|
|
Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices |
Xiuye Liu1, Jianhua Zeng1,2,3( ) |
1. Center for Attosecond Science and Technology, State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Collaborative lnnovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China |
|
|
Abstract Periodic structures structured as photonic crystals and optical lattices are fascinating for nonlinear waves engineering in the optics and ultracold atoms communities. Moiré photonic and optical lattices — two-dimensional twisted patterns lie somewhere in between perfect periodic structures and aperiodic ones — are a new emerging investigative tool for studying nonlinear localized waves of diverse types. Herein, a theory of two-dimensional spatial localization in nonlinear periodic systems with fractional-order diffraction (linear nonlocality) and moiré optical lattices is investigated. Specifically, the flat-band feature is well preserved in shallow moiré optical lattices which, interact with the defocusing nonlinearity of the media, can support fundamental gap solitons, bound states composed of several fundamental solitons, and topological states (gap vortices) with vortex charge s = 1 and 2, all populated inside the finite gaps of the linear Bloch-wave spectrum. Employing the linear-stability analysis and direct perturbed simulations, the stability and instability properties of all the localized gap modes are surveyed, highlighting a wide stability region within the first gap and a limited one (to the central part) for the third gap. The findings enable insightful studies of highly localized gap modes in linear nonlocality (fractional) physical systems with shallow moiré patterns that exhibit extremely flat bands.
|
Keywords
moiré optical lattices
gap solitons and vortices
ultracold atoms
Gross−Pitaevskii/nonlinear fractional Schrödinger equation
nonlinear fractional systems
|
Corresponding Author(s):
Jianhua Zeng
|
Issue Date: 08 January 2024
|
|
1 |
S. Kivshar Y.P. Agrawal G., Optical Solitons: From Fibers to Photonic Crystals, Academic, San Diego, 2003
|
2 |
Morsch O. , Oberthaler M. . Dynamics of Bose‒Einstein condensates in optical lattices. Rev. Mod. Phys., 2006, 78(1): 179
https://doi.org/10.1103/RevModPhys.78.179
|
3 |
V. Kartashov Y. , A. Malomed B. , Torner L. . Solitons in nonlinear lattices. Rev. Mod. Phys., 2011, 83(1): 247
https://doi.org/10.1103/RevModPhys.83.247
|
4 |
L. Garanovich I. , Longhi S. , A. Sukhorukov A. , S. Kivshar Y. . Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep., 2012, 518(1‒2): 1
https://doi.org/10.1016/j.physrep.2012.03.005
|
5 |
V. Konotop V. , Yang J. , A. Zezyulin D. . Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys., 2016, 88(3): 035002
https://doi.org/10.1103/RevModPhys.88.035002
|
6 |
V. Kartashov Y. , E. Astrakharchik G. , A. Malomed B. , Torner L. . Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys., 2019, 1(3): 185
https://doi.org/10.1038/s42254-019-0025-7
|
7 |
J. Eggleton B. , E. Slusher R. , M. de Sterke C. , A. Krug P. , E. Sipe J. . Bragg grating solitons. Phys. Rev. Lett., 1996, 76(10): 1627
https://doi.org/10.1103/PhysRevLett.76.1627
|
8 |
Mandelik D. , Morandotti R. , S. Aitchison J. , Silberberg Y. . Gap solitons in waveguide arrays. Phys. Rev. Lett., 2004, 92(9): 093904
https://doi.org/10.1103/PhysRevLett.92.093904
|
9 |
Peleg O. , Bartal G. , Freedman B. , Manela O. , Segev M. , N. Christodoulides D. . Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett., 2007, 98(10): 103901
https://doi.org/10.1103/PhysRevLett.98.103901
|
10 |
Eiermann B. , Anker T. , Albiez M. , Taglieber M. , Treutlein P. , P. Marzlin K. , K. Oberthaler M. . Bright Bose‒Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett., 2004, 92(23): 230401
https://doi.org/10.1103/PhysRevLett.92.230401
|
11 |
Anker Th. , Albiez M. , Gati R. , Hunsmann S. , Eiermann B. , Trombettoni A. , K. Oberthaler M. . Nonlinear self-trapping of matter waves in periodic potentials. Phys. Rev. Lett., 2005, 94(2): 020403
https://doi.org/10.1103/PhysRevLett.94.020403
|
12 |
H. Bennet F. , J. Alexander T. , Haslinger F. , Mitchell A. , N. Neshev D. , S. Kivshar Y. . Observation of nonlinear self-trapping of broad beams in defocusing waveguide arrays. Phys. Rev. Lett., 2011, 106(9): 093901
https://doi.org/10.1103/PhysRevLett.106.093901
|
13 |
Bersch C. , Onishchukov G. , Peschel U. . Optical gap solitons and truncated nonlinear Bloch waves in temporal lattices. Phys. Rev. Lett., 2012, 109(9): 093903
https://doi.org/10.1103/PhysRevLett.109.093903
|
14 |
Zeng L. , Zeng J. . Gap-type dark localized modes in a Bose‒Einstein condensate with optical lattices. Adv. Photonics, 2019, 1(4): 046004
https://doi.org/10.1117/1.AP.1.4.046004
|
15 |
Shi J. , Zeng J. . Self-trapped spatially localized states in combined linear-nonlinear periodic potentials. Front. Phys., 2020, 15(1): 12602
https://doi.org/10.1007/s11467-019-0930-3
|
16 |
Li J. , Zeng J. . Dark matter-wave gap solitons in dense ultra-cold atoms trapped by a one-dimensional optical lattice. Phys. Rev. A, 2021, 103(1): 013320
https://doi.org/10.1103/PhysRevA.103.013320
|
17 |
Chen J. , Zeng J. . Dark matter-wave gap solitons of Bose‒Einstein condensates trapped in optical lattices with competing cubic‒quintic nonlinearities. Chaos Solitons Fractals, 2021, 150: 111149
https://doi.org/10.1016/j.chaos.2021.111149
|
18 |
Chen Z. , Zeng J. . Localized gap modes of coherently trapped atoms in an optical lattice. Opt. Express, 2021, 29(3): 3011
https://doi.org/10.1364/OE.412554
|
19 |
Chen Z. , Zeng J. . Two-dimensional optical gap solitons and vortices in a coherent atomic ensemble loaded on optical lattices. Commun. Nonlinear Sci. Numer. Simul., 2021, 102: 105911
https://doi.org/10.1016/j.cnsns.2021.105911
|
20 |
Chen Z. , Zeng J. . Nonlinear localized modes in one-dimensional nanoscale dark-state optical lattices. Nanophotonics, 2022, 11(15): 3465
https://doi.org/10.1515/nanoph-2022-0213
|
21 |
Li J. , Zhang Y. , Zeng J. . Matter-wave gap solitons and vortices in three-dimensional parity‒time-symmetric optical lattices. iScience, 2022, 25(4): 104026
https://doi.org/10.1016/j.isci.2022.104026
|
22 |
Li J. , Zhang Y. , Zeng J. . 3D nonlinear localized gap modes in Bose‒Einstein condensates trapped by optical lattices and space-periodic nonlinear potentials. Adv. Photon. Res., 2022, 3(7): 2100288
https://doi.org/10.1002/adpr.202100288
|
23 |
Qin J. , Zhou L. . Supersolid gap soliton in a Bose‒Einstein condensate and optical ring cavity coupling system. Phys. Rev. E, 2022, 105(5): 054214
https://doi.org/10.1103/PhysRevE.105.054214
|
24 |
Yang J. , Zhang Y. . Spin‒orbit-coupled spinor gap solitons in Bose‒Einstein condensates. Phys. Rev. A, 2023, 107(2): 023316
https://doi.org/10.1103/PhysRevA.107.023316
|
25 |
Chen Z. , Wu Z. , Zeng J. . Light gap bullets in defocusing media with optical lattices. Chaos Solitons Fractals, 2023, 174: 113785
https://doi.org/10.1016/j.chaos.2023.113785
|
26 |
Huang C. , Dong L. . Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice. Opt. Lett., 2016, 41(24): 5636
https://doi.org/10.1364/OL.41.005636
|
27 |
Huang C. , Li C. , Deng H. , Dong L. . Gap Solitons in fractional dimensions with a quasi-periodic lattice. Ann. Phys., 2019, 531(9): 1900056
https://doi.org/10.1002/andp.201900056
|
28 |
Xie J. , Zhu X. , He Y. . Vector solitons in nonlinear fractional Schrödinger equations with parity‒time-symmetric optical lattices. Nonlinear Dyn., 2019, 97(2): 1287
https://doi.org/10.1007/s11071-019-05048-9
|
29 |
Zeng L. , Zeng J. . One-dimensional gap solitons in quintic and cubic‒quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn., 2019, 98: 985
https://doi.org/10.1007/s11071-019-05240-x
|
30 |
Zeng L. , Zeng J. . Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and non-linearities. Commun. Phys., 2020, 3(1): 26
https://doi.org/10.1038/s42005-020-0291-9
|
31 |
Zhu X. , Yang F. , Cao S. , Xie J. , He Y. . Multipole gap solitons in fractional Schrödinger equation with parity‒time-symmetric optical lattices. Opt. Express, 2020, 28(2): 1631
https://doi.org/10.1364/OE.382876
|
32 |
Zeng L. , R. Belić M. , Mihalache D. , Shi J. , Li J. , Li S. , Lu X. , Cai Y. , Li J. . Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dyn., 2022, 108(2): 1671
https://doi.org/10.1007/s11071-022-07291-z
|
33 |
Y. Bao Y. , R. Li S. , H. Liu Y. , F. Xu T. . Gap solitons and non-linear Bloch waves in fractional quantum coupler with periodic potential. Chaos Solitons Fractals, 2022, 156: 111853
https://doi.org/10.1016/j.chaos.2022.111853
|
34 |
Liu X. , A. Malomed B. , Zeng J. . Localized modes in nonlinear fractional systems with deep lattices. Adv. Theory Simul., 2022, 5(4): 2100482
https://doi.org/10.1002/adts.202100482
|
35 |
Dong L. , Huang C. . Double-hump solitons in fractional dimensions with a PT-symmetric potential. Opt. Express, 2018, 26(8): 10509
https://doi.org/10.1364/OE.26.010509
|
36 |
Huang C. , Dong L. . Beam propagation management in a fractional Schrödinger equation. Sci. Rep., 2017, 7(1): 5442
https://doi.org/10.1038/s41598-017-05926-5
|
37 |
Laskin N., Fractional Quantum Mechanics, World Scientific, 2018
|
38 |
A. Malomed B. . Optical solitons and vortices in fractional media: A mini-review of recent results. Photonics, 2021, 8(9): 353
https://doi.org/10.3390/photonics8090353
|
39 |
Liu S. , Zhang Y. , A. Malomed B. , Karimi E. . Experimental realizations of the fractional Schrödinger equation in the temporal domain. Nat. Commun., 2023, 14(1): 222
https://doi.org/10.1038/s41467-023-35892-8
|
40 |
Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
|
41 |
Cao Y. , Fatemi V. , Demir A. , Fang S. , L. Tomarken S. , Y. Luo J. , D. Sanchez-Yamagishi J. , Watanabe K. , Taniguchi T. , Kaxiras E. , C. Ashoori R. , Jarillo-Herrero P. . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
|
42 |
Carr S. , Massatt D. , Fang S. , Cazeaux P. , Luskin M. , Kaxiras E. . Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B, 2017, 95(7): 075420
https://doi.org/10.1103/PhysRevB.95.075420
|
43 |
Huang C. , Ye F. , Chen X. , V. Kartashov Y. , V. Konotop V. , Torner L. . Localization‒delocalization wavepacket transition in Pythagorean aperiodic potentials. Sci. Rep., 2016, 6(1): 32546
https://doi.org/10.1038/srep32546
|
44 |
Wang P. , Zheng Y. , Chen X. , Huang C. , V. Kartashov Y. , Torner L. , V. Konotop V. , Ye F. . Localization and delocalization of light in photonic moiré lattices. Nature, 2020, 577(7788): 42
https://doi.org/10.1038/s41586-019-1851-6
|
45 |
Fu Q. , Wang P. , Huang C. , V. Kartashov Y. , Torner L. , V. Konotop V. , Ye F. . Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photonics, 2020, 14(11): 663
https://doi.org/10.1038/s41566-020-0679-9
|
46 |
R. Mao X. , K. Shao Z. , Y. Luan H. , L. Wang S. , M. Ma R. . Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol., 2021, 16(10): 1099
https://doi.org/10.1038/s41565-021-00956-7
|
47 |
V. Kartashov Y. , Ye F. , V. Konotop V. , Torner L. . Multi-frequency solitons in commensurate-incommensurate photonic moiré lattices. Phys. Rev. Lett., 2021, 127(16): 163902
https://doi.org/10.1103/PhysRevLett.127.163902
|
48 |
V. Kartashov Y. . Light bullets in moiré lattices. Opt. Lett., 2022, 47(17): 4528
https://doi.org/10.1364/OL.471022
|
49 |
K. Ivanov S. , V. Konotop V. , V. Kartashov Y. , Torner L. . Vortex solitons in moiré optical lattices. Opt. Lett., 2023, 48(14): 3797
https://doi.org/10.1364/OL.494681
|
50 |
A. Arkhipova A. , V. Kartashov Y. , K. Ivanov S. , A. Zhuravitskii S. , N. Skryabin N. , V. Dyakonov I. , A. Kalinkin A. , P. Kulik S. , O. Kompanets V. , V. Chekalin S. , Ye F. , V. Konotop V. , Torner L. , N. Zadkov V. . Observation of linear and nonlinear light localization at the edges of moiré arrays. Phys. Rev. Lett., 2023, 130(8): 083801
https://doi.org/10.1103/PhysRevLett.130.083801
|
51 |
S. Sunku S. , X. Ni G. , Y. Jiang B. , Yoo H. , Sternbach A. , S. McLeod A. , Stauber T. , Xiong L. , Taniguchi T. , Watanabe K. , Kim P. , M. Fogler M. , N. Basov D. . Photonic crystals for nano-light in moiré graphene superlattices. Science, 2018, 362(6419): 1153
https://doi.org/10.1126/science.aau5144
|
52 |
J. M. Kort-Kamp W. , J. Culchac F. , B. Capaz R. , A. Pinheiro F. . Photonic spin Hall effect in bilayer graphene moiré superlattices. Phys. Rev. B, 2018, 98(19): 195431
https://doi.org/10.1103/PhysRevB.98.195431
|
53 |
Hu G. , Ou Q. , Si G. , Wu Y. , Wu J. , Dai Z. , Krasnok A. , Mazor Y. , Zhang Q. , Bao Q. , W. Qiu C. , Alù A. . Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582(7811): 209
https://doi.org/10.1038/s41586-020-2359-9
|
54 |
Chen M. , Lin X. , H. Dinh T. , Zheng Z. , Shen J. , Ma Q. , Chen H. , Jarillo-Herrero P. , Dai S. . Configurable phonon polaritons in twisted α-MoO3. Nat. Mater., 2020, 19(12): 1307
https://doi.org/10.1038/s41563-020-0732-6
|
55 |
González-Tudela A. , I. Cirac J. . Cold atoms in twisted-bilayer optical potentials. Phys. Rev. A, 2019, 100(5): 053604
https://doi.org/10.1103/PhysRevA.100.053604
|
56 |
Salamon T. , Celi A. , W. Chhajlany R. , Frérot I. , Lewenstein M. , Tarruell L. , Rakshit D. . Simulating twistronics without a twist. Phys. Rev. Lett., 2020, 125(3): 030504
https://doi.org/10.1103/PhysRevLett.125.030504
|
57 |
W. Luo X. , Zhang C. . Spin-twisted optical lattices: Tunable flat bands and Larkin‒Ovchinnikov superfluids. Phys. Rev. Lett., 2021, 126(10): 103201
https://doi.org/10.1103/PhysRevLett.126.103201
|
58 |
Ning T. , Ren Y. , Huo Y. , Cai Y. . Efficient high harmonic generation in nonlinear photonic moiré superlattice. Front. Phys., 2023, 18(5): 52305
https://doi.org/10.1007/s11467-023-1296-0
|
59 |
Ma Z. , J. Chen W. , Chen Y. , H. Gao J. , C. Xie X. . Flat band localization due to self-localized orbital. Front. Phys., 2023, 18(6): 63302
https://doi.org/10.1007/s11467-023-1306-2
|
60 |
Chen Z. , Liu X. , Zeng J. . Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front. Phys., 2022, 17(4): 42508
https://doi.org/10.1007/s11467-022-1153-6
|
61 |
Meng Z. , Wang L. , Han W. , Liu F. , Wen K. , Gao C. , Wang P. , Chin C. , Zhang J. . Atomic Bose‒Einstein condensate in twisted-bilayer optical lattices. Nature, 2023, 615(7951): 231
https://doi.org/10.1038/s41586-023-05695-4
|
62 |
Huang C. , Dong L. , Deng H. , Zhang X. , Gao P. . Fundamental and vortex gap solitons in quasiperiodic photonic lattices. Opt. Lett., 2021, 46(22): 5691
https://doi.org/10.1364/OL.443051
|
63 |
Liu X. , Zeng J. . Matter-wave gap solitons and vortices of dense Bose‒Einstein condensates in moiré optical lattices. Chaos Solitons Fractals, 2023, 174: 113869
https://doi.org/10.1016/j.chaos.2023.113869
|
64 |
Liu X. , Zeng J. . Gap solitons in parity‒time symmetric moiré optical lattices. Photon. Res., 2023, 11(2): 196
https://doi.org/10.1364/PRJ.474527
|
65 |
Yang J., Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM: Philadelphia, 2010
|
66 |
Cai M. , P. Li C. . On Riesz derivative. Fract. Calc. Appl. Anal., 2019, 22(2): 287
https://doi.org/10.1515/fca-2019-0019
|
67 |
Duo S. , Zhang Y. . Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. Comput. Methods Appl. Mech. Eng., 2019, 355: 639
https://doi.org/10.1016/j.cma.2019.06.016
|
68 |
Laskin N. . Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 2000, 268(4−6): 298
https://doi.org/10.1016/S0375-9601(00)00201-2
|
69 |
Laskin N. . Fractional quantum mechanics. Phys. Rev. E, 2000, (3): 3135
https://doi.org/10.1103/PhysRevE.62.3135
|
70 |
Laskin N. . Fractional Schrödinger equation. Phys. Rev. E, 2002, 66(5): 056108
https://doi.org/10.1103/PhysRevE.66.056108
|
71 |
Zhang L. , Li C. , Zhong H. , Xu C. , Lei D. , Li Y. , Fan D. . Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: From linear to nonlinear regimes. Opt. Express, 2016, 24(13): 14406
https://doi.org/10.1364/OE.24.014406
|
72 |
Zhang L. , He Z. , Conti C. , Wang Z. , Hu Y. , Lei D. , Li Y. , Fan D. . Modulational instability in fractional nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul., 2017, 48: 531
https://doi.org/10.1016/j.cnsns.2017.01.019
|
73 |
Vakhitov M. , Kolokolov A. . Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron., 1973, 16(7): 783
https://doi.org/10.1007/BF01031343
|
74 |
Ferrando A. , Zacarés M. , A. García-March M. . Vorticity cutoff in nonlinear photonic crystals. Phys. Rev. Lett., 2005, 95(4): 043901
https://doi.org/10.1103/PhysRevLett.95.043901
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|