Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 24302    https://doi.org/10.1007/s11467-023-1340-0
TOPICAL REVIEW
Investigations of nuclear chirality at iThemba LABS
R. A. Bark1(), E. A. Lawrie1,2, C. Liu3, S. Y. Wang3
1. iThemba Laboratory for Accelerator Based Sciences, National Research Foundation, P.O. Box 722, Somerset-West 7129, South Africa
2. Department of Physics, University of the Western Cape, Private Bag X17, 7535, Bellville, South Africa
3. Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai 264209, China
 Download: PDF(22718 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Progress in the studies of chirality in atomic nuclei at iThemba LABS is reviewed. New regions of chirality, around mass 80 and 190 have been discovered using the AFRODITE array, specifically in the nuclei 74As, 78,80,82Br, 81Kr, and 193,194,198Tl. Many phenomena have been observed, including multiple chiral bands in the same nucleus, the coexistence of octupole correlations and nuclear chirality, and the coexistence of pseudo spin and nuclear chirality. The best example of chiral degeneracy to date was found in 194Tl. The level scheme of 106Ag has been revisited and interpreted in terms of two- and four-quasiparticle bands. Investigations using the particle-rotor model have shown that the fingerprints of chirality in the two-quasiparticle system only can occur in an idealised model description. For systems with a higher number of quasiparticles, the calculations showed that nuclear chirality can persist.

Keywords chirality      high-spin states      particle-rotor model     
Corresponding Author(s): R. A. Bark   
Issue Date: 26 September 2023
 Cite this article:   
R. A. Bark,E. A. Lawrie,C. Liu, et al. Investigations of nuclear chirality at iThemba LABS[J]. Front. Phys. , 2024, 19(2): 24302.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1340-0
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/24302
Fig.1  Top: Excitation energies calculated with the PRM for a triaxial nucleus with γ = 30° and with nucleon configuration πh11/2?νh11/2?1 [1]. Bottom: A sketch illustrating the left- and right-handed systems formed in angular momentum space by the angular momenta of the valence proton, jπ, of the valence neutron, jν and of the rotation, R.
Fig.2  Calculated [3] relative excitation energy for the πh11/2?νh11/2?1 chiral bands, ΔE=Eside?Eyrast, for ε2 = 0.15 and for three different cases. The solid red line corresponds to γ = 30° and fixed single-particle angular momenta of both valence nucleons, (e.g., jπ and jν are fixed along the short and long nuclear axes, respectively). The dashed–dotted blue line corresponds to γ = 30°, the same Fermi levels for protons and neutrons, but allowing their configuration spaces to span over 5 single-particle orbitals each. The dashed black line corresponds to γ = 20° and the same configuration space of 5 orbitals, for protons and neutrons.
Fig.3  Calculated expectation values for the angles between the angular momenta jπ, jν and R, for the πh11/2?νh11/2?1 chiral bands, for ε2 = 0.15, and for three cases of chiral bands, as described in Fig.2 and in the text. The data for the yrast and side chiral bands are denoted with open and filled symbols, respectively. The red triangles correspond to γ = 30°, and proton and neutron restricted to the lowest- and highest-energy orbitals of the h11/2 shell only – i.e. where jπ and jν are fixed along the short and long nuclear axes, respectively. The blue squares correspond to γ = 30°, the same Fermi levels for protons and neutrons, but allowing their corresponding configuration spaces to span over 5 single-particle orbitals. The black circles correspond to γ = 20° and the same configuration spaces of 5 orbitals for protons and neutrons. Reproduced from Ref. [6].
Fig.4  Calculated probability for vanishing projection of the total angular momentum along the short (s), intermediate (i), and long (l) axes for the πh11/2?νh11/2?1 chiral partner bands and for restricted (fixed single-particle angular momenta) and non-restricted (free single-particle angular momenta) configurations and for ε2 = 0.15. Reproduced from Ref. [6].
Fig.5  Calculated intra- and inter-band B(M1) transition probabilities for the πh11/2?νh11/2?1 chiral partner bands, with fixed single-particle angular momenta (restricted configuration space) and free single-particle angular momenta (non-restricted configuration space) at ε2 = 0.25. Open and filled symbols denote intra- and inter-band B(M1) rates, respectively. Reproduced from Ref. [6].
Fig.6  Calculated energy staggering parameter S(I)=[E(I)?E(I?1)]/(2I) and difference in the excitation energies ΔE of the πh11/2?νh11/2?1 partner bands for fixed single-particle angular momenta (restricted configuration space) and free single-particle angular momenta (non-restricted configuration space), at γ = 30° and ε2 = 0.15, 0.25. Reproduced from Ref. [6].
Fig.7  Calculated probability distributions for the projections of the total angular momentum on the short (s), intermediate (i), and long (l) nuclear axes, for the yrast and the side πh9/2?νi13/2?3 partner bands and at γ = 30° and ε2 = 0.15. Reproduced from Ref. [11].
Fig.8  Calculated excitation energies E and angular momenta of the neutrons jn along the nuclear short x-axis for the six lowest-energy bands for realistic configuration descriptions and for the chiral bands at ε2 = 0.25 and γ = 20°, 30°. The calculated bands are labelled bands 1, 2, 3, 4, 5 and 6 according to their excitation energy at low spin. Reduced from Ref. [13].
Nucleus Reaction(s) Beam energy (MeV) Target thickness (mg/cm2) Events (×109) Refs.
Mass 80 region
74As 74Ge(α,p3n) 59, 63 2.9 + backing 1.9 γγ Xiao, et al. [19]
78Br 70Zn(12C,p3n) 60, 65 0.85 1.5 γγ Liu, et al. [20]
0.16 pγγ Liu, et al. [20]
80Br 76Ge(11B,α3n) 54 1.8 + backing 0.2 γγ Wang, et al. [21]
76Ge(7Li,2n) 35 0.2, 0.6 + backing 1.2 γγ a) Wang, et al. [21]
81Kr 82Se (α,5n) 65, 68 0.4 1.5 γγ Mu, et al. [22]
82Br 82Se (α,p3n) 65, 68 0.4 1.5 γγ Liu, et al. [23]
Mass 100 region
106Ag 90Zr (14N,4n) 71 17 3.4 γγ Lieder, et al. [24]
0.7 0.4 γγ Lieder, et al. [24]
Mass 190 region
193Tl 160Gd(37Cl,4n) 167 1.0 Ndayishimye, et al. [25]
181Ta(18O,6n) 105 1.0 10.0 γγ Ndayishimye, et al. [25]
194Tl 181Ta(18O,5n) 91, 93 Stacked 2 or 3 × 0.5 3.0 γγ Masiteng, et al. [10, 26]
181Ta(18O,5n) 91 1.0 + backing γγ Masiteng, et al. [27]
198Tl 197Au(α,3n) 40 13.0 γγ Lawrie, et al. [28, 29]
197Au(α,3n) 40 0.2 eγ b) Lawrie, et al. [28, 29]
Tab.1  Details of experiments covered in this review.
Fig.9  An example of a DSAM line-shape analysis [24]. The 966.6 keV γ-ray line is the transition that deexcites the 16? level of Band 2 in 106Ag. (a) The 45° spectrum (forward direction) and (b) the 135° spectrum (backward direction).
Fig.10  Partial level scheme of 80Br showing the chiral partners Band 1 and Band 2. Transitions added by Wang et al. [21] are indicated by stars and red lines.
Fig.11  (a) Excitation energy and (b), (c) staggering parameter S(I)=[E(I)?E(I?1)]/(2I) as a function of spin for the doublet bands in 80Br. The filled (open) symbols connected by solid (dotted) curves denote experimental (theoretical) values [21].
Fig.12  Comparisons of the measured and calculated in-band B(M1)/B(E2) ratios for the bands 1 (a) and 2 (b) in 80Br [21].
Fig.13  The probability distributions for projection of total angular momentum on the long (l-), intermediate (i-) and short (s-) axis in TPRM for the doublet bands in 80Br [21].
Fig.14  Partial level scheme of 82Br showing the chiral partners Band 1 and Band 2. New transitions and levels are indicated in red [23].
Fig.15  The probability distributions for projection of total angular momentum on the long (l-), intermediate (i-) and short (s-) axis in TPRM for the doublet bands in 82Br [23].
Fig.16  Partial level scheme [28] showing the pair of chiral bands in 198Tl.
Fig.17  Experimental (left panels) and calculated (right panels) excitation energies, staggering S(I)=[E(I)?E(I?1)]/(2I), and B(M1)/B(E2) transition probability ratios for the yrast and side bands in 198Tl at γ=44. The calculations with and without proton?neutron (Vpn) interaction are shown. Reproduced from Ref. [29].
Fig.18  Calculated average angles between the angular momentum of the collective rotation and those of the proton α(p,R) and neutron α(n,R) and also the angle between the angular momenta of the proton and neutron α(p,n) for γ = 44° (top panels) and γ = 30° (bottom panels), and for the yrast and side bands in 198Tl [29].
Fig.19  Calculated distributions of the projections of the angular momenta of the proton and neutron along the short and long axes, respectively, for γ=44 and for the yrast and side bands in 198Tl [29].
Fig.20  Partial level scheme showing the negative-parity bands in 194Tl. The yrast and the side bands from the chiral pair are denoted as Bands 1 and 4, respectively [26].
Fig.21  Excitation energies, alignments, and B(M1)/B(E2) ratios for the partner bands in 194Tl. Data involving the 11? and 12? levels of the side band are shown with open diamonds. The alignments are calculated with reference parameters of ?0 = 8?2MeV?1 and ?1 = 40 ?4MeV?3. Reproduced from Ref. [10].
Fig.22  Potential energy as a function of deformation for the negative parity bands in 194Tl at (a) I=11? and (b) I = 21?. The spacing between the contour lines is 0.25 MeV. Reproduced from Ref. [10].
Fig.23  Excitation energies for the πh9/2?νi13/2?n, where n = 2,3 bands in 194Tl (a) and in 193Tl (b). Reproduced from Ref. [26].
Fig.24  Alignments for the πh9/2?νi13?n bands, where n = 0,1,2,3,4 in 193,194Tl as a function of the initial spin I in panels (a) and (b), and as a function of the rotational frequency in panels (c) and (d). Harris parameters of ?0=8?2 MeV?1 and ?1=40?4 MeV?3 were used. The red dashed line in panels (c) and (d) indicates the experimental alignment of the corresponding νi13/2?n band in the Hg isotone increased by 2.1 ?, a value that corresponds to the approximate alignment of the h9/2 proton. Reproduced from Ref. [26].
Fig.25  Line shape analysis of two transitions de-exciting the 28+ level of Band 2. Analysis of the 483-keV peak at (a) forward and (b) backward, angles, and (c) analysis of the 931-keV peak in the spectrum that is a sum of the forward and backward spectra. The fit of the Doppler broadened peak of interest is shown with red solid line. Peaks without Doppler broadening are fitted with apparatus line shapes, shown in blue. The black solid line shows the fit for all peaks. In panel (d) the χ2 functions from the analysis of the spectra shown in (b) and (c) are plotted. Reproduced from Ref. [27].
Fig.26  Partial level scheme of the high-energy part of four bands of 194Tl. The lifetimes (shown in red) are measured in ps. Reproduced from Ref. [27].
Fig.27  Experimental and calculated (a) B(M1), and (b) B(E2), transition probabilities in the negative-parity bands of 194Tl. Measured excitation energies are shown in (c). The calculated energies for the four lowest-energy bands and for γ = 40° and γ = 30° are plotted in (d) and (e), respectively. The calculated bands are labeled with A, B, C and D according to their excitation energy. Reproduced from Ref. [27].
Fig.28  Partial level scheme of 193Tl. New transitions are shown in red. Transitions with revised placement are shown in blue. Reproduced from Ref. [25].
Fig.29  Potential energy surfaces calculated with the cranked Nilsson?Strutinsky codes for the negative-parity bands in 193Tl. Reproduced from Ref. [25].
Fig.30  Partial level scheme of 106Ag [24]. The widths of the arrows represent the relative intensities of the transitions. The lifetimes, in ps, are indicated in red; their uncertainties are, on average, 20%.
Fig.31  Comparison of experimental (symbols) and calculated (lines) excitation energies and electromagnetic transition properties of (a) Band 1 and (b) Bands 2 and 3 [24]. The open squares for Band 1 indicate results from Ref. [80]. The theoretical results for πg9/2?1?νg7/22νh11/2 configurations of Bands 2 and 3 are displayed as dashed and dotted lines, respectively. The BM1 values of bands 2 and 3 are also compared with calculations using a configuration, shown as dash?dot?dotted and dash?dotted lines, respectively.
Fig.32  Quasiparticle alignment i as function of rotational frequency for (a) Band 1 and (b) Bands 2 and 3 in 106Ag. The experimental points are shown as full symbols. The alignments deduced from the neighbouring nuclei are indicated as straight lines. Results of theoretical calculations are displayed as dashed and dotted lines. The Harris parameters are ?0=8.9?2 MeV?1 and ?1=15.7?4 MeV?3. Reproduced from Ref. [24].
Fig.33  The level scheme of 78Br (left panel) and the experimental excitation energies, energy staggering parameters S(I)=[E(I)?E(I?1)]/2I, and reduced transition probability ratios B(M1)/B(E2) for MχD in 78Br in comparison with the TPRM calculations (right panel). Reproduced from Ref. [20].
Fig.34  The experimental B(E1)/B(E2) values (a) and energy displacement δE (b) between Bands 1 and 3 as functions of spin in 78Br, together with those in 125Ba [84] and 224Th [83].
Fig.35  The level scheme of 74As (left panel) and the experimental excitation energies, energy staggering parameters S(I)=[E(I)?E(I?1)]/2I, and reduced transition probability ratios B(M1)/B(E2) for chiral doublet bands in 74As in comparison with the TPRM calculations (right panel). Reproduced from Ref. [19].
Fig.36  The experimental B(E1)/B(E2) values (a) and energy displacement δE (b) between Bands 1 and 3 in 74As, as functions of spin, together with those in 78Br and 224Th [83].
Fig.37  Level scheme of 81Kr [22].
Fig.38  The experimental E(I) and B(M1)/B(E2) for bands 2, 3 with the πg9/22?νg9/2?1 configuration and bands 5, 6, 7 with the πg9/2(p3/2,f5/2)?νg9/2?1 configuration in 81Kr in comparison with the MPRM results [22].
1 Frauendorf S. , Meng J. . Tilted rotation of triaxial nuclei. Nucl. Phys. A, 1997, 617(2): 131
https://doi.org/10.1016/S0375-9474(97)00004-3
2 W. Xiong B. , Y. Wang Y. . Nuclear chiral doublet bands data tables. At. Data Nucl. Data Tables, 2019, 125: 193
https://doi.org/10.1016/j.adt.2018.05.002
3 A. Lawrie E. , Shirinda O. . Reaching degeneracy in two-quasiparticle chiral bands. Phys. Lett. B, 2010, 689(2-3): 66
https://doi.org/10.1016/j.physletb.2010.04.047
4 B. Semmes P.Ragnarsson I., in: J. X. Saladin, R. A. Sorenson, and C. M. Vincent (Eds.), Proc. Int. Conf. on High-Spin Physics and Gamma-Soft Nuclei, Pittsburgh, 1990, World Scientific, 1991, p. 500
5 B. Semmes P.Ragnarsson I., in: J. Dudek and B. Haas (Eds.), Proc. Future Directions in Nuclear Physics with 4π Gamma Detection Systems of the New Generation, in: AIP Conf. Proc. 259(566), 1992
6 Shirinda O. , A. Lawrie E. . Identifying chiral bands in real nuclei. Eur. Phys. J. A, 2012, 48(9): 118
https://doi.org/10.1140/epja/i2012-12118-2
7 Koike T. , Starosta K. , Hamamoto I. . Chiral bands, dynamical spontaneous symmetry breaking, and the selection rule for electromagnetic transitions in the chiral geometry. Phys. Rev. Lett., 2004, 93(17): 172502
https://doi.org/10.1103/PhysRevLett.93.172502
8 Vaman C. , B. Fossan D. , Koike T. , Starosta K. , Y. Lee I. , O. Macchiavelli A. . Chiral degeneracy in triaxial 104Rh. Phys. Rev. Lett., 2004, 92(3): 032501
https://doi.org/10.1103/PhysRevLett.92.032501
9 Mukhopadhyay S. , Almehed D. , Garg U. , Frauendorf S. , Li T. , V. M. Rao P. , Wang X. , S. Ghugre S. , P. Carpenter M. , Gros S. , Hecht A. , V. F. Janssens R. , G. Kondev F. , Lauritsen T. , Seweryniak D. , Zhu S. . From chiral vibration to static chirality in 135Nd. Phys. Rev. Lett., 2007, 99(17): 172501
https://doi.org/10.1103/PhysRevLett.99.172501
10 L. Masiteng P. , A. Lawrie E. , M. Ramashidzha T. , A. Bark R. , G. Carlsson B. , J. Lawrie J. , Lindsay R. , Komati F. , Kau J. , Maine P. , M. Maliage S. , Matamba I. , M. Mullins S. , H. T. Murray S. , P. Mutshena K. , A. Pasternak A. , Ragnarsson I. , G. Roux D. , F. Sharpey-Schafer J. , Shirinda O. , A. Vymers P. . Close near-degeneracy in a pair of four-quasiparticle bands in 194Tl. Phys. Lett. B, 2013, 719(1−3): 83
https://doi.org/10.1016/j.physletb.2013.01.006
11 Shirinda O. , A. Lawrie E. , G. Carlsson B. . Can a chiral system be built on a strongly asymmetric nucleon configuration?. Acta Phys. Pol. B, 2013, 44(3): 341
https://doi.org/10.5506/APhysPolB.44.341
12 G. Carlsson B. , Ragnarsson I. . Many-particles–plus–rotor description of magnetic bands at high spin. Phys. Rev. C Nucl. Phys., 2006, 74(4): 044310
https://doi.org/10.1103/PhysRevC.74.044310
13 Shirinda O. , A. Lawrie E. . Multiple many-particle chiral systems described within the particle-rotor model. Eur. Phys. J. A, 2016, 52(11): 344
https://doi.org/10.1140/epja/i2016-16344-2
14 Shirinda O. , A. Lawrie E. . Multiple chiral bands built on the same many-particle nucleon configuration in the 100 mass region. Acta Phys. Pol. B Proc. Suppl., 2018, 11(1): 149
https://doi.org/10.5506/APhysPolBSupp.11.149
15 A. Lawrie E. . Decay patterns of multi-quasiparticle bands — a model independent test of chiral symmetry. Phys. Scr., 2017, 92(9): 094006
https://doi.org/10.1088/1402-4896/aa80ee
16 Bass R., Nuclear Reactions with Heavy Ions, Springer Verlag, Berlin, Heidelberg, New York, 1980
17 Schwengner R. , Dönau F. , Servene T. , Schnare H. , Reif J. , Winter G. , Käubler L. , Prade H. , Skoda S. , Eberth J. , G. Thomas H. , Becker F. , Fiedler B. , Freund S. , Kasemann S. , Steinhardt T. , Thelen O. , Härtlein T. , Ender C. , Köck F. , Reiter P. , Schwalm D. . Magnetic and collective rotation in 79Br. Phys. Rev. C, 2002, 65(4): 044326
https://doi.org/10.1103/PhysRevC.65.044326
18 S. Dionisio J. , Meunier R. , Schück C. , Vieu C. , M. Lagrange J. , Pautrat M. , C. S. Bacelar J. , R. Jongman J. , R. Phillips W. , L. Durell J. , Urban W. , J. Varley B. , Folger H. . Target structure and in-beam electron spectra. Nucl. Instrum. Methods Phys. Res. A, 1995, 362(1): 122
https://doi.org/10.1016/0168-9002(95)00306-1
19 Xiao X. , Y. Wang S. , Liu C. , A. Bark R. , Meng J. , Q. Zhang S. , Qi B. , Hua H. , Jones P. , M. Wyngaardt S. , Wang S. , P. Sun D. , Q. Li Z. , B. Zhang N. , Jia H. , J. Guo R. , C. Han X. , Mu L. , Lu X. , Z. Xu W. , Y. Niu C. , G. Wang C. , A. Lawrie E. , J. Lawrie J. , F. Sharpey-Schafer J. , Wiedeking M. , N. T. Majola S. , D. Bucher T. , Dinoko T. , Maqabuka B. , Makhathini L. , Mdletshe L. , A. Khumalo N. , Shirinda O. , Sowazi K. . Chirality and octupole correlations in 74As. Phys. Rev. C, 2022, 106(6): 064302
https://doi.org/10.1103/PhysRevC.106.064302
20 Liu C. , Y. Wang S. , A. Bark R. , Q. Zhang S. , Meng J. , Qi B. , Jones P. , M. Wyngaardt S. , Zhao J. , Xu C. , G. Zhou S. , Wang S. , P. Sun D. , Liu L. , Q. Li Z. , B. Zhang N. , Jia H. , Q. Li X. , Hua H. , B. Chen Q. , G. Xiao Z. , J. Li H. , H. Zhu L. , D. Bucher T. , Dinoko T. , Easton J. , Juhász K. , Kamblawe A. , Khaleel E. , Khumalo N. , A. Lawrie E. , J. Lawrie J. , N. T. Majola S. , M. Mullins S. , Murray S. , Ndayishimye J. , Negi D. , P. Noncolela S. , S. Ntshangase S. , M. Nyakó B. , N. Orce J. , Papka P. , F. Sharpey-Schafer J. , Shirinda O. , Sithole P. , A. Stankiewicz M. , Wiedeking M. . Evidence for octupole correlations in multiple chiral doublet bands. Phys. Rev. Lett., 2016, 116(11): 112501
https://doi.org/10.1103/PhysRevLett.116.112501
21 Y. Wang S. , Qi B. , Liu L. , Q. Zhang S. , Hua H. , Q. Li X. , Y. Chen Y. , H. Zhu L. , Meng J. , M. Wyngaardt S. , Papka P. , T. Ibrahim T. , A. Bark R. , Datta P. , A. Lawrie E. , J. Lawrie J. , N. T. Majola S. , L. Masiteng P. , M. Mullins S. , Gál J. , Kalinka G. , Molnár J. , M. Nyakó B. , Timár J. , Juhász K. , Schwengner R. . The first candidate for chiral nuclei in the A ~ 80 mass region: 80Br. Phys. Lett. B, 2011, 703(1): 40
https://doi.org/10.1016/j.physletb.2011.07.055
22 Mu L. , Y. Wang S. , Liu C. , Qi B. , A. Bark R. , Meng J. , Q. Zhang S. , Jones P. , M. Wyngaardt S. , Jia H. , B. Chen Q. , Q. Li Z. , Wang S. , P. Sun D. , J. Guo R. , C. Han X. , Z. Xu W. , Xiao X. , Y. Zhu P. , W. Li H. , Hua H. , Q. Li X. , G. Li C. , Han R. , H. Sun B. , H. Zhu L. , D. Bucher T. , V. Kheswa B. , Khumalo N. , A. Lawrie E. , J. Lawrie J. , L. Malatji K. , Msebi L. , Ndayishimye J. , F. Sharpey-Schafer J. , Shirinda O. , Wiedeking M. , Dinoko T. , S. Ntshangase S. . First observation of the coexistence of multiple chiral doublet bands and pseudospin doublet bands in the A ≈ 80 mass region. Phys. Lett. B, 2022, 827: 137006
https://doi.org/10.1016/j.physletb.2022.137006
23 Liu C. , Y. Wang S. , Qi B. , Wang S. , P. Sun D. , Q. Li Z. , A. Bark R. , Jones P. , J. Lawrie J. , Masebi L. , Wiedeking M. , Meng J. , Q. Zhang S. , Hua H. , Q. Li X. , G. Li C. , Han R. , M. Wyngaardt S. , H. Sun B. , H. Zhu L. , D. Bucher T. , V. Kheswa B. , L. Malatji K. , Ndayishimye J. , Shirinda O. , Dinoko T. , Khumalo N. , A. Lawrie E. , S. Ntshangase S. . New candidate chiral nucleus in the A ≈ 80 mass region: 47,35,82Br. Phys. Rev. C, 2019, 100(5): 054309
https://doi.org/10.1103/PhysRevC.100.054309
24 O. Lieder E. , M. Lieder R. , A. Bark R. , B. Chen Q. , Q. Zhang S. , Meng J. , A. Lawrie E. , J. Lawrie J. , P. Bvumbi S. , Y. Kheswa N. , S. Ntshangase S. , E. Madiba T. , L. Masiteng P. , M. Mullins S. , Murray S. , Papka P. , G. Roux D. , Shirinda O. , H. Zhang Z. , W. Zhao P. , P. Li Z. , Peng J. , Qi B. , Y. Wang S. , G. Xiao Z. , Xu C. . Resolution of chiral conundrum in 106Ag: Doppler-shift lifetime investigation. Phys. Rev. Lett., 2014, 112(20): 202502
https://doi.org/10.1103/PhysRevLett.112.202502
25 Ndayishimye J. , A. Lawrie E. , Shirinda O. , L. Easton J. , J. Lawrie J. , M. Wyngaardt S. , A. Bark R. , D. Bucher T. , P. Bvumbi S. , R. S. Dinoko T. , Jones P. , Y. Kheswa N. , N. T. Majola S. , L. Masiteng P. , Negi D. , N. Orce J. , F. Sharpey-Schafer J. , Wiedeking M. . Competition of rotation around the intermediate and long axes in 193Tl. Phys. Rev. C, 2019, 100(1): 014313
https://doi.org/10.1103/PhysRevC.100.014313
26 L. Masiteng P. , A. Lawrie E. , M. Ramashidzha T. , J. Lawrie J. , A. Bark R. , Lindsay R. , Komati F. , Kau J. , Maine P. , M. Maliage S. , Matamba I. , M. Mullins S. , H. T. Murray S. , P. Mutshena K. , A. Pasternak A. , G. Roux D. , F. Sharpey-Schafer J. , Shirinda O. , A. Vymers P. . Rotational bands and chirality in 194Tl. Eur. Phys. J. A, 2014, 50(7): 119
https://doi.org/10.1140/epja/i2014-14119-5
27 L. Masiteng P. , A. Pasternak A. , A. Lawrie E. , Shirinda O. , J. Lawrie J. , A. Bark R. , P. Bvumbi S. , Y. Kheswa N. , Lindsay R. , O. Lieder E. , M. Lieder R. , E. Madiba T. , M. Mullins S. , H. T. Murray S. , Ndayishimye J. , S. Ntshangase S. , Papka P. , F. Sharpey-Schafer J. . Sharpey-Schafer, DSAM lifetime measurements for the chiral pair in 194Tl. Eur. Phys. J. A, 2016, 52(2): 28
https://doi.org/10.1140/epja/i2016-16028-y
28 A. Lawrie E. , A. Vymers P. , J. Lawrie J. , Vieu Ch. , A. Bark R. , Lindsay R. , K. Mabala G. , M. Maliage S. , L. Masiteng P. , M. Mullins S. , H. T. Murray S. , Ragnarsson I. , M. Ramashidza T. , Shück C. , F. Sharpey-Schafer J. , Shirinda O. . Possible chirality in the doubly-odd 198Tl nucleus: Residual interaction at play. Phys. Rev. C, 2008, 78: 021305(R)
https://doi.org/10.1103/PhysRevC.78.021305
29 A. Lawrie E. , A. Vymers P. , Vieu Ch. , J. Lawrie J. , Schück C. , A. Bark R. , Lindsay R. , K. Mabala G. , M. Maliage S. , L. Masiteng P. , M. Mullins S. , H. T. Murray S. , Ragnarsson I. , M. Ramashidzha T. , F. Sharpey-Schafer J. , Shirinda O. . Candidate chiral bands in 198Tl. Eur. Phys. J. A, 2010, 45(1): 39
https://doi.org/10.1140/epja/i2010-10994-x
30 L. Conradie J., et al.., New Developments at iThemba LABS, in: Proc. CYC’16, Zurich, Switzerland, 2016, pp 274–277
31 Sortais P. . Recent progress in making highly charged ion beams. Nucl. Instrum. Methods Phys. Res. B, 1995, 98(1−4): 508
https://doi.org/10.1016/0168-583X(95)00177-8
32 Waldmann H. , Martin B. . Highly charged metal ion beams produced from organometallic compounds. Nucl. Instrum. Methods Phys. Res. B, 1995, 98(1−4): 532
https://doi.org/10.1016/0168-583X(95)00182-4
33 Hitz D.Cormier D.M. Mathonnet J., Proc. EPAC’02, Paris, France, 2002, paper THPRI005, page 1718
34 T. Newman R., et al.., Proceedings of the Balkan School on Nuclear Physics, Balkan Phys. Lett. Special Issue 182, (1998)
35 F. Sharpey-Schafer J. . Laboratory portrait: iThemba laboratory for accelerator-based sciences. Nucl. Phys. News, 2004, 14(1): 5
https://doi.org/10.1080/10506890491034686
36 Moszyński M. , Duchêne G. . Ballistic deficit correction methods for large Ge detectors. Nucl. Instrum. Methods Phys. Res. A, 1991, 308(3): 557
https://doi.org/10.1016/0168-9002(91)90068-2
37 J. Nolan P. , A. Beck G. , B. Fossan D. . Large arrays of escape-suppressed gamma-ray detectors. Annu. Rev. Nucl. Part. Sci., 1994, 44(1): 561
https://doi.org/10.1146/annurev.ns.44.120194.003021
38 M. Lieder R., Experimental Techniques in Nuclear Physics, Ed. D. N. Poenaru and W. Greiner, Walter de Gruyter, Berlin, 1997, page 137
39
40 S. Krane K. , M. Steffen R. , M. Wheeler R. . Directional correlations of gamma radiations emitted from nuclear states oriented by nuclear reactions or cryogenic methods. At. Data Nucl. Data Tables, 1973, 11(5): 351
https://doi.org/10.1016/S0092-640X(73)80016-6
41 W. Fagg L. , S. Hanna S. . Polarization measurements on nuclear gamma rays. Rev. Mod. Phys., 1959, 31(3): 711
https://doi.org/10.1103/RevModPhys.31.711
42 Starosta K. , Morek T. , Droste C. , G. Rohoziński S. , Srebrny J. , Wierzchucka A. , Bergström M. , Herskind B. , Melby E. , Czosnyka T. , J. Napiorkowski P. . Experimental test of the polarization direction correlation method (PDCO). Nucl. Instrum. Methods Phys. Res. A, 1999, 423(1): 16
https://doi.org/10.1016/S0168-9002(98)01220-0
43 O. Lieder E. , A. Pasternak A. , M. Lieder R. , D. Efimov A. , M. Mikhajlov V. , G. Carlsson B. , Ragnarsson I. , Gast W. , Venkova T. , Morek T. , Chmel S. , de Angelis G. , R. Napoli D. , Gadea A. , Bazzacco D. , Menegazzo R. , Lunardi S. , Urban W. , Droste C. , Rzaca-Urban T. , Duchêne G. , Dewald A. . Investigation of lifetimes in quadrupole bands of 142Gd. Eur. Phys. J. A, 2008, 35(2): 135
https://doi.org/10.1140/epja/i2007-10533-0
44 M. Lieder R. , A. Pasternak A. , O. Podsvirova E. , D. Efimov A. , M. Mikhajlov V. , Wyss R. , Venkova T. , Gast W. , M. Jäger H. , Mihailescu L. , Bazzacco D. , Lunardi S. , Menegazzo R. , Rossi Alvarez C. , de Angelis G. , R. Napoli D. , Rzaca-Urban T. , Urban W. , Dewald A. . Investigations of the level scheme of 144Gd and lifetimes in the quadrupole bands. Eur. Phys. J. A, 2004, 21(1): 37
https://doi.org/10.1140/epja/i2003-10181-4
45 Grodner E. , A. Pasternak A. , Droste C. , Morek T. , Srebrny J. , Kownacki J. , Płóciennik W. , A. Wasilewski A. , Kowalczyk M. , Kisieliński M. , Kaczarowski R. , Ruchowska E. , Kordyasz A. , Wolińska M. . Lifetimes and side-feeding population of the yrast band levels in 131La. Eur. Phys. J. A, 2006, 27(3): 325
https://doi.org/10.1140/epja/i2006-10006-0
46 Belgya T.Bersillon O.Capote Noy R.Fukahori T.Zhigang G.Goriely S.Herman M.V. Ignatyuk A.Kailas S.J. Koning A.Oblozinsky P.Plujko V.G. Young P., Handbook for Calculations of Nuclear Reaction Data, RIPL-2, IAEA-TECDOC-1506, IAEA, Vienna, 2006
47 M. Lieder R. , A. Pasternak A. , O. Lieder E. , Gast W. , de Angelis G. , Bazzacco D. , of γ-ray fold distributions in N ≤ 82 Gd Investigation . Eu and Sm nuclei: Observation of a double-humped fold distribution. Eur. Phys. J. A, 2011, 47(9): 115
https://doi.org/10.1140/epja/i2011-11115-3
48 N. Scheurer J. , Aiche M. , M. Aleonard M. , Barreau G. , Bourgine F. , Boivin D. , Cabaussel D. , F. Chemin J. , P. Doan T. , P. Goudour J. , Harston M. , Brondi A. , La Rana G. , Moro R. , Vardaci E. , Curien D. . Improvements in the in-beam γ-ray spectroscopy provided by an ancillary detector coupled to a Ge γ-spectrometer: The DIAMANT-EUROGAM II example. Nucl. Instrum. Methods Phys. Res. A, 1997, 385(3): 501
https://doi.org/10.1016/S0168-9002(96)01038-8
49 Gál J. , Hegyesi G. , Molnár J. , M. Nyakó B. , Kalinka G. , N. Scheurer J. , M. Aléonard M. , F. Chemin J. , L. Pedroza J. , Juhász K. , F. E. Pucknell V. . The VXI electronics of the DIAMANT particle detector array. Nucl. Instrum. Methods Phys. Res. A, 2004, 516(2−3): 502
https://doi.org/10.1016/j.nima.2003.08.158
50 S. Komati F. , A. Bark R. , Gál J. , Gueorguieva E. , Juhász K. , Kalinka G. , Krasznahorkay A. , J. Lawrie J. , Lipoglavšek M. , Maliage M. , Molnár J. , M. Mullins S. , H. T. Murray S. , M. Nyakó B. , Ramashidza M. , F. Sharpey-Schafer J. , N. Scheurer J. , Timár J. , Vymers P. , Zolnai L. . Commissioning of the DIAMANT “chessboard” light-charged-particle CsI detector array with AFRODITE. AIP Conf. Proc., 2005, 802: 215
https://doi.org/10.1063/1.2140655
51 M. Petrache C. , B. Hagemann G. , Hamamoto I. , Starosta K. . Risk of misinterpretation of nearly degenerate pair bands as chiral partners in nuclei. Phys. Rev. Lett., 2006, 96(11): 112502
https://doi.org/10.1103/PhysRevLett.96.112502
52 Tonev D. , de Angelis G. , Petkov P. , Dewald A. , Brant S. , Frauendorf S. , L. Balabanski D. , Pejovic P. , Bazzacco D. , Bednarczyk P. , Camera F. , Fitzler A. , Gadea A. , Lenzi S. , Lunardi S. , Marginean N. , Möller O. , R. Napoli D. , Paleni A. , M. Petrache C. , Prete G. , O. Zell K. , H. Zhang Y. , Zhang J. , Zhong Q. , Curien D. . Transition probabilities in 134Pr: A test for chirality in nuclear systems. Phys. Rev. Lett., 2006, 96(5): 052501
https://doi.org/10.1103/PhysRevLett.96.052501
53 Starosta K. , Koike T. , J. Chiara C. , B. Fossan D. , R. LaFosse D. , A. Hecht A. , W. Beausang C. , A. Caprio M. , R. Cooper J. , Krücken R. , R. Novak J. , V. Zamfir N. , E. Zyromski K. , J. Hartley D. , L. Balabanski D. , Zhang J. , Frauendorf S. , I. Dimitrov V. . Chiral doublet structures in odd‒odd N = 75 isotones: Chiral vibrations. Phys. Rev. Lett., 2001, 86(6): 971
https://doi.org/10.1103/PhysRevLett.86.971
54 A. Bark R. , M. Baxter A. , P. Byrne A. , D. Dracoulis G. , Kibedí T. , R. Mc Goram T. , M. Mullins S. . Candidate chiral band in La. Nucl. Phys. A, 2001, 691(3−4): 577
https://doi.org/10.1016/S0375-9474(01)00592-9
55 Grodner E. , Srebrny J. , A. Pasternak A. , Zalewska I. , Morek T. , Droste C. , Mierzejewski J. , Kowalczyk M. , Kownacki J. , Kisieliński M. , G. Rohoziński S. , Koike T. , Starosta K. , Kordyasz A. , J. Napiorkowski P. , Wolińska-Cichocka M. , Ruchowska E. , Płóciennik W. , Perkowski J. . 128Cs as the best example revealing chiral symmetry breaking. Phys. Rev. Lett., 2006, 97(17): 172501
https://doi.org/10.1103/PhysRevLett.97.172501
56 Ray I. , Banerjee P. , Bhattacharya S. , Saha-Sarkar M. , Muralithar S. , P. Singh R. , K. Bhowmik R. . Structure of positive-parity yrast band in Br. Nucl. Phys. A, 2000, 678(3): 258
https://doi.org/10.1016/S0375-9474(00)00335-3
57 Meng J. , Peng J. , Q. Zhang S. , G. Zhou S. . Possible existence of multiple chiral doublets in 106Rh. Phys. Rev. C, 2006, 73(3): 037303
https://doi.org/10.1103/PhysRevC.73.037303
58 Q. Zhang S. , Qi B. , Y. Wang S. , Meng J. . Chiral bands for a quasi-proton and quasi-neutron coupled with a triaxial rotor. Phys. Rev. C, 2007, 75(4): 044307
https://doi.org/10.1103/PhysRevC.75.044307
59 Esser L. , Neuneyer U. , F. Casten R. , von Brentano P. , of the deformation variables β Correlations , in even‒even Hf γ . Pt, and Hg nuclei. Phys. Rev. C, 1997, 55(1): 206
https://doi.org/10.1103/PhysRevC.55.206
60 Tanaka Y. , K. Sheline R. . Comparison of calculated and experimental band structure in odd-A nuclei with A = 187–199. Nucl. Phys. A, 1977, 276(1): 101
https://doi.org/10.1016/0375-9474(77)90161-0
61 Meyer-Ter-Vehn J. . Collective model description of transitional odd-A nuclei. Nucl. Phys. A, 1975, 249(1): 141
https://doi.org/10.1016/0375-9474(75)90096-2
62 Toki H. , L. Yadav H. , Faessler A. . Decoupled and strongly coupled particles system in odd‒odd mass nuclei. Phys. Lett. B, 1977, 71: 1
https://doi.org/10.1016/0370-2693(77)90724-9
63 A. Bark R.M. Espino J.Reviol W.B. Semmes P.Carlsson H.G. Bearden I.B. Hagemann G.J. Jensen H.Ragnarsson I.L. Riedinger L.Ryde H.O. Tjϕm P., Signature inversion in semi-decoupled bands: Residual interaction between h92 protons and i132 neutrons, Phys. Lett. B 406(3), 193 (1997) [Erratum: Phys. Lett. B 416, 453 (1998)]
64 Pai H. , Mukherjee G. , Bhattacharyya S. , R. Gohil M. , Bhattacharjee T. , Bhattacharya C. , Palit R. , Saha S. , Sethi J. , Trivedi T. , Thakur S. , S. Naidu B. , K. Jadav S. , Donthi R. , Goswami A. , Chanda S. . High spin band structures in doubly odd 194Tl. Phys. Rev. C, 2012, 85(6): 064313
https://doi.org/10.1103/PhysRevC.85.064313
65 Bengtsson R. , Frauendorf S. . Quasiparticle spectra near the yrast line. Nucl. Phys. A, 1979, 327(1): 139
https://doi.org/10.1016/0375-9474(79)90322-1
66 Koike T. , Starosta K. , J. Chiara C. , B. Fossan D. , R. LaFosse D. . Systematic search of πh11/2 ⊗ νh11/2 chiral doublet bands and role of triaxiality in odd‒odd Z = 55 isotopes: 128,130,132,134Cs. Phys. Rev. C, 2003, 67(4): 044319
https://doi.org/10.1103/PhysRevC.67.044319
67 Zhu S. , Garg U. , K. Nayak B. , S. Ghugre S. , S. Pattabiraman N. , B. Fossan D. , Koike T. , Starosta K. , Vaman C. , V. F. Janssens R. , S. Chakrawarthy R. , Whitehead M. , O. Macchiavelli A. , Frauendorf S. . A composite chiral pair of rotational bands in the odd-A nucleus 135Nd. Phys. Rev. Lett., 2003, 91(13): 132501
https://doi.org/10.1103/PhysRevLett.91.132501
68 Bengtsson T. , Ragnarsson I. . Rotational bands and particle-hole excitations at very high spin. Nucl. Phys. A, 1985, 436(1): 14
https://doi.org/10.1016/0375-9474(85)90541-X
69 Reviol W. , P. Carpenter M. , Garg U. , V. F. Janssens R. , Ahmad I. , G. Bearden I. , Benet P. , J. Daly P. , W. Drigert M. , B. Fernandez P. , L. Khoo T. , F. Moore E. , Pilotte S. , Ye D. . Shape-driving effects in 193Tl from the spectroscopy of yrast and near-yrast states. Nucl. Phys. A, 1992, 548(2): 331
https://doi.org/10.1016/0375-9474(92)90014-B
70 M. Petrache C. , Bazzacco D. , Lunardi S. , Rossi Alvarez C. , de Angelis G. , de Poli M. , Bucurescu D. , A. Ur C. , B. Semmes P. , Wyss R. . Rotational bands in the doubly odd nucleus 134Pr. Nucl. Phys. A, 1996, 597(1): 106
https://doi.org/10.1016/0375-9474(95)00416-5
71 J. Kreiner A. , Fenzl M. , Lunardi S. , A. Mariscotti M. . Rotational structures in doubly odd 198Tl. Nucl. Phys. A, 1977, 282(2): 243
https://doi.org/10.1016/0375-9474(77)90214-7
72 Joshi P. , P. Carpenter M. , B. Fossan D. , Koike T. , S. Paul E. , Rainovski G. , Starosta K. , Vaman C. , Wadsworth R. . Effect of γ softness on the stability of chiral geometry: Spectroscopy of 106Ag. Phys. Rev. Lett., 2007, 98(10): 102501
https://doi.org/10.1103/PhysRevLett.98.102501
73 Jerrestam D. , Klamra W. , Gizon J. , Lidén F. , Hildingsson L. , Kownacki J. , Lindblad Th. , Nyberg J. . Collective bands in 106Ag and 107Ag. Nucl. Phys. A, 1994, 577(3−4): 786
https://doi.org/10.1016/0375-9474(94)90945-8
74 L. Ma H. , H. Yao S. , G. Dong B. , G. Wu X. , Q. Zhang H. , Z. Zhang X. . Risk of misinterpreting nearly degenerate doublet bands as chiral partners in odd‒even 103, 105, 107Ag and odd‒odd 106Ag. Phys. Rev. C, 2013, 88(3): 034322
https://doi.org/10.1103/PhysRevC.88.034322
75 Peng J. , Sagawa H. , Q. Zhang S. , M. Yao J. , Zhang Y. , Meng J. . Search for multiple chiral doublets in rhodium isotopes. Phys. Rev. C, 2008, 77(2): 024309
https://doi.org/10.1103/PhysRevC.77.024309
76 M. Yao J. , Qi B. , Q. Zhang S. , Peng J. , Y. Wang S. , Meng J. . Candidate multiple chiral doublets nucleus 106Rh in a triaxial relativistic mean-field approach with time-odd fields. Phys. Rev. C, 2009, 79(6): 067302
https://doi.org/10.1103/PhysRevC.79.067302
77 Li J. , Q. Zhang S. , Meng J. . Multiple chiral doublet candidate nucleus 105Rh in a relativistic mean-field approach. Phys. Rev. C, 2011, 83(3): 037301
https://doi.org/10.1103/PhysRevC.83.037301
78 D. Ayangeakaa A. , Garg U. , D. Anthony M. , Frauendorf S. , T. Matta J. , K. Nayak B. , Patel D. , B. Chen Q. , Q. Zhang S. , W. Zhao P. , Qi B. , Meng J. , V. F. Janssens R. , P. Carpenter M. , J. Chiara C. , G. Kondev F. , Lauritsen T. , Seweryniak D. , Zhu S. , S. Ghugre S. , Palit R. . Evidence for multiple chiral doublet bands in 133Ce. Phys. Rev. Lett., 2013, 110(17): 172504
https://doi.org/10.1103/PhysRevLett.110.172504
79 W. Zhao P. , P. Li Z. , M. Yao J. , Meng J. . New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C, 2010, 82(5): 054319
https://doi.org/10.1103/PhysRevC.82.054319
80 I. Levon A. , de Boer J. , A. Pasternak A. , A. Volkov D. . M1-transitions and the mutual orientation of the unpaired nucleons in odd‒odd nuclei. Z. Phys. A, 1992, 343(2): 131
https://doi.org/10.1007/BF01291817
81 Rather N. , Datta P. , Chattopadhyay S. , Rajbanshi S. , Goswami A. , H. Bhat G. , A. Sheikh J. , Roy S. , Palit R. , Pal S. , Saha S. , Sethi J. , Biswas S. , Singh P. , C. Jain H. . Exploring the origin of nearly degenerate doublet bands in 106Ag. Phys. Rev. Lett., 2014, 112(20): 202503
https://doi.org/10.1103/PhysRevLett.112.202503
82 A. Butler P. , Nazarewicz W. . Intrinsic reflection asymmetry in atomic nuclei. Rev. Mod. Phys., 1996, 68(2): 349
https://doi.org/10.1103/RevModPhys.68.349
83 Ackermann B. , Baltzer H. , Ensel C. , Freitag K. , Grafen V. , Günther C. , Herzog P. , Manns J. , Marten-Tölle M. , Müller U. , Prinz J. , Romanski I. , Tölle R. , deBoer J. , Gollwitzer N. , J. Maier H. , E1 transitions in even-A Ra Collective . Th, and U nuclei. Nucl. Phys. A, 1993, 559(1): 61
https://doi.org/10.1016/0375-9474(93)90180-6
84 Mason P. , Benzoni G. , Bracco A. , Camera F. , Million B. , Wieland O. , Leoni S. , K. Singh A. , Al-Khatib A. , Hübel H. , Bringel P. , Bürger A. , Neusser A. , Schönwasser G. , M. Nyakó B. , Timár J. , Algora A. , Dombrádi Z. , Gál J. , Kalinka G. , Molnár J. , Sohler D. , Zolnai L. , Juhász K. , B. Hagemann G. , R. Hansen C. , Herskind B. , Sletten G. , Kmiecik M. , Maj A. , Styczen J. , Zuber K. , Azaiez F. , Hauschild K. , Korichi A. , Lopez-Martens A. , Roccaz J. , Siem S. , Hannachi F. , N. Scheurer J. , Bednarczyk P. , Byrski T. , Curien D. , Dorvaux O. , Duchêne G. , Gall B. , Khalfallah F. , Piqueras I. , Robin J. , B. Patel S. , A. Evans O. , Rainovski G. , M. Petrache C. , Petrache D. , L. Rana G. , Moro R. , D. Angelis G. , Falon P. , Y. Lee I. , C. Lisle J. , Cederwall B. , Lagergen K. , M. Lieder R. , Podsvirova E. , Gast W. , Jäger H. , Redon N. , Görgen A. . Evidence for octupole correlations in 124, 125Ba. Phys. Rev. C, 2005, 72(6): 064315
https://doi.org/10.1103/PhysRevC.72.064315
85 Y. Wang Y. , Q. Zhang S. , W. Zhao P. , Meng J. . Multiple chiral doublet bands with octupole correlations in reflection-asymmetric triaxial particle rotor model. Phys. Lett. B, 2019, 792: 454
https://doi.org/10.1016/j.physletb.2019.04.014
86 T. Hecht K. , Adler A. . Generalized seniority for favored J ≠ 0 pairs in mixed configurations. Nucl. Phys. A, 1969, 137(1): 129
https://doi.org/10.1016/0375-9474(69)90077-3
87 Arima A. , Harvey M. , Shimizu K. . Pseudo LS coupling and pseudo SU(3) coupling schemes. Phys. Lett. B, 1969, 30(8): 517
https://doi.org/10.1016/0370-2693(69)90443-2
88 Jia H. , Qi B. , Liu C. , Y. Wang S. . Coexistence of chiral symmetry and pseudospin symmetry in one nucleus: Triplet bands in 105Ag. J. Phys. G, 2019, 46(3): 035102
https://doi.org/10.1088/1361-6471/ab025c
89 Guo S. , M. Petrache C. , Mengoni D. , H. Qiang Y. , P. Wang Y. , Y. Wang Y. , Meng J. , K. Wang Y. , Q. Zhang S. , W. Zhao P. , Astier A. , G. Wang J. , L. Fan H. , Dupont E. , F. Lv B. , Bazzacco D. , Boso A. , Goasduff A. , Recchia F. , Testov D. , Galtarossa F. , Jaworski G. , R. Napoli D. , Riccetto S. , Siciliano M. , J. Valiente-Dobon J. , L. Liu M. , S. Li G. , H. Zhou X. , H. Zhang Y. , Andreoiu C. , H. Garcia F. , Ortner K. , Whitmore K. , Ataç-Nyberg A. , Bäck T. , Cederwall B. , A. Lawrie E. , Kuti I. , Sohler D. , Marchlewski T. , Srebrny J. , Tucholski A. . Evidence for pseudospin-chiral quartet bands in the presence of octupole correlations. Phys. Lett. B, 2020, 807: 135572
https://doi.org/10.1016/j.physletb.2020.135572
90 Liang H. , Meng J. , G. Zhou S. . Hidden pseudospin and spin symmetries and their origins in atomic nuclei. Phys. Rep., 2015, 570: 1
https://doi.org/10.1016/j.physrep.2014.12.005
91 Xu Q. , J. Zhu S. , H. Hamilton J. , V. Ramayya A. , K. Hwang J. , Qi B. , Meng J. , Peng J. , X. Luo Y. , O. Rasmussen J. , Y. Lee I. , H. Liu S. , Li K. , G. Wang J. , B. Ding H. , Gu L. , Y. Yeoh E. , C. Ma W. . Identification of pseudospin partner bands in 108Tc. Phys. Rev. C, 2008, 78(6): 064301
https://doi.org/10.1103/PhysRevC.78.064301
[1] Ernest Grodner, Michał Kowalczyk, Julian Srebrny, Leszek Próchniak, Chrystian Droste, Jan Kownacki, Maciej Kisieliński, Krzysztof Starosta, Takeshi Koike. The g-factor measurement as an ultimate test for nuclear chirality[J]. Front. Phys. , 2024, 19(3): 34202-.
[2] Shouyu Wang, Chen Liu, Bin Qi, Wenzheng Xu, Hui Zhang. Experimental studies for nuclear chirality in China[J]. Front. Phys. , 2023, 18(6): 64601-.
[3] Karl-Heinz ERNST. Intermediate structures in two-dimensional molecular self-assembly[J]. Front Phys Chin, 2010, 5(4): 340-346.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed