Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 43201    https://doi.org/10.1007/s11467-023-1367-2
RESEARCH ARTICLE
Spin transport of half-metal Mn2X3 with high Curie temperature: An ideal giant magnetoresistance device from electrical and thermal drives
Bin Liu1, Xiaolin Zhang1,2, Jingxian Xiong3, Xiuyang Pang3, Sheng Liu1, Zixin Yang3, Qiang Yu3,5, Honggen Li6, Sicong Zhu1,4(), Jian Wu3()
1. Hubei Province Key Laboratory of Systems Science in Metallurgical Process, The State Key Laboratory for Refractories and Metallurgy, Collaborative Innovation Center for Advanced Steels, International Research Institute for Steel Technology, Wuhan University of Science and Technology, Wuhan 430081, China
2. Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physical and Technology, Wuhan University, Wuhan 430072, China
3. College of Advanced Interdisciplinary Studies, Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, China
4. Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
5. i-Lab & Key Laboratory of Nanodevices and Applications & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and NanoBionics, Chinese Academy of Sciences, Suzhou 215123, China
6. Institute of Optical Science and Technology, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(6238 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Currently, magnetic storage devices are encountering the problem of achieving lightweight and high integration in mobile computing devices during the information age. As a result, there is a growing urgency for two-dimensional half-metallic materials with a high Curie temperature (TC). This study presents a theoretical investigation of the fundamental electromagnetic properties of the monolayer hexagonal lattice of Mn2X3 (X = S, Se, Te). Additionally, the potential application of Mn2X3 as magneto-resistive components is explored. All three of them fall into the category of ferromagnetic half-metals. In particular, the Monte Carlo simulations indicate that the TC of Mn2S3 reachs 381 K, noticeably greater than room temperature. These findings present notable advantages for the application of Mn2S3 in spintronic devices. Hence, a prominent spin filtering effect is apparent when employing non-equilibrium Green’s function simulations to examine the transport parameters. The resulting current magnitude is approximately 2 × 104 nA, while the peak gigantic magnetoresistance exhibits a substantial value of 8.36 × 1016 %. It is noteworthy that the device demonstrates a substantial spin Seebeck effect when the temperature differential between the electrodes is modified. In brief, Mn2X3 exhibits outstanding features as a high TC half-metal, exhibiting exceptional capabilities in electrical and thermal drives spin transport. Therefore, it holds great potential for usage in spintronics applications.

Keywords half-metals      Mn2X3      high Curie temperature      electrical and thermal GMR     
Corresponding Author(s): Sicong Zhu,Jian Wu   
Issue Date: 27 December 2023
 Cite this article:   
Bin Liu,Xiaolin Zhang,Jingxian Xiong, et al. Spin transport of half-metal Mn2X3 with high Curie temperature: An ideal giant magnetoresistance device from electrical and thermal drives[J]. Front. Phys. , 2024, 19(4): 43201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1367-2
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/43201
Fig.1  Mn2X3 crystal structure and magnetic ground states. (a) Top, and (b) side views of Mn2X3 (X = S, Se, Te) monolayers, yellow indicates non-metallic elements, and purple is Mn. (c) FM configuration and three AFM configurations of Mn2X3 monolayers, red and blue indicate opposite spins.
Fig.2  Curie temperature of Mn2X3. Curie temperature (TC) of Mn2S3, Mn2Se3, and Mn2Te3 in (a), (b), and (c), respectively. (d) The Curie temperature of common 2D materials and Mn2X3.
Fig.3  Electromagnetic properties of Mn2X3 and half-metallic transport diagram. (a) The Brillouin zone path of Mn2X3. Band structure and DOS of Mn2X3 in (b), (c), and (d), respectively. Electron transport models based on half-metallic materials with electrons in parallel (e) and anti-parallel configurations (f), respectively.
Fig.4  Performance at two magnetization configurations (PC and APC) of devices based on Mn2S3. (a) A diagram of the device model. (b) The spin-resolved I−V curves. (c) Giant magnetoresistive. (d, e) The spin resolved band structures of electrodes at two magnetization configurations.
Fig.5  Thermal spin performance of devices. The thermal spin resolved current with ΔT fixed for the device in the (a) APC and (b) PC. (c) Thermally induced GMR versus TL. The thermal spin-resolved current when TL fixed for the device in the (d) APC and (e) PC. (f) Thermally induced GMR versus ΔT.
Fig.6  Transport spectra of the device. Spin-dependent transport spectra of the devices in the (a) APC and (b) PC at zero bias.
1 Bian H., Y. Goh Y., Liu Y., Ling H., Xie L., Liu X.. Stimuli-responsive memristive materials for artificial synapses and neuromorphic computing. Adv. Mater., 2021, 33(46): 2006469
https://doi.org/10.1002/adma.202006469
2 Kim D., Jeon B., Lee Y., Kim D., Cho Y., Kim S.. Prospects and applications of volatile memristors. Appl. Phys. Lett., 2022, 121(1): 010501
https://doi.org/10.1063/5.0093964
3 Zhou Z., Yang F., Wang S., Wang L., Wang X., Wang C., Xie Y., Liu Q.. Emerging of two-dimensional materials in novel memristor. Front. Phys., 2022, 17(2): 23204
https://doi.org/10.1007/s11467-021-1114-5
4 Hamdioui S.Aziza H.C. Sirakoulis G., Memristor based memories: Technology, design and test, in: 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), 2014, pp 1−7
5 Endoh T., 3D integration of memories including heterogeneous integration, in: 2021 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), 2021, pp 1−2
6 Ikegawa S.B. Mancoff F.Aggarwal S., Commercialization of MRAM − Historical and future perspective, in: 2021 IEEE International Interconnect Technology Conference (IITC), 2021, pp 1−3
7 Cao Q., Lü W., R. Wang X., Guan X., Wang L., Yan S., Wu T., Wang X.. Nonvolatile multistates memories for high-density data storage. ACS Appl. Mater. Interfaces, 2020, 12(38): 42449
https://doi.org/10.1021/acsami.0c10184
8 Puebla J., Kim J., Kondou K., Otani Y.. Spintronic devices for energy-efficient data storage and energy harvesting. Commun. Mater., 2020, 1(1): 24
https://doi.org/10.1038/s43246-020-0022-5
9 Zhang X., Gong P., Liu F., Yao K., Wu J., Zhu S.. High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2). Front. Phys., 2022, 17(5): 53510
https://doi.org/10.1007/s11467-022-1184-z
10 Hu X.Li D. Wang Y.Feng J.Ma Z.Wang S.Min T. Zeng X.Xie Y., An 8Kb 40-nm 2T2MTJ STT-MRAM design with 2.6ns access time and time-adjustable writing process, in: 2021 IEEE 14th International Conference on ASIC (ASICON), 2021, pp 1−4
11 Hatami M., E. W. Bauer G., Zhang Q., J. Kelly P.. Thermal spin-transfer torque in magnetoelectronic devices. Phys. Rev. Lett., 2007, 99(6): 066603
https://doi.org/10.1103/PhysRevLett.99.066603
12 D. Sarma S.. Spintronics: A new class of device based on electron spin, rather than on charge, may yield the next generation of microelectronics. Am. Sci., 2001, 89(6): 516
https://doi.org/10.1511/2001.6.516
13 A. Wolf S., D. Awschalom D., A. Buhrman R., M. Daughton J., von Molnár S., L. Roukes M., Y. Chtchelkanova A., M. Treger D.. Spintronics: A spin-based electronics vision for the future. Science, 2001, 294(5546): 1488
https://doi.org/10.1126/science.1065389
14 Zheng C., Jiang K., Yao K., Zhu S., Wu K.. The electromagnetic performance of transition metal-substituted monolayer black arsenic-phosphorus. Phys. Chem. Chem. Phys., 2021, 23(43): 24570
https://doi.org/10.1039/D1CP02583J
15 C. Zhu S., J. Peng S., M. Wu K., T. Yip C., L. Yao K., H. Lam C.. Negative differential resistance, perfect spin-filtering effect and tunnel magnetoresistance in vanadium-doped zigzag blue phosphorus nanoribbons. Phys. Chem. Chem. Phys., 2018, 20(32): 21105
https://doi.org/10.1039/C8CP02935K
16 Cao Z., Sun B., Zhou G., Mao S., Zhu S., Zhang J., Ke C., Zhao Y., Shao J.. Memristor-based neural networks: A bridge from device to artificial intelligence. Nanoscale Horiz., 2023, 8(6): 716
https://doi.org/10.1039/D2NH00536K
17 S. Iyer S.Vaisband B., Heterogeneous integration at scale, in: Advances in Semiconductor Technologies, Wiley, 2022, pp 1−24
18 Huang B., Clark G., Navarro-Moratalla E., R. Klein D., Cheng R., L. Seyler K., Zhong D., Schmidgall E., A. McGuire M., H. Cobden D., Yao W., Xiao D., Jarillo-Herrero P., Xu X.. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature, 2017, 546(7657): 270
https://doi.org/10.1038/nature22391
19 Lv Y., Qin W., Wang C., Liao L., Liu X.. Recent advances in low-dimensional heterojunction-based tunnel field effect transistors. Adv. Electron. Mater., 2019, 5(1): 1800569
https://doi.org/10.1002/aelm.201800569
20 Z. Butler S., M. Hollen S., Cao L., Cui Y., A. Gupta J., R. Gutiérrez H., F. Heinz T., S. Hong S., Huang J., F. Ismach A., Johnston-Halperin E., Kuno M., V. Plashnitsa V., D. Robinson R., S. Ruoff R., Salahuddin S., Shan J., Shi L., G. Spencer M., Terrones M., Windl W., E. Goldberger J.. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano, 2013, 7(4): 2898
https://doi.org/10.1021/nn400280c
21 Guo R., Guo Y., Zhang Y., Gong X., Zhang T., Yu X., Yuan S., Wang J.. Electron doping induced stable ferromagnetism in two-dimensional GdI3 monolayer. Front. Phys., 2023, 18(4): 43304
https://doi.org/10.1007/s11467-023-1297-z
22 F. Dayen J., J. Ray S., Karis O., J. Vera-Marun I., V. Kamalakar M.. Two-dimensional van der Waals spinterfaces and magnetic-interfaces. Appl. Phys. Rev., 2020, 7(1): 011303
https://doi.org/10.1063/1.5112171
23 Xin C., Zheng J., Su Y., Li S., Zhang B., Feng Y., Pan F.. Few-layer tin sulfide: A new black-phosphorus-analogue 2D material with a sizeable band gap, odd–even quantum confinement effect, and high carrier mobility. J. Phys. Chem. C, 2016, 120(39): 22663
https://doi.org/10.1021/acs.jpcc.6b06673
24 Cheng J., Wang C., Zou X., Liao L.. Recent advances in optoelectronic devices based on 2D materials and their heterostructures. Adv. Opt. Mater., 2019, 7(1): 1800441
https://doi.org/10.1002/adom.201800441
25 J. Yin W., L. Zeng X., Wen B., X. Ge Q., Xu Y., Teobaldi G., M. Liu L.. The unique carrier mobility of Janus MoSSe/GaN heterostructures. Front. Phys., 2021, 16(3): 33501
https://doi.org/10.1007/s11467-020-1021-1
26 Mendoza-Sánchez B., Gogotsi Y.. Synthesis of two-dimensional materials for capacitive energy storage. Adv. Mater., 2016, 28(29): 6104
https://doi.org/10.1002/adma.201506133
27 Fidrysiak M., Spałek J.. Universal collective modes from strong electronic correlations: Modified 1/Nf theory with application to high-Tc cuprates. Phys. Rev. B, 2021, 103(16): 165111
https://doi.org/10.1103/PhysRevB.103.165111
28 Laurell P., Okamoto S.. Dynamical and thermal magnetic properties of the Kitaev spin liquid candidate α-RuCl3. npj Quantum Mater., 2020, 5: 2
https://doi.org/10.1038/s41535-019-0203-y
29 Zhang L., Zhang C., F. Zhang S., Ji W., Li P., Wang P.. Two-dimensional honeycomb-kagome Ta2S3: A promising single-spin Dirac fermion and quantum anomalous hall insulator with half-metallic edge states. Nanoscale, 2019, 11(12): 5666
https://doi.org/10.1039/C9NR00826H
30 X. Shen Z., Bo X., Cao K., Wan X., He L.. Magnetic ground state and electron-doping tuning of Curie temperature in Fe3GeTe2: First-principles studies. Phys. Rev. B, 2021, 103(8): 085102
https://doi.org/10.1103/PhysRevB.103.085102
31 K. Pati S., Ramasesha S., Sen D.. Low-lying excited states and low-temperature properties of an alternating spin-1‒spin-1/2 chain: A density-matrix renormalization-group study. Phys. Rev. B, 1997, 55(14): 8894
https://doi.org/10.1103/PhysRevB.55.8894
32 Wang H., Qi J., Qian X.. Electrically tunable high Curie temperature two-dimensional ferromagnetism in van der Waals layered crystals. Appl. Phys. Lett., 2020, 117(8): 083102
https://doi.org/10.1063/5.0014865
33 C. Wang M., C. Huang C., H. Cheung C., Y. Chen C., G. Tan S., W. Huang T., Zhao Y., Zhao Y., Wu G., P. Feng Y., C. Wu H., R. Chang C.. Prospects and opportunities of 2D van der Waals magnetic systems. Ann. Phys., 2020, 532(5): 1900452
https://doi.org/10.1002/andp.201900452
34 L. Cortie D., L. Causer G., C. Rule K., Fritzsche H., Kreuzpaintner W., Klose F.. Two-dimensional magnets: Forgotten history and recent progress towards spintronic applications. Adv. Funct. Mater., 2020, 30(18): 1901414
https://doi.org/10.1002/adfm.201901414
35 Xing J., Jiang X., Liu Z., Qi Y., Zhao J.. Robust Dirac spin gapless semiconductors in a two-dimensional oxalate based organic honeycomb-Kagome lattice. Nanoscale, 2022, 14(5): 2023
https://doi.org/10.1039/D1NR07076B
36 P. Wang H., Luo W., J. Xiang H.. Prediction of high-temperature quantum anomalous Hall effect in two-dimensional transition-metal oxides. Phys. Rev. B, 2017, 95(12): 125430
https://doi.org/10.1103/PhysRevB.95.125430
37 K. Liu X., Y. Li X., J. Ren M., J. Wang P., W. Zhang C.. High-temperature nodal ring semimetal in two-dimensional honeycomb-Kagome Mn2N3 lattice. Chin. Phys. B, 2022, 31(12): 127203
https://doi.org/10.1088/1674-1056/ac921c
38 Zhang S., Zhang C., Zhang S., Ji W., Li P., Wang P., Li S., Yan S.. Intrinsic Dirac half-metal and quantum anomalous Hall phase in a hexagonal metal-oxide lattice. Phys. Rev. B, 2017, 96(20): 205433
https://doi.org/10.1103/PhysRevB.96.205433
39 Y. Chen J., X. Li X., Z. Zhou W., L. Yang J., P. Ouyang F., Xiong X.. Large-spin-gap nodal-line half-metal and high-temperature ferromagnetic semiconductor in Cr2X3 (X = O, S, Se) monolayers. Adv. Electron. Mater., 2020, 6(1): 1900490
https://doi.org/10.1002/aelm.201900490
40 Addou R., Dahal A., Batzill M.. Growth of a two-dimensional dielectric monolayer on quasi-freestanding graphene. Nat. Nanotechnol., 2013, 8(1): 41
https://doi.org/10.1038/nnano.2012.217
41 T. Song T., Yang M., W. Chai J., Callsen M., Zhou J., Yang T., Zhang Z., S. Pan J., Z. Chi D., P. Feng Y., J. Wang S.. The stability of aluminium oxide monolayer and its interface with two-dimensional materials. Sci. Rep., 2016, 6(1): 29221
https://doi.org/10.1038/srep29221
42 Zhao C., Zhang H., Si W., Wu H.. Mass production of two-dimensional oxides by rapid heating of hydrous chlorides. Nat. Commun., 2016, 7(1): 12543
https://doi.org/10.1038/ncomms12543
43 Feng Y., Liu N., Gao G.. Spin transport properties in Dirac spin gapless semiconductors Cr2X3 with high Curie temperature and large magnetic anisotropic energy. Appl. Phys. Lett., 2021, 118(11): 112407
https://doi.org/10.1063/5.0045262
44 G. Dance I., J. Fisher K.. Density functional calculations of electronic structure, geometric structure and stability for molecular manganese sulfide clusters. J. Chem. Soc. Dalton Trans., 1997, (15): 2563
https://doi.org/10.1039/a700821j
45 G. Li X., N. Fry J., P. Cheng H.. Single-molecule magnet Mn12 on graphene. Phys. Rev. B, 2014, 90(12): 125447
https://doi.org/10.1103/PhysRevB.90.125447
46 Mabrouki A., Mnasri T., Bougoffa A., Benali A., Dhahri E., A. Valente M.. Experimental study and DFT calculation of the oxygen deficiency effects on structural, magnetic and optical properties of La0.8□0.2MnO3−δ (δ = 0, 0.1 and 0.2) compounds. J. Alloys Compd., 2021, 860: 157922
https://doi.org/10.1016/j.jallcom.2020.157922
47 Kaur R., Maitra T., Nautiyal T.. Study of structural and electronic properties of Mn3O4. AIP Conf. Proc., 2014, 1591: 1137
https://doi.org/10.1063/1.4872880
48 del Pennino U., De Renzi V., Biagi R., Corradini V., Zobbi L., Cornia A., Gatteschi D., Bondino F., Magnano E., Zangrando M., Zacchigna M., Lichtenstein A., W. Boukhvalov D.. Valence band resonant photoemission of Mn12 single molecules grafted on Au(111) surface. Surf. Sci., 2006, 600(18): 4185
https://doi.org/10.1016/j.susc.2006.01.144
49 Ding G., Xie C., Bai J., Cheng Z., Wang X., Wu W.. Recipe for single-pair-Weyl-points phonons carrying the same chiral charges. Phys. Rev. B, 2023, 108(2): L020302
https://doi.org/10.1103/PhysRevB.108.L020302
50 Ding G., Xie C., Gong J., Wang J., Bai J., Wang W., Li D., P. Li X., Wang X.. Exotic topological phonon modes in semiconductors: Symmetry analysis and first-principles calculations for representative examples. Phys. Rev. B, 2023, 108(7): 075201
https://doi.org/10.1103/PhysRevB.108.075201
51 Lu X., Fei R., Yang L.. Curie temperature of emerging two-dimensional magnetic structures. Phys. Rev. B, 2019, 100(20): 205409
https://doi.org/10.1103/PhysRevB.100.205409
52 Torelli D., S. Thygesen K., Olsen T.. High throughput computational screening for 2D ferromagnetic materials: The critical role of anisotropy and local correlations. 2D Mater., 2019, 6: 045018
https://doi.org/10.1088/2053-1583/ab2c43
53 Sun J., Zhong X., Cui W., Shi J., Hao J., Xu M., Li Y.. The intrinsic magnetism, quantum anomalous Hall effect and Curie temperature in 2D transition metal trihalides. Phys. Chem. Chem. Phys., 2020, 22(4): 2429
https://doi.org/10.1039/C9CP05084A
54 Hu Y., Y. Liu X., H. Shen Z., F. Luo Z., G. Chen Z., L. Fan X.. High Curie temperature and carrier mobility of novel Fe, Co and Ni carbide MXenes. Nanoscale, 2020, 12(21): 11627
https://doi.org/10.1039/C9NR10927G
55 Guan Z., Ni S.. Strain-controllable high Curie temperature and magnetic crystal anisotropy in a 2D ferromagnetic semiconductive FeI3 monolayer. ACS Appl. Electron. Mater., 2021, 3(7): 3147
https://doi.org/10.1021/acsaelm.1c00363
56 Sun Y., Zhuo Z., Wu X.. Bipolar magnetism in a two-dimensional NbS2 semiconductor with high Curie temperature. J. Mater. Chem. C, 2018, 6(42): 11401
https://doi.org/10.1039/C8TC04188A
57 Deng Y., Yu Y., Song Y., Zhang J., Z. Wang N., Sun Z., Yi Y., Z. Wu Y., Wu S., Zhu J., Wang J., H. Chen X., Zhang Y.. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature, 2018, 563(7729): 94
https://doi.org/10.1038/s41586-018-0626-9
58 Zhou F., Liu Y., Kuang M., Wang P., Wang J., Yang T., Wang X., Cheng Z., Zhang G.. Time-reversal-breaking Weyl nodal lines in two-dimensional A3C2 (A = Ti, Zr, and Hf) intrinsically ferromagnetic materials with high Curie temperature. Nanoscale, 2021, 13(17): 8235
https://doi.org/10.1039/D1NR00139F
59 Jiang Z., Wang P., Xing J., Jiang X., Zhao J.. Screening and design of novel 2D ferromagnetic materials with high Curie temperature above room temperature. ACS Appl. Mater. Interfaces, 2018, 10(45): 39032
https://doi.org/10.1021/acsami.8b14037
60 Liu Z.Liu J.Zhao J., YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics, Nano Res. 10(6), 1972 (2017)
61 Yu W., Li J., S. Herng T., Wang Z., Zhao X., Chi X., Fu W., Abdelwahab I., Zhou J., Dan J., Chen Z., Chen Z., Li Z., Lu J., J. Pennycook S., P. Feng Y., Ding J., P. Loh K.. Chemically exfoliated VSe2 monolayers with room-temperature ferromagnetism. Adv. Mater., 2019, 31(40): 1903779
https://doi.org/10.1002/adma.201903779
62 Zhang X., Wang X., He T., Wang L., Yu W., Liu Y., Liu G., Cheng Z.. Magnetic topological materials in two-dimensional: Theory, material realization and application prospects. Sci. Bull. (Beijing), 2023, 68(21): 2639
https://doi.org/10.1016/j.scib.2023.09.004
63 L. Wang X.. Proposal for a new class of materials: Spin gapless semiconductors. Phys. Rev. Lett., 2008, 100(15): 156404
https://doi.org/10.1103/PhysRevLett.100.156404
64 Shan G., Ding Z., Gogotsi Y.. Two-dimensional MXenes and their applications. Front. Phys., 2023, 18(1): 13604
https://doi.org/10.1007/s11467-022-1254-2
65 Fang C., Weng H., Dai X., Fang Z.. Topological nodal line semimetals. Chin. Phys. B, 2016, 25(11): 117106
https://doi.org/10.1088/1674-1056/25/11/117106
66 Li Y., Zhou Z., Shen P., Chen Z.. Spin gapless semiconductor−metal−half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 2009, 3(7): 1952
https://doi.org/10.1021/nn9003428
67 Gao Q., Opahle I., Zhang H.. High-throughput screening for spin-gapless semiconductors in quaternary Heusler compounds. Phys. Rev. Mater., 2019, 3(2): 024410
https://doi.org/10.1103/PhysRevMaterials.3.024410
68 D. Guo S., L. Tao Y., Wang G., Chen S., Huang D., S. Ang Y.. Proposal for valleytronic materials: Ferrovalley metal and valley gapless semiconductor. Front. Phys., 2024, 19(2): 23302
https://doi.org/10.1007/s11467-023-1334-y
[1] fop-21367-OF-wujian_suppl_1 Download
[1] Xiaolin Zhang, Pengwei Gong, Fangqi Liu, Kailun Yao, Jian Wu, Sicong Zhu. High efficiency giant magnetoresistive device based on two-dimensional MXene (Mn2NO2)[J]. Front. Phys. , 2022, 17(5): 53510-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed