Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (2) : 23204    https://doi.org/10.1007/s11467-023-1349-4
RESEARCH ARTICLE
Nanophononic metamaterials induced proximity effect in heat flux regulation
Jian Zhang1,2, Haochun Zhang1(), Gang Zhang2()
1. School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
2. Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632, Singapore
 Download: PDF(7306 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent studies have shown that the construction of nanophononic metamaterials can reduce thermal conductivity without affecting electrical properties, making them promising in many fields of application, such as energy conversion and thermal management. However, although extensive studies have been carried out on thermal conductivity reduction in nanophononic metamaterials, the local heat flux characteristic is still unclear. In this work, we construct a heat flux regulator which includes a silicon nanofilm with silicon pillars. The regulator has remarkable heat flux regulation ability, and various impacts on the regulation ability are explored. Surprisingly, even in the region without nanopillars, the local heat current is still lower than that in pristine silicon nanofilms, reduced by the neighboring nanopillars through the thermal proximity effect. We combine the analysis of the phonon participation ratio with the intensity of localized phonon modes to provide a clear explanation. Our findings not only provide insights into the mechanisms of heat flux regulation by nanophononic metamaterials, but also will open up new research directions to control local heat flux for a broad range of applications, including heat management, thermoelectric energy conversion, thermal cloak, and thermal concentrator.

Keywords nanophononic metamaterials      proximity effect     
Corresponding Author(s): Haochun Zhang,Gang Zhang   
About author:

Peng Lei and Charity Ngina Mwangi contributed equally to this work.

Issue Date: 31 October 2023
 Cite this article:   
Jian Zhang,Haochun Zhang,Gang Zhang. Nanophononic metamaterials induced proximity effect in heat flux regulation[J]. Front. Phys. , 2024, 19(2): 23204.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1349-4
https://academic.hep.com.cn/fop/EN/Y2024/V19/I2/23204
Fig.1  The schematic of the configurations of the regulator, the functional region is constructed by nanopillars arranged periodically. Specific parameter information is shown in the main text.
Fig.2  Heat flux and temperature profiles of the regulators and pristine silicon films. (a?c) The heat flux profile, (d?f) the temperature profile. (a, d) The pristine silicon film, (b, e) the nanopillar height is 25 UC, and (c, f) the nanopillar height is 50 UC.
Film thickness (UC)Nanopillar width (UC)Nanopillar height (UC)Nanopillar spacing (UC)Number of nanopillarsThe ratio of heat flux (RHF)
600001
64251220.786
64501220.714
Tab.1  The ratio of heat flux with different regulators.
Fig.3  The heat flux spatial distribution of the regulator in region P1?P7 with the nanopillar height is 50 UC.
Fig.4  (a) The mode participation rate of the regulators and pristine silicon nanofilm. (b) The intensity of localized phonon modes in regulator with the nanopillar height of 50 UC. The larger the value of the intensity of localized phonon modes, the lower the MPR.
Fig.5  The heat flux (a) and temperature (b) profile of the regulator when the host nanofilm thickness is 10 UC.
Fig.6  The heat flux (a) and temperature (b) profile of the regulator with the nanopillar row is 1.
1 Chen J. , He J. , K. Pan D. , T. Wang X. , Yang N. , J. Zhu J. , Y. A. Yang S. , Zhang G. . Emerging theory and phenomena in thermal conduction: A selective review. Sci. China Phys. Mech. Astron., 2022, 65(11): 117002
https://doi.org/10.1007/s11433-022-1952-3
2 Liang Y. , P. Huang J. . Robustness of critical points in a complex adaptive system: Effects of hedge behavior. Front. Phys., 2013, 8(4): 461
https://doi.org/10.1007/s11467-013-0339-3
3 Z. Yu Z.H. Xiong G.F. Zhang L., A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach, Front. Phys. 16(4), 43201 (2021)
4 L. Davis B. , I. Hussein M. . Nanophononic metamaterial: Thermal conductivity reduction by local resonance. Phys. Rev. Lett., 2014, 112(5): 055505
https://doi.org/10.1103/PhysRevLett.112.055505
5 Honarvar H. , I. Hussein M. . Two orders of magnitude reduction in silicon membrane thermal conductivity by resonance hybridizations. Phys. Rev. B, 2018, 97(19): 195413
https://doi.org/10.1103/PhysRevB.97.195413
6 Wei Z. , Yang J. , Bi K. , Chen Y. . Phonon transport properties in pillared silicon film. J. Appl. Phys., 2015, 118(15): 155103
https://doi.org/10.1063/1.4933284
7 Y. Xiong S. , Saaskilahti K. , A. Kosevich Y. , X. Han H. , Donadio D. , Volz S. . Blocking phonon transport by structural resonances in alloy-based nanophononic metamaterials leads to ultralow thermal conductivity. Phys. Rev. Lett., 2016, 117(2): 025503
https://doi.org/10.1103/PhysRevLett.117.025503
8 Honarvar H. , Yang L. , I. Hussein M. . Thermal transport size effects in silicon membranes featuring nanopillars as local resonators. Appl. Phys. Lett., 2016, 108(26): 263101
https://doi.org/10.1063/1.4954739
9 Wang J. , Dai G. , P. Huang J. . Thermal metamaterial: Fundamental, application, and outlook. iScience, 2020, 23(10): 101637
https://doi.org/10.1016/j.isci.2020.101637
10 Yudistira D. , Boes A. , Graczykowski B. , Alzina F. , Y. Yeo L. , M. Sotomayor Torres C. , Mitchell A. . Nanoscale pillar hypersonic surface phononic crystals. Phys. Rev. B, 2016, 94(9): 094304
https://doi.org/10.1103/PhysRevB.94.094304
11 Li B. , T. Tan K. , Christensen J. . Tailoring the thermal conductivity in nanophononic metamaterials. Phys. Rev. B, 2017, 95(14): 144305
https://doi.org/10.1103/PhysRevB.95.144305
12 Wan X. , K. Ma D. , K. Pan D. , N. Yang L. , Yang N. . Optimizing thermal transport in graphene nanoribbon based on phonon resonance hybridization. Mater. Today Phys., 2021, 20: 100445
https://doi.org/10.1016/j.mtphys.2021.100445
13 Wang H. , Cheng Y. , Fan Z. , Guo Y. , Zhang Z. , Bescond M. , Nomura M. , Ala-Nissila T. , Volz S. , Xiong S. . Anomalous thermal conductivity enhancement in low dimensional resonant nanostructures due to imperfections. Nanoscale, 2021, 13(22): 10010
https://doi.org/10.1039/D1NR01679B
14 Neogi S. , Donadio D. . Anisotropic in-plane phonon transport in silicon membranes guided by nanoscale surface resonators. Phys. Rev. Appl., 2020, 14(2): 024004
https://doi.org/10.1103/PhysRevApplied.14.024004
15 Q. Hu S. , Feng L. , Cheng S. , A. Kosevich Y. , Shiomi J. . Two-path phonon interference resonance induces a stop band in a silicon crystal matrix with a multilayer array of embedded nanoparticles. Phys. Rev. B, 2020, 102(2): 024301
https://doi.org/10.1103/PhysRevB.102.024301
16 G. Zhang H. , Sun B. , Hu S. , Y. Wang H. , J. Cheng Y. , Y. Xiong S. , Volz S. , X. Ni Y. . Novel phonon resonator based on surface screw thread for suppressing thermal transport of Si nanowires. Phys. Rev. B, 2020, 101(20): 205418
https://doi.org/10.1103/PhysRevB.101.205418
17 Juntunen T. , Vänskä O. , Tittonen I. . Anderson localization quenches thermal transport in aperiodic superlattices. Phys. Rev. Lett., 2019, 122(10): 105901
https://doi.org/10.1103/PhysRevLett.122.105901
18 Y. Guo Y. , Bescond M. , W. Zhang Z. , Y. Xiong S. , Hirakawa K. , Nomura M. , Volz S. . Thermal conductivity minimum of graded superlattices due to phonon localization. APL Mater., 2021, 9(9): 091104
https://doi.org/10.1063/5.0054921
19 Anufriev R. , Maire J. , Nomura M. . Review of coherent phonon and heat transport control in one-dimensional phononic crystals at nanoscale. APL Mater., 2021, 9(7): 070701
https://doi.org/10.1063/5.0052230
20 W. Zhang Z. , Y. Guo Y. , Bescond M. , Chen J. , Nomura M. , Volz S. . Coherent thermal transport in nano-phononic crystals: An overview. APL Mater., 2021, 9(8): 081102
https://doi.org/10.1063/5.0059024
21 B. Jin Y. , Pennec Y. , Bonello B. , Honarvar H. , Dobrzynski L. , Djafari-Rouhani B. , I. Hussein M. . Physics of surface vibrational resonances: pillared phononic crystals, metamaterials, and metasurfaces. Rep. Prog. Phys., 2021, 84(8): 086502
https://doi.org/10.1088/1361-6633/abdab8
22 H. Ma J. . Phonon engineering of micro‐ and nanophononic crystals and acoustic metamaterials: A review. Small Sci., 2023, 3(1): 2200052
https://doi.org/10.1002/smsc.202200052
23 Plimpton S. . Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys., 1995, 117(1): 1
https://doi.org/10.1006/jcph.1995.1039
24 H. Stillinger F. , A. Weber T. . Computer simulation of local order in condensed phases of silicon. Phys. Rev. B Condens. Matter, 1985, 31(8): 5262
https://doi.org/10.1103/PhysRevB.31.5262
25 F. Zhuang P. , J. Xu L. , Tan P. , P. Ouyang X. , P. Huang J. . Breaking efficiency limit of thermal concentrators by conductivity couplings. Sci. China Phys. Mech. Astron., 2022, 65(11): 117007
https://doi.org/10.1007/s11433-021-1889-5
26 Yang S. , Wang J. , L. Dai G. , B. Yang F. , P. Huang J. . Controlling macroscopic heat transfer with thermal metamaterials: Theory, experiment and application. Phys. Rep., 2021, 908: 1
https://doi.org/10.1016/j.physrep.2020.12.006
27 R. Zhang Z. , J. Xu L. , Qu T. , Lei M. , K. Lin Z. , P. Ouyang X. , H. Jiang J. , P. Huang J. . Diffusion metamaterials. Nat. Rev. Phys., 2023, 5(4): 218
https://doi.org/10.1038/s42254-023-00565-4
28 A. Dick K. , Deppert K. , W. Larsson M. , Martensson T. , Seifert W. , R. Wallenberg L. , Samuelson L. . Synthesis of branched ‘nanotrees’ by controlled seeding of multiple branching events. Nat. Mater., 2004, 3(6): 380
https://doi.org/10.1038/nmat1133
29 Chekurov N. , Grigoras K. , Peltonen A. , Franssila S. , Tittonen I. . The fabrication of silicon nanostructures by local gallium implantation and cryogenic deep reactive ion etching. Nanotechnology, 2009, 20(6): 065307
https://doi.org/10.1088/0957-4484/20/6/065307
30 Huang Z. , Zhang X. , Reiche M. , Liu L. , Lee W. , Shimizu T. , Senz S. , Göselee U. . Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching. Nano Lett., 2008, 8(9): 3046
https://doi.org/10.1021/nl802324y
31 M. Dickey J. , Paskin A. . Computer simulation of the lattice dynamics of solids. Phys. Rev., 1969, 188(3): 1407
https://doi.org/10.1103/PhysRev.188.1407
32 C. Loh G. , H. T. Teo E. , K. Tay B. . Phonon localization around vacancies in graphene nanoribbons. Diamond Related Mater., 2012, 23: 88
https://doi.org/10.1016/j.diamond.2012.01.006
33 Wang Y. , Vallabhaneni A. , N. Hu J. , Qiu B. , P. Chen Y. , L. Ruan X. . Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Lett., 2014, 14(2): 592
https://doi.org/10.1021/nl403773f
34 Liang T. , Zhou M. , Zhang P. , Yuan P. , G. Yang D. . Multilayer in-plane graphene/hexagonal boron nitride heterostructures: Insights into the interfacial thermal transport properties. Int. J. Heat Mass Transf., 2020, 151: 119395
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119395
[1] Rui-Qiang Wang, Li Sheng, Liang-Bin Hu, Mou Yang, Baigeng Wang, D. Y. Xing. Generation of adjustable pure spin currents in negative-U systems[J]. Front. Phys. , 2014, 9(4): 477-482.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed