh broadband photoresponsive phototransistor. Adv. Mater., 2021, 33(2): 2005607
https://doi.org/10.1002/adma.202005607
41 J. Liang Q. , X. Wang Q. , Zhang Q. , X. Wei J. , X. D. Lim S. , Zhu R. , X. Hu J. , Wei W. , Lee C. , Sow C. , J. Zhang W. , T. S. Wee A. . High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater., 2019, 31(24): 1807609
https://doi.org/10.1002/adma.201807609
42 W. Liang G. , H. Zeng L. , H. Tsang Y. , L. Tao L. , Y. Tang C. , K. Cheng P. , Long H. , Liu X. , Li J. , L. Qu J. , Wen Q. . Technique and model for modifying the saturable absorption (SA) properties of 2D nanofilms by considering interband exciton recombination. J. Mater. Chem. C, 2018, 6(28): 7501
https://doi.org/10.1039/C8TC00498F
43 S. Guo Q. , Pospischil A. , Bhuiyan M. , Jiang H. , Tian H. , Farmer D. , C. Deng B. , Li C. , J. Han S. , Wang H. , F. Xia Q. , P. Ma T. , Mueller T. , N. Xia F. . Black phosphorus mid-infrared photodetectors with high gain. Nano Lett., 2016, 16(7): 4648
https://doi.org/10.1021/acs.nanolett.6b01977
44 He W. , L. Kong L. , Yu P. , W. Yang G. . Record-high work-function p-type CuBiP2Se6 atomic layers for high-photoresponse van der Waals vertical heterostructure phototransistor. Adv. Mater., 2023, 35(14): 2209995
https://doi.org/10.1002/adma.202209995
45 H. Zeng L. , Wu D. , H. Lin S. , Xie C. , Y. Yuan H. , Lu W. , P. Lau S. , Chai Y. , B. Luo L. , J. Li Z. , H. Tsang Y. . Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater., 2019, 29(1): 1806878
https://doi.org/10.1002/adfm.201806878
46 Wu D. , W. Guo J. , Du J. , X. Xia C. , H. Zeng L. , Z. Tian Y. , F. Shi Z. , T. Tian Y. , J. Li X. , H. Tsang Y. , S. Jie J. . Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano, 2019, 13(9): 9907
https://doi.org/10.1021/acsnano.9b03994
[1] fop-21369-OF-yupeng_suppl_1 Download
[1] Wenbiao Niu, Guanglong Ding, Ziqi Jia, Xin-Qi Ma, JiYu Zhao, Kui Zhou, Su-Ting Han, Chi-Ching Kuo, Ye Zhou. Recent advances in memristors based on two-dimensional ferroelectric materials[J]. Front. Phys. , 2024, 19(1): 13402-.
[2] Kaiyue He, Jijie Zhu, Zishun Li, Zhe Chen, Hehe Zhang, Chao Liu, Xu Zhang, Shuo Wang, Peiyi Zhao, Yu Zhou, Shizheng Zhang, Yao Yin, Xiaorui Zheng, Wei Huang, Lin Wang. High-sensitive two-dimensional PbI2 photodetector with ultrashort channel[J]. Front. Phys. , 2023, 18(6): 63305-.
[3] Xiao-Hui Li, Yi-Xuan Guo, Yujie Ren, Jia-Jun Peng, Ji-Shu Liu, Cong Wang, Han Zhang. Narrow-bandgap materials for optoelectronics applications[J]. Front. Phys. , 2022, 17(1): 13304-.
[4] Changbin Zhao, Muhammad Umair Ali, Jiaoyi Ning, Hong Meng. Organic single crystal phototransistors: Recent approaches and achievements[J]. Front. Phys. , 2021, 16(4): 43202-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed