|
|
Nanophononic metamaterials induced proximity effect in heat flux regulation |
Jian Zhang1,2, Haochun Zhang1( ), Gang Zhang2( ) |
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China 2. Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore |
|
|
Abstract Recent studies have shown that the construction of nanophononic metamaterials can reduce thermal conductivity without affecting electrical properties, making them promising in many fields of application, such as energy conversion and thermal management. However, although extensive studies have been carried out on thermal conductivity reduction in nanophononic metamaterials, the local heat flux characteristic is still unclear. In this work, we construct a heat flux regulator which includes a silicon nanofilm with silicon pillars. The regulator has remarkable heat flux regulation ability, and various impacts on the regulation ability are explored. Surprisingly, even in the region without nanopillars, the local heat current is still lower than that in pristine silicon nanofilms, reduced by the neighboring nanopillars through the thermal proximity effect. We combine the analysis of the phonon participation ratio with the intensity of localized phonon modes to provide a clear explanation. Our findings not only provide insights into the mechanisms of heat flux regulation by nanophononic metamaterials, but also will open up new research directions to control local heat flux for a broad range of applications, including heat management, thermoelectric energy conversion, thermal cloak, and thermal concentrator.
|
Keywords
nanophononic metamaterials
proximity effect
|
Corresponding Author(s):
Haochun Zhang,Gang Zhang
|
About author: Peng Lei and Charity Ngina Mwangi contributed equally to this work. |
Issue Date: 31 October 2023
|
|
1 |
Chen J. , He J. , K. Pan D. , T. Wang X. , Yang N. , J. Zhu J. , Y. A. Yang S. , Zhang G. . Emerging theory and phenomena in thermal conduction: A selective review. Sci. China Phys. Mech. Astron., 2022, 65(11): 117002
https://doi.org/10.1007/s11433-022-1952-3
|
2 |
Liang Y. , P. Huang J. . Robustness of critical points in a complex adaptive system: Effects of hedge behavior. Front. Phys., 2013, 8(4): 461
https://doi.org/10.1007/s11467-013-0339-3
|
3 |
Z. Yu Z.H. Xiong G.F. Zhang L., A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
|
4 |
L. Davis B. , I. Hussein M. . Nanophononic metamaterial: Thermal conductivity reduction by local resonance. Phys. Rev. Lett., 2014, 112(5): 055505
https://doi.org/10.1103/PhysRevLett.112.055505
|
5 |
Honarvar H. , I. Hussein M. . Two orders of magnitude reduction in silicon membrane thermal conductivity by resonance hybridizations. Phys. Rev. B, 2018, 97(19): 195413
https://doi.org/10.1103/PhysRevB.97.195413
|
6 |
Wei Z. , Yang J. , Bi K. , Chen Y. . Phonon transport properties in pillared silicon film. J. Appl. Phys., 2015, 118(15): 155103
https://doi.org/10.1063/1.4933284
|
7 |
Y. Xiong S. , Saaskilahti K. , A. Kosevich Y. , X. Han H. , Donadio D. , Volz S. . Blocking phonon transport by structural resonances in alloy-based nanophononic metamaterials leads to ultralow thermal conductivity. Phys. Rev. Lett., 2016, 117(2): 025503
https://doi.org/10.1103/PhysRevLett.117.025503
|
8 |
Honarvar H. , Yang L. , I. Hussein M. . Thermal transport size effects in silicon membranes featuring nanopillars as local resonators. Appl. Phys. Lett., 2016, 108(26): 263101
https://doi.org/10.1063/1.4954739
|
9 |
Wang J. , Dai G. , P. Huang J. . Thermal metamaterial: Fundamental, application, and outlook. iScience, 2020, 23(10): 101637
https://doi.org/10.1016/j.isci.2020.101637
|
10 |
Yudistira D. , Boes A. , Graczykowski B. , Alzina F. , Y. Yeo L. , M. Sotomayor Torres C. , Mitchell A. . Nanoscale pillar hypersonic surface phononic crystals. Phys. Rev. B, 2016, 94(9): 094304
https://doi.org/10.1103/PhysRevB.94.094304
|
11 |
Li B. , T. Tan K. , Christensen J. . Tailoring the thermal conductivity in nanophononic metamaterials. Phys. Rev. B, 2017, 95(14): 144305
https://doi.org/10.1103/PhysRevB.95.144305
|
12 |
Wan X. , K. Ma D. , K. Pan D. , N. Yang L. , Yang N. . Optimizing thermal transport in graphene nanoribbon based on phonon resonance hybridization. Mater. Today Phys., 2021, 20: 100445
https://doi.org/10.1016/j.mtphys.2021.100445
|
13 |
Wang H. , Cheng Y. , Fan Z. , Guo Y. , Zhang Z. , Bescond M. , Nomura M. , Ala-Nissila T. , Volz S. , Xiong S. . Anomalous thermal conductivity enhancement in low dimensional resonant nanostructures due to imperfections. Nanoscale, 2021, 13(22): 10010
https://doi.org/10.1039/D1NR01679B
|
14 |
Neogi S. , Donadio D. . Anisotropic in-plane phonon transport in silicon membranes guided by nanoscale surface resonators. Phys. Rev. Appl., 2020, 14(2): 024004
https://doi.org/10.1103/PhysRevApplied.14.024004
|
15 |
Q. Hu S. , Feng L. , Cheng S. , A. Kosevich Y. , Shiomi J. . Two-path phonon interference resonance induces a stop band in a silicon crystal matrix with a multilayer array of embedded nanoparticles. Phys. Rev. B, 2020, 102(2): 024301
https://doi.org/10.1103/PhysRevB.102.024301
|
16 |
G. Zhang H. , Sun B. , Hu S. , Y. Wang H. , J. Cheng Y. , Y. Xiong S. , Volz S. , X. Ni Y. . Novel phonon resonator based on surface screw thread for suppressing thermal transport of Si nanowires. Phys. Rev. B, 2020, 101(20): 205418
https://doi.org/10.1103/PhysRevB.101.205418
|
17 |
Juntunen T. , Vänskä O. , Tittonen I. . Anderson localization quenches thermal transport in aperiodic superlattices. Phys. Rev. Lett., 2019, 122(10): 105901
https://doi.org/10.1103/PhysRevLett.122.105901
|
18 |
Y. Guo Y. , Bescond M. , W. Zhang Z. , Y. Xiong S. , Hirakawa K. , Nomura M. , Volz S. . Thermal conductivity minimum of graded superlattices due to phonon localization. APL Mater., 2021, 9(9): 091104
https://doi.org/10.1063/5.0054921
|
19 |
Anufriev R. , Maire J. , Nomura M. . Review of coherent phonon and heat transport control in one-dimensional phononic crystals at nanoscale. APL Mater., 2021, 9(7): 070701
https://doi.org/10.1063/5.0052230
|
20 |
W. Zhang Z. , Y. Guo Y. , Bescond M. , Chen J. , Nomura M. , Volz S. . Coherent thermal transport in nano-phononic crystals: An overview. APL Mater., 2021, 9(8): 081102
https://doi.org/10.1063/5.0059024
|
21 |
B. Jin Y. , Pennec Y. , Bonello B. , Honarvar H. , Dobrzynski L. , Djafari-Rouhani B. , I. Hussein M. . Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces. Rep. Prog. Phys., 2021, 84(8): 086502
https://doi.org/10.1088/1361-6633/abdab8
|
22 |
H. Ma J. . Phonon engineering of micro‐ and nanophononic crystals and acoustic metamaterials: A review. Small Sci., 2023, 3(1): 2200052
https://doi.org/10.1002/smsc.202200052
|
23 |
Plimpton S. . Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117(1): 1
https://doi.org/10.1006/jcph.1995.1039
|
24 |
H. Stillinger F. , A. Weber T. . Computer simulation of local order in condensed phases of silicon. Phys. Rev. B Condens. Matter, 1985, 31(8): 5262
https://doi.org/10.1103/PhysRevB.31.5262
|
25 |
F. Zhuang P. , J. Xu L. , Tan P. , P. Ouyang X. , P. Huang J. . Breaking efficiency limit of thermal concentrators by conductivity couplings. Sci. China Phys. Mech. Astron., 2022, 65(11): 117007
https://doi.org/10.1007/s11433-021-1889-5
|
26 |
Yang S. , Wang J. , L. Dai G. , B. Yang F. , P. Huang J. . Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application. Phys. Rep., 2021, 908: 1
https://doi.org/10.1016/j.physrep.2020.12.006
|
27 |
R. Zhang Z. , J. Xu L. , Qu T. , Lei M. , K. Lin Z. , P. Ouyang X. , H. Jiang J. , P. Huang J. . Diffusion metamaterials. Nat. Rev. Phys., 2023, 5(4): 218
https://doi.org/10.1038/s42254-023-00565-4
|
28 |
A. Dick K. , Deppert K. , W. Larsson M. , Martensson T. , Seifert W. , R. Wallenberg L. , Samuelson L. . Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater., 2004, 3(6): 380
https://doi.org/10.1038/nmat1133
|
29 |
Chekurov N. , Grigoras K. , Peltonen A. , Franssila S. , Tittonen I. . The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching. Nanotechnology, 2009, 20(6): 065307
https://doi.org/10.1088/0957-4484/20/6/065307
|
30 |
Huang Z. , Zhang X. , Reiche M. , Liu L. , Lee W. , Shimizu T. , Senz S. , Göselee U. . Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett., 2008, 8(9): 3046
https://doi.org/10.1021/nl802324y
|
31 |
M. Dickey J. , Paskin A. . Computer simulation of the lattice dynamics of solids. Phys. Rev., 1969, 188(3): 1407
https://doi.org/10.1103/PhysRev.188.1407
|
32 |
C. Loh G. , H. T. Teo E. , K. Tay B. . Phonon localization around vacancies in graphene nanoribbons. Diamond Related Mater., 2012, 23: 88
https://doi.org/10.1016/j.diamond.2012.01.006
|
33 |
Wang Y. , Vallabhaneni A. , N. Hu J. , Qiu B. , P. Chen Y. , L. Ruan X. . Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Lett., 2014, 14(2): 592
https://doi.org/10.1021/nl403773f
|
34 |
Liang T. , Zhou M. , Zhang P. , Yuan P. , G. Yang D. . Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties. Int. J. Heat Mass Transf., 2020, 151: 119395
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119395
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|