|
|
Room-temperature ferroelectricity in van der Waals SnP2S6 |
Chaowei He1, Jiantian Zhang1, Li Gong2, Peng Yu1( ) |
1. State Key Laboratory of Optoelectronic Materials and Technologies Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices Nanotechnology Research Center, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China 2. Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China |
|
|
Abstract Two-dimensional (2D) ferroelectric materials, which possess electrically switchable spontaneous polarization and can be easily integrated with semiconductor technologies, is of utmost importance in the advancement of high-integration low-power nanoelectronics. Despite the experimental discovery of certain 2D ferroelectric materials such as CuInP2S6 and In2Se3, achieving stable ferroelectricity at room temperature in these materials continues to present a significant challenge. Herein, stable ferroelectric order at room temperature in the 2D limit is demonstrated in van der Waals SnP2S6 atom layers, which can be fabricated via mechanical exfoliation of bulk SnP2S6 crystals. Switchable polarization is observed in thin SnP2S6 of ~7 nm. Importantly, a van der Waals ferroelectric field-effect transistor (Fe-FET) with ferroelectric SnP2S6 as top-gate insulator and p-type WTe0.6Se1.4 as the channel was designed and fabricated successfully, which exhibits a clear clockwise hysteresis loop in transfer characteristics, demonstrating ferroelectric properties of SnP2S6 atomic layers. In addition, a multilayer graphene/SnP2S6/multilayer graphene van der Waals vertical heterostructure phototransistor was also fabricated successfully, exhibiting improved optoelectronic performances with a responsivity (R) of 2.9 A/W and a detectivity (D) of 1.4 × 1012 Jones. Our results show that SnP2S6 is a promising 2D ferroelectric material for ferroelectric-integrated low-power 2D devices.
|
Keywords
two-dimensional ferroelectric materials
ferroelectric field-effect transistors
photodetectors
|
Corresponding Author(s):
Peng Yu
|
Issue Date: 27 December 2023
|
|
1 |
D. Wenbiao Niu G. , Jia Z. , Q. Ma X. , Y. Zhao J. , Zhou K. , T. Han S. , C. Kuo C. , Zhou Y. . Recent advances in memristors based on two-dimensional ferroelectric materials. Front. Phys., 2024, 19(1): 13402
https://doi.org/10.1007/s11467-023-1329-8
|
2 |
Sano T. , Nishio Y. , Hamada Y. , Takahashi H. , Usuki T. , Shibata K. . Design of conjugated molecular materials for optoelectronics. J. Mater. Chem., 2000, 10(1): 157
https://doi.org/10.1039/a903239h
|
3 |
B. Bersuker I. , Y. Ogurtsov I. , V. Shaparev Y. . Temperature dependence of the mean dipole moment of symmetrical molecular systems. Theor. Exp. Chem., 1975, 9(4): 351
https://doi.org/10.1007/BF00523746
|
4 |
Li P. , M. Gao Z. , S. Huang X. , F. Wang L. , F. Zhang W. , Z. Guo H. . Ferroelectric polarization reversal tuned by magnetic field in a ferroelectric BiFeO3/Nb-doped SrTiO3 heterojunction. Front. Phys., 2018, 13: 136803
https://doi.org/10.1007/s11467-018-0819-6
|
5 |
M. D. Coey J. , Venkatesan M. , Stamenov P. , B. Fitzgerald C. , S. Dorneles L. . Magnetism in hafnium dioxide. Phys. Rev. B, 2005, 72(2): 024450
https://doi.org/10.1103/PhysRevB.72.024450
|
6 |
E. Aspnes D. . Electric field effects on the dielectric constant of solids. Phys. Rev., 1967, 153(3): 972
https://doi.org/10.1103/PhysRev.153.972
|
7 |
G. Schlom D. , Q. Chen L. , B. Eom C. , M. Rabe K. , K. Streiffer S. , M. Triscone J. . Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res., 2007, 37(1): 589
https://doi.org/10.1146/annurev.matsci.37.061206.113016
|
8 |
H. Wu M. . Two-dimensional van der Waals ferroelectrics: Scientific and technological opportunities. ACS Nano, 2021, 15(6): 9229
https://doi.org/10.1021/acsnano.0c08483
|
9 |
Liu Y. , Huang Y. , F. Duan X. . Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323
https://doi.org/10.1038/s41586-019-1013-x
|
10 |
H. Wu M. , D. Burton J. , Y. Tsymbal E. , C. Zeng X. , Jena P. . Hydroxyl-decorated graphene systems as candidates for organic metal-free ferroelectrics, multiferroics, and high-performance proton battery cathode materials. Phys. Rev. B, 2013, 87(8): 081406
https://doi.org/10.1103/PhysRevB.87.081406
|
11 |
G. Yuan S. , Luo X. , L. Chan H. , C. Xiao C. , W. Dai Y. , H. Xie M. , H. Hao J. . Room-temperature ferroelectricity in MoTe2 down to the atomic monolayer limit. Nat. Commun., 2019, 10(1): 1775
https://doi.org/10.1038/s41467-019-09669-x
|
12 |
N. Shirodkar S. , V. Waghmare U. . Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. Phys. Rev. Lett., 2014, 112(15): 157601
https://doi.org/10.1103/PhysRevLett.112.157601
|
13 |
X. Zheng C. , Yu L. , Zhu L. , L. Collins J. , Kim D. , D. Lou Y. , Xu C. , Li M. , Wei Z. , P. Zhang Y. , T. Edmonds M. , Q. Li S. , Seidel J. , Zhu Y. , Z. Liu J. , X. Tang W. , S. Fuhrer M. . Room temperature in-plane ferroelectricity in van der Waals In2Se3. Sci. Adv., 2018, 4(7): eaar7720
https://doi.org/10.1126/sciadv.aar7720
|
14 |
J. Ding W. , B. Zhu J. , Wang Z. , F. Gao Y. , Xiao D. , Gu Y. , Y. Zhang Z. , G. Zhu W. . Prediction of intrinsic two-dimensional ferroelectrics in In2Se3 and other III2‒VI3 van der Waals materials. Nat. Commun., 2017, 8(1): 14956
https://doi.org/10.1038/ncomms14956
|
15 |
C. Liu F. , You L. , L. Seyler K. , B. Li X. , Yu P. , H. Lin J. , W. Wang X. , D. Zhou J. , Wang H. , Y. He H. , T. Pantelides S. , Zhou W. , Sharma P. , D. Xu X. , M. Ajayan P. , L. Wang J. , Liu Z. . Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun., 2016, 7: 12357
https://doi.org/10.1038/ncomms12357
|
16 |
Belianinov A. , He Q. , Dziaugys A. , Maksymovych P. , Eliseev E. , Borisevich A. , Morozovska A. , Banys J. , Vysochanskii Y. , V. Kalinin S. . CuInP2S6 room temperature layered ferroelectric. Nano Lett., 2015, 15(6): 3808
https://doi.org/10.1021/acs.nanolett.5b00491
|
17 |
Z. Hanakata P. , Carvalho A. , K. Campbell D. , S. Park H. . Polarization and valley switching in monolayer group-IV monochalcogenides. Phys. Rev. B, 2016, 94(3): 035304
https://doi.org/10.1103/PhysRevB.94.035304
|
18 |
X. Fei R. , Kang W. , Yang L. . Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides. Phys. Rev. Lett., 2016, 117(9): 097601
https://doi.org/10.1103/PhysRevLett.117.097601
|
19 |
Alsubaie F. , Muraykhan M. , Zhang L. , C. Qi D. , Liao T. , Z. Kou L. , J. Du A. , Tang C. . Two-dimensional polarized MoSSe/MoTe2 van der Waals heterostructure: A polarization-tunable optoelectronic material. Front. Phys., 2024, 19(1): 13201
https://doi.org/10.1007/s11467-023-1330-2
|
20 |
Y. Shuang Zhou L. , Zhou H. , Pu Y. , Gui Z. , Wang J. . Van der Waals layered ferroelectric CuInP2S6: Physical properties and device applications. Front. Phys., 2021, 16(1): 13301
https://doi.org/10.1007/s11467-020-0986-0
|
21 |
Niu L. , C. Liu F. , S. Zeng Q. , Y. Zhu X. , L. Wang Y. , Yu P. , Shi J. , H. Lin J. , D. Zhou J. , D. Fu Q. , Zhou W. , Yu T. , F. Liu X. , Liu Z. . Controlled synthesis and room-temperature pyroelectricity of CuInP2S6 ultrathin flakes. Nano Energy, 2019, 58: 596
https://doi.org/10.1016/j.nanoen.2019.01.085
|
22 |
Wang J. , L. Liu C. , B. Zhang L. , Chen J. , Chen J. , L. Yu F. , Y. Zhao Z. , W. Tang W. , Li X. , Zhang S. , H. Li G. , Wang L. , Cheng Y. , S. Chen X. . Selective enhancement of photoresponse with ferroelectric-controlled BP/In2Se3 vdW heterojunction. Adv. Sci. (Weinh.), 2023, 10(11): 2205813
https://doi.org/10.1002/advs.202205813
|
23 |
Cai Y. , Yang J. , Wang F. , Li S. , Wang Y. , Zhan X. , Wang F. , Cheng R. , Wang Z. , He J. . Ultrasensitive solar-blind ultraviolet detection and optoelectronic neuromorphic computing using α-In2Se3 phototransistors. Front. Phys., 2023, 18(3): 33308
https://doi.org/10.1007/s11467-022-1241-7
|
24 |
Liang Q. , Zheng Y. , Du C. , Luo Y. , Zhao J. , Ren H. , Xu J. , Yan Q. . Asymmetric-layered tin thiophosphate: An emerging 2D ternary anode for high-performance sodium ion full cell. ACS Nano, 2018, 12(12): 12902
https://doi.org/10.1021/acsnano.8b08229
|
25 |
Zhang Y. , K. Wang F. , Feng X. , D. Sun Z. , W. Su J. , Zhao M. , Z. Wang S. , Z. Hu X. , Y. Zhai T. . Inversion symmetry broken 2D SnP2S6 with strong nonlinear optical response. Nano Res., 2022, 15(3): 2391
https://doi.org/10.1007/s12274-021-3806-0
|
26 |
Wang Z. , D. Willett R. , A. Laitinen R. , A. Cleary D. . Synthesis and crystal structure of SnP2S6. Chem. Mater., 1995, 7(5): 856
https://doi.org/10.1021/cm00053a007
|
27 |
P. Studenyak I. , V. Mitrovcij V. , S. Kovacs G. , A. Mykajlo O. , I. Gurzan M. , M. Vysochanskii Y. . Temperature variation of optical absorption edge in Sn2P2S6 and SnP2S6 crystals. Ferroelectrics, 2001, 254(1): 295
https://doi.org/10.1080/00150190108215009
|
28 |
S. Novoselov K. , K. Geim A. , V. Morozov S. , Jiang D. , Zhang Y. , V. Dubonos S. , V. Grigorieva I. , A. Firsov A. . Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666
https://doi.org/10.1126/science.1102896
|
29 |
Zhang Y. , K. Wang F. , Feng X. , Zhang Z. , L. Liu K. , F. Xia F. , X. Liang W. , Z. Hu X. , Ma Y. , Q. Li H. , C. Xing G. , Y. Zhai T. . Self-trapped excitons in 2D SnP2S6 crystal with intrinsic structural distortion. Adv. Funct. Mater., 2022, 32(38): 2205757
https://doi.org/10.1002/adfm.202205757
|
30 |
Y. He J. , H. Lee S. , Naccarato F. , Brunin G. , Zu R. , X. Wang Y. , X. Miao L. , Y. Wang H. , Alem N. , Hautier G. , M. Rignanese G. , Q. Mao Z. , Gopalan V. . SnP2S6: A promising infrared nonlinear optical crystal with strongnonresonant second harmonic generation and phase-matchability. ACS Photonics, 2022, 9(5): 1724
https://doi.org/10.1021/acsphotonics.2c00131
|
31 |
Bourdon X. , B. Cajipe V. . Soft-chemistry forms of Sn2P2S6 and CuInP2S6. J. Solid State Chem., 1998, 141(1): 290
https://doi.org/10.1006/jssc.1998.7919
|
32 |
S. Cheema S. , Kwon D. , Shanker N. , dos Reis R. , L. Hsu S. , Xiao J. , Zhang H. , Wagner R. , Datar A. , R. McCarter M. , R. Serrao C. , K. Yadav A. , Karbasian G. , H. Hsu C. , J. Tan A. , C. Wang L. , Thakare V. , Zhang X. , Mehta A. , Karapetrova E. , V. Chopdekar R. , Shafer P. , Arenholz E. , Hu C. , Proksch R. , Ramesh R. , Ciston J. , Salahuddin S. . Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature, 2020, 580(7804): 478
https://doi.org/10.1038/s41586-020-2208-x
|
33 |
G. Han M. , S. J. Marshall M. , J. Wu L. , A. Schofield M. , Aoki T. , Twesten R. , Hoffman J. , J. Walker F. , H. Ahn C. , M. Zhu Y. . Interface-induced nonswitchable domains in ferroelectric thin films. Nat. Commun., 2014, 5(1): 4693
https://doi.org/10.1038/ncomms5693
|
34 |
Stengel M. , A. Spaldin N. . Origin of the dielectric dead layer in nanoscale capacitors. Nature, 2006, 443(7112): 679
https://doi.org/10.1038/nature05148
|
35 |
Tokumitsu E. , Okamoto K. , Ishiwara H. . Low voltage operation of nonvolatile metal‒ferroelectric‒metal‒insulator‒semiconductor (MFMIS)-field-effect-transistors (FETs) using Pt/SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures. Jpn. J. Appl. Phys., 2001, 40(4S): 2917
https://doi.org/10.1143/JJAP.40.2917
|
36 |
M. Xue J. , Sanchez-Yamagishi J. , Bulmash D. , Jacquod P. , Deshpande A. , Watanabe K. , Taniguchi T. , Jarillo-Herrero P. , J. Leroy B. . Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater., 2011, 10(4): 282
https://doi.org/10.1038/nmat2968
|
37 |
Wang C. , J. Jin K. , T. Xu Z. , Wang L. , Ge C. , B. Lu H. , Z. Guo H. , He M. , Z. Yang G. . Switchable diode effect and ferroelectric resistive switching in epitaxial BiFeO3 thin films. Appl. Phys. Lett., 2011, 98(19): 192901
https://doi.org/10.1063/1.3589814
|
38 |
O. Island J. , I. Blanter S. , Buscema M. , S. J. van der Zant H. , Castellanos-Gomez A. . Gate controlled photocurrent generation mechanisms in high-gain In2Se3 phototransistors. Nano Lett., 2015, 15(12): 7853
https://doi.org/10.1021/acs.nanolett.5b02523
|
39 |
H. Fang H. , D. Hu W. . Photogating in low dimensional photodetectors. Adv. Sci. (Weinh.), 2017, 4(12): 1700323
https://doi.org/10.1002/advs.201700323
|
40 |
Yu P. , S. Zeng Q. , Zhu C. , J. Zhou L. , N. Zhao W. , C. Tong J. , Liu Z. , W. Yang G. . Ternary Ta2PdS6 atomic layers for an ultrahigh broadband photoresponsive phototransistor. Adv. Mater., 2021, 33(2): 2005607
https://doi.org/10.1002/adma.202005607
|
41 |
J. Liang Q. , X. Wang Q. , Zhang Q. , X. Wei J. , X. D. Lim S. , Zhu R. , X. Hu J. , Wei W. , Lee C. , Sow C. , J. Zhang W. , T. S. Wee A. . High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe2. Adv. Mater., 2019, 31(24): 1807609
https://doi.org/10.1002/adma.201807609
|
42 |
W. Liang G. , H. Zeng L. , H. Tsang Y. , L. Tao L. , Y. Tang C. , K. Cheng P. , Long H. , Liu X. , Li J. , L. Qu J. , Wen Q. . Technique and model for modifying the saturable absorption (SA) properties of 2D nanofilms by considering interband exciton recombination. J. Mater. Chem. C, 2018, 6(28): 7501
https://doi.org/10.1039/C8TC00498F
|
43 |
S. Guo Q. , Pospischil A. , Bhuiyan M. , Jiang H. , Tian H. , Farmer D. , C. Deng B. , Li C. , J. Han S. , Wang H. , F. Xia Q. , P. Ma T. , Mueller T. , N. Xia F. . Black phosphorus mid-infrared photodetectors with high gain. Nano Lett., 2016, 16(7): 4648
https://doi.org/10.1021/acs.nanolett.6b01977
|
44 |
He W. , L. Kong L. , Yu P. , W. Yang G. . Record-high work-function p-type CuBiP2Se6 atomic layers for high-photoresponse van der Waals vertical heterostructure phototransistor. Adv. Mater., 2023, 35(14): 2209995
https://doi.org/10.1002/adma.202209995
|
45 |
H. Zeng L. , Wu D. , H. Lin S. , Xie C. , Y. Yuan H. , Lu W. , P. Lau S. , Chai Y. , B. Luo L. , J. Li Z. , H. Tsang Y. . Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Adv. Funct. Mater., 2019, 29(1): 1806878
https://doi.org/10.1002/adfm.201806878
|
46 |
Wu D. , W. Guo J. , Du J. , X. Xia C. , H. Zeng L. , Z. Tian Y. , F. Shi Z. , T. Tian Y. , J. Li X. , H. Tsang Y. , S. Jie J. . Highly polarization-sensitive, broadband, self-powered photodetector based on graphene/PdSe2/germanium heterojunction. ACS Nano, 2019, 13(9): 9907
https://doi.org/10.1021/acsnano.9b03994
|
[1] |
fop-21369-OF-yupeng_suppl_1
|
Download
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|