Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 42201    https://doi.org/10.1007/s11467-023-1370-7
Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices
Xiuye Liu1, Jianhua Zeng1,2,3()
1. Center for Attosecond Science and Technology, State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Collaborative lnnovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
 Download: PDF(5206 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Periodic structures structured as photonic crystals and optical lattices are fascinating for nonlinear waves engineering in the optics and ultracold atoms communities. Moiré photonic and optical lattices — two-dimensional twisted patterns lie somewhere in between perfect periodic structures and aperiodic ones — are a new emerging investigative tool for studying nonlinear localized waves of diverse types. Herein, a theory of two-dimensional spatial localization in nonlinear periodic systems with fractional-order diffraction (linear nonlocality) and moiré optical lattices is investigated. Specifically, the flat-band feature is well preserved in shallow moiré optical lattices which, interact with the defocusing nonlinearity of the media, can support fundamental gap solitons, bound states composed of several fundamental solitons, and topological states (gap vortices) with vortex charge s = 1 and 2, all populated inside the finite gaps of the linear Bloch-wave spectrum. Employing the linear-stability analysis and direct perturbed simulations, the stability and instability properties of all the localized gap modes are surveyed, highlighting a wide stability region within the first gap and a limited one (to the central part) for the third gap. The findings enable insightful studies of highly localized gap modes in linear nonlocality (fractional) physical systems with shallow moiré patterns that exhibit extremely flat bands.

Keywords moiré optical lattices      gap solitons and vortices      ultracold atoms      Gross−Pitaevskii/nonlinear fractional Schrödinger equation      nonlinear fractional systems     
Corresponding Author(s): Jianhua Zeng   
Issue Date: 08 January 2024
 Cite this article:   
Xiuye Liu,Jianhua Zeng. Two-dimensional localized modes in nonlinear systems with linear nonlocality and moiré lattices[J]. Front. Phys. , 2024, 19(4): 42201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1370-7
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/42201
Fig.1  Band-gap structures of 2D moiré square optical lattices at different twisted angles θ in fractional systems. Contour shapes of the moiré lattice (shaded blue, lattice potential minima; shaded red, lattice potential maxima) at θ=arctan?(3/4) (a) and θ=arctan?(5/12) (b) in real space, the corresponding band-gap structures, expressed as chemical potential μ vs. Bloch quasi-momentum K in reciprocal lattice space, at α=1.6 are depicted in (c) and (d) respectively. (e) The first reduced Brillouin zone in the reciprocal lattice space; X, M, and Γ being the high-symmetry points. (f) Dependencies of μ on Lévy index α, and (g) on strength contrast p at α=1.3, and θ=arctan?(3/4). Regions I, II and III represent respectively the first, second, and third band gaps.
Fig.2  Shapes of 2D fundamental gap solitons and the dependencies of norm N on chemical potential μ and Lévy index α in 2D moiré square optical lattices. (a?c) Characteristic shapes of fundamental gap solitons (GPs) at: (a) μ=2.5, N=17.4 and α=1.3; (b) μ=4.02, N=144.1 and α=1.3; (c) μ=2.6, N=38.98 and α=0.4. (d) Norm N vs. chemical potential μ, and (e) vs. Lévy index (α). The linear-stability eigenvalues of gap solitons, expressed by the largest real part of the perturbation growth rate, λ(R), are shown as red dashed line in (d). θ=arctan?(3/4) to all.
Fig.3  Shapes and norm N vs. chemical potential μ of bound-state GSs in 2D moiré square optical lattices in nonlinear fractional system with Lévy index α=1.3. The 3D shapes (top), aerial views (central) and N vs. μ (bottom) of bound-state GSs. Parameters: (a) μ=2.2, N=20.85; (b) μ=3.47, N=145.3; (c) μ=2.2, N=14.72. Marked points in (d) correspond to bound states shown in (a), (b), and (c); the first two are quadruple gap modes, the latter is triple mode of structure.
Fig.4  Shapes and topological phases of vortex gap solitons with imprinted vorticity s in 2D moiré square optical lattices in nonlinear fractional system with Lévy index α=1.3. The 3D shapes (top), aerial views (second line), phase structures (third line). Parameters: (a) μ=2.3, N=31.67; (b) μ=3.5, N=306.52; (c) μ=2.4, N=133.78; (d) μ=3.85, N=1306. Vorticity s=1 for (a, b) and s=2 for (c, d). The vortex solutions in (a, b, c, d) correspond respectively to the marked points (G, H, I, J) from Fig.5(a).
Fig.5  Norm N vs. chemical potential μ (a) (α=1.3) and Lévy index α (b) (μ=2.6) of vortex gap solitons with imprinted vorticity s. Other parameters: (a) vorticity (topological charge) s=1 for black line and s=2 for red dashed line; (b) s=1.
Fig.6  Dynamics of fundamental GSs (a, b), higher-order GSs (c, d), and gap vortices with vorticity s=1 (e, f) supported by the 2D moiré square optical lattices. Other parameters: (a) μ=2.5,N=13.61; (b) μ=4.02,N=140.9; (c) μ=2.2,N=20.85; (d) μ=3.47,N=145.3; (e) μ=2.3,N=31.67; (f) μ=3.5,N=306.52.
Fig.7  Contour shapes of the moiré lattice (shaded blue, lattice potential minima; shaded yellow, lattice potential maxima) at θ=arctan?(3/4)?0.1 (a), θ=arctan?(3/4) (b) and θ=arctan?(3/4)+0.1 (c). Perturbed evolution in real time of stable (d) and unstable (e) fundamental gap solitons supported by non-periodic moiré optical lattices under the non-Pythagorean angle θ=arctan?(3/4)?0.1. Other parameters: (d) μ=2.4,N=5.59; (e) μ=3.05,N=39.34. α=1.3 for all.
1 S. Kivshar Y.P. Agrawal G., Optical Solitons: From Fibers to Photonic Crystals, Academic, San Diego, 2003
2 Morsch O. , Oberthaler M. . Dynamics of Bose‒Einstein condensates in optical lattices. Rev. Mod. Phys., 2006, 78(1): 179
https://doi.org/10.1103/RevModPhys.78.179
3 V. Kartashov Y. , A. Malomed B. , Torner L. . Solitons in nonlinear lattices. Rev. Mod. Phys., 2011, 83(1): 247
https://doi.org/10.1103/RevModPhys.83.247
4 L. Garanovich I. , Longhi S. , A. Sukhorukov A. , S. Kivshar Y. . Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep., 2012, 518(1‒2): 1
https://doi.org/10.1016/j.physrep.2012.03.005
5 V. Konotop V. , Yang J. , A. Zezyulin D. . Nonlinear waves in PT-symmetric systems. Rev. Mod. Phys., 2016, 88(3): 035002
https://doi.org/10.1103/RevModPhys.88.035002
6 V. Kartashov Y. , E. Astrakharchik G. , A. Malomed B. , Torner L. . Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys., 2019, 1(3): 185
https://doi.org/10.1038/s42254-019-0025-7
7 J. Eggleton B. , E. Slusher R. , M. de Sterke C. , A. Krug P. , E. Sipe J. . Bragg grating solitons. Phys. Rev. Lett., 1996, 76(10): 1627
https://doi.org/10.1103/PhysRevLett.76.1627
8 Mandelik D. , Morandotti R. , S. Aitchison J. , Silberberg Y. . Gap solitons in waveguide arrays. Phys. Rev. Lett., 2004, 92(9): 093904
https://doi.org/10.1103/PhysRevLett.92.093904
9 Peleg O. , Bartal G. , Freedman B. , Manela O. , Segev M. , N. Christodoulides D. . Conical diffraction and gap solitons in honeycomb photonic lattices. Phys. Rev. Lett., 2007, 98(10): 103901
https://doi.org/10.1103/PhysRevLett.98.103901
10 Eiermann B. , Anker T. , Albiez M. , Taglieber M. , Treutlein P. , P. Marzlin K. , K. Oberthaler M. . Bright Bose‒Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett., 2004, 92(23): 230401
https://doi.org/10.1103/PhysRevLett.92.230401
11 Anker Th. , Albiez M. , Gati R. , Hunsmann S. , Eiermann B. , Trombettoni A. , K. Oberthaler M. . Nonlinear self-trapping of matter waves in periodic potentials. Phys. Rev. Lett., 2005, 94(2): 020403
https://doi.org/10.1103/PhysRevLett.94.020403
12 H. Bennet F. , J. Alexander T. , Haslinger F. , Mitchell A. , N. Neshev D. , S. Kivshar Y. . Observation of nonlinear self-trapping of broad beams in defocusing waveguide arrays. Phys. Rev. Lett., 2011, 106(9): 093901
https://doi.org/10.1103/PhysRevLett.106.093901
13 Bersch C. , Onishchukov G. , Peschel U. . Optical gap solitons and truncated nonlinear Bloch waves in temporal lattices. Phys. Rev. Lett., 2012, 109(9): 093903
https://doi.org/10.1103/PhysRevLett.109.093903
14 Zeng L. , Zeng J. . Gap-type dark localized modes in a Bose‒Einstein condensate with optical lattices. Adv. Photonics, 2019, 1(4): 046004
https://doi.org/10.1117/1.AP.1.4.046004
15 Shi J. , Zeng J. . Self-trapped spatially localized states in combined linear-nonlinear periodic potentials. Front. Phys., 2020, 15(1): 12602
https://doi.org/10.1007/s11467-019-0930-3
16 Li J. , Zeng J. . Dark matter-wave gap solitons in dense ultra-cold atoms trapped by a one-dimensional optical lattice. Phys. Rev. A, 2021, 103(1): 013320
https://doi.org/10.1103/PhysRevA.103.013320
17 Chen J. , Zeng J. . Dark matter-wave gap solitons of Bose‒Einstein condensates trapped in optical lattices with competing cubic‒quintic nonlinearities. Chaos Solitons Fractals, 2021, 150: 111149
https://doi.org/10.1016/j.chaos.2021.111149
18 Chen Z. , Zeng J. . Localized gap modes of coherently trapped atoms in an optical lattice. Opt. Express, 2021, 29(3): 3011
https://doi.org/10.1364/OE.412554
19 Chen Z. , Zeng J. . Two-dimensional optical gap solitons and vortices in a coherent atomic ensemble loaded on optical lattices. Commun. Nonlinear Sci. Numer. Simul., 2021, 102: 105911
https://doi.org/10.1016/j.cnsns.2021.105911
20 Chen Z. , Zeng J. . Nonlinear localized modes in one-dimensional nanoscale dark-state optical lattices. Nanophotonics, 2022, 11(15): 3465
https://doi.org/10.1515/nanoph-2022-0213
21 Li J. , Zhang Y. , Zeng J. . Matter-wave gap solitons and vortices in three-dimensional parity‒time-symmetric optical lattices. iScience, 2022, 25(4): 104026
https://doi.org/10.1016/j.isci.2022.104026
22 Li J. , Zhang Y. , Zeng J. . 3D nonlinear localized gap modes in Bose‒Einstein condensates trapped by optical lattices and space-periodic nonlinear potentials. Adv. Photon. Res., 2022, 3(7): 2100288
https://doi.org/10.1002/adpr.202100288
23 Qin J. , Zhou L. . Supersolid gap soliton in a Bose‒Einstein condensate and optical ring cavity coupling system. Phys. Rev. E, 2022, 105(5): 054214
https://doi.org/10.1103/PhysRevE.105.054214
24 Yang J. , Zhang Y. . Spin‒orbit-coupled spinor gap solitons in Bose‒Einstein condensates. Phys. Rev. A, 2023, 107(2): 023316
https://doi.org/10.1103/PhysRevA.107.023316
25 Chen Z. , Wu Z. , Zeng J. . Light gap bullets in defocusing media with optical lattices. Chaos Solitons Fractals, 2023, 174: 113785
https://doi.org/10.1016/j.chaos.2023.113785
26 Huang C. , Dong L. . Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice. Opt. Lett., 2016, 41(24): 5636
https://doi.org/10.1364/OL.41.005636
27 Huang C. , Li C. , Deng H. , Dong L. . Gap Solitons in fractional dimensions with a quasi-periodic lattice. Ann. Phys., 2019, 531(9): 1900056
https://doi.org/10.1002/andp.201900056
28 Xie J. , Zhu X. , He Y. . Vector solitons in nonlinear fractional Schrödinger equations with parity‒time-symmetric optical lattices. Nonlinear Dyn., 2019, 97(2): 1287
https://doi.org/10.1007/s11071-019-05048-9
29 Zeng L. , Zeng J. . One-dimensional gap solitons in quintic and cubic‒quintic fractional nonlinear Schrödinger equations with a periodically modulated linear potential. Nonlinear Dyn., 2019, 98: 985
https://doi.org/10.1007/s11071-019-05240-x
30 Zeng L. , Zeng J. . Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and non-linearities. Commun. Phys., 2020, 3(1): 26
https://doi.org/10.1038/s42005-020-0291-9
31 Zhu X. , Yang F. , Cao S. , Xie J. , He Y. . Multipole gap solitons in fractional Schrödinger equation with parity‒time-symmetric optical lattices. Opt. Express, 2020, 28(2): 1631
https://doi.org/10.1364/OE.382876
32 Zeng L. , R. Belić M. , Mihalache D. , Shi J. , Li J. , Li S. , Lu X. , Cai Y. , Li J. . Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dyn., 2022, 108(2): 1671
https://doi.org/10.1007/s11071-022-07291-z
33 Y. Bao Y. , R. Li S. , H. Liu Y. , F. Xu T. . Gap solitons and non-linear Bloch waves in fractional quantum coupler with periodic potential. Chaos Solitons Fractals, 2022, 156: 111853
https://doi.org/10.1016/j.chaos.2022.111853
34 Liu X. , A. Malomed B. , Zeng J. . Localized modes in nonlinear fractional systems with deep lattices. Adv. Theory Simul., 2022, 5(4): 2100482
https://doi.org/10.1002/adts.202100482
35 Dong L. , Huang C. . Double-hump solitons in fractional dimensions with a PT-symmetric potential. Opt. Express, 2018, 26(8): 10509
https://doi.org/10.1364/OE.26.010509
36 Huang C. , Dong L. . Beam propagation management in a fractional Schrödinger equation. Sci. Rep., 2017, 7(1): 5442
https://doi.org/10.1038/s41598-017-05926-5
37 Laskin N., Fractional Quantum Mechanics, World Scientific, 2018
38 A. Malomed B. . Optical solitons and vortices in fractional media: A mini-review of recent results. Photonics, 2021, 8(9): 353
https://doi.org/10.3390/photonics8090353
39 Liu S. , Zhang Y. , A. Malomed B. , Karimi E. . Experimental realizations of the fractional Schrödinger equation in the temporal domain. Nat. Commun., 2023, 14(1): 222
https://doi.org/10.1038/s41467-023-35892-8
40 Cao Y. , Fatemi V. , Fang S. , Watanabe K. , Taniguchi T. , Kaxiras E. , Jarillo-Herrero P. . Unconventional superconductivity in magic-angle graphene superlattices. Nature, 2018, 556(7699): 43
https://doi.org/10.1038/nature26160
41 Cao Y. , Fatemi V. , Demir A. , Fang S. , L. Tomarken S. , Y. Luo J. , D. Sanchez-Yamagishi J. , Watanabe K. , Taniguchi T. , Kaxiras E. , C. Ashoori R. , Jarillo-Herrero P. . Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature, 2018, 556(7699): 80
https://doi.org/10.1038/nature26154
42 Carr S. , Massatt D. , Fang S. , Cazeaux P. , Luskin M. , Kaxiras E. . Twistronics: Manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B, 2017, 95(7): 075420
https://doi.org/10.1103/PhysRevB.95.075420
43 Huang C. , Ye F. , Chen X. , V. Kartashov Y. , V. Konotop V. , Torner L. . Localization‒delocalization wavepacket transition in Pythagorean aperiodic potentials. Sci. Rep., 2016, 6(1): 32546
https://doi.org/10.1038/srep32546
44 Wang P. , Zheng Y. , Chen X. , Huang C. , V. Kartashov Y. , Torner L. , V. Konotop V. , Ye F. . Localization and delocalization of light in photonic moiré lattices. Nature, 2020, 577(7788): 42
https://doi.org/10.1038/s41586-019-1851-6
45 Fu Q. , Wang P. , Huang C. , V. Kartashov Y. , Torner L. , V. Konotop V. , Ye F. . Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photonics, 2020, 14(11): 663
https://doi.org/10.1038/s41566-020-0679-9
46 R. Mao X. , K. Shao Z. , Y. Luan H. , L. Wang S. , M. Ma R. . Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol., 2021, 16(10): 1099
https://doi.org/10.1038/s41565-021-00956-7
47 V. Kartashov Y. , Ye F. , V. Konotop V. , Torner L. . Multi-frequency solitons in commensurate-incommensurate photonic moiré lattices. Phys. Rev. Lett., 2021, 127(16): 163902
https://doi.org/10.1103/PhysRevLett.127.163902
48 V. Kartashov Y. . Light bullets in moiré lattices. Opt. Lett., 2022, 47(17): 4528
https://doi.org/10.1364/OL.471022
49 K. Ivanov S. , V. Konotop V. , V. Kartashov Y. , Torner L. . Vortex solitons in moiré optical lattices. Opt. Lett., 2023, 48(14): 3797
https://doi.org/10.1364/OL.494681
50 A. Arkhipova A. , V. Kartashov Y. , K. Ivanov S. , A. Zhuravitskii S. , N. Skryabin N. , V. Dyakonov I. , A. Kalinkin A. , P. Kulik S. , O. Kompanets V. , V. Chekalin S. , Ye F. , V. Konotop V. , Torner L. , N. Zadkov V. . Observation of linear and nonlinear light localization at the edges of moiré arrays. Phys. Rev. Lett., 2023, 130(8): 083801
https://doi.org/10.1103/PhysRevLett.130.083801
51 S. Sunku S. , X. Ni G. , Y. Jiang B. , Yoo H. , Sternbach A. , S. McLeod A. , Stauber T. , Xiong L. , Taniguchi T. , Watanabe K. , Kim P. , M. Fogler M. , N. Basov D. . Photonic crystals for nano-light in moiré graphene superlattices. Science, 2018, 362(6419): 1153
https://doi.org/10.1126/science.aau5144
52 J. M. Kort-Kamp W. , J. Culchac F. , B. Capaz R. , A. Pinheiro F. . Photonic spin Hall effect in bilayer graphene moiré superlattices. Phys. Rev. B, 2018, 98(19): 195431
https://doi.org/10.1103/PhysRevB.98.195431
53 Hu G. , Ou Q. , Si G. , Wu Y. , Wu J. , Dai Z. , Krasnok A. , Mazor Y. , Zhang Q. , Bao Q. , W. Qiu C. , Alù A. . Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature, 2020, 582(7811): 209
https://doi.org/10.1038/s41586-020-2359-9
54 Chen M. , Lin X. , H. Dinh T. , Zheng Z. , Shen J. , Ma Q. , Chen H. , Jarillo-Herrero P. , Dai S. . Configurable phonon polaritons in twisted α-MoO3. Nat. Mater., 2020, 19(12): 1307
https://doi.org/10.1038/s41563-020-0732-6
55 González-Tudela A. , I. Cirac J. . Cold atoms in twisted-bilayer optical potentials. Phys. Rev. A, 2019, 100(5): 053604
https://doi.org/10.1103/PhysRevA.100.053604
56 Salamon T. , Celi A. , W. Chhajlany R. , Frérot I. , Lewenstein M. , Tarruell L. , Rakshit D. . Simulating twistronics without a twist. Phys. Rev. Lett., 2020, 125(3): 030504
https://doi.org/10.1103/PhysRevLett.125.030504
57 W. Luo X. , Zhang C. . Spin-twisted optical lattices: Tunable flat bands and Larkin‒Ovchinnikov superfluids. Phys. Rev. Lett., 2021, 126(10): 103201
https://doi.org/10.1103/PhysRevLett.126.103201
58 Ning T. , Ren Y. , Huo Y. , Cai Y. . Efficient high harmonic generation in nonlinear photonic moiré superlattice. Front. Phys., 2023, 18(5): 52305
https://doi.org/10.1007/s11467-023-1296-0
59 Ma Z. , J. Chen W. , Chen Y. , H. Gao J. , C. Xie X. . Flat band localization due to self-localized orbital. Front. Phys., 2023, 18(6): 63302
https://doi.org/10.1007/s11467-023-1306-2
60 Chen Z. , Liu X. , Zeng J. . Electromagnetically induced moiré optical lattices in a coherent atomic gas. Front. Phys., 2022, 17(4): 42508
https://doi.org/10.1007/s11467-022-1153-6
61 Meng Z. , Wang L. , Han W. , Liu F. , Wen K. , Gao C. , Wang P. , Chin C. , Zhang J. . Atomic Bose‒Einstein condensate in twisted-bilayer optical lattices. Nature, 2023, 615(7951): 231
https://doi.org/10.1038/s41586-023-05695-4
62 Huang C. , Dong L. , Deng H. , Zhang X. , Gao P. . Fundamental and vortex gap solitons in quasiperiodic photonic lattices. Opt. Lett., 2021, 46(22): 5691
https://doi.org/10.1364/OL.443051
63 Liu X. , Zeng J. . Matter-wave gap solitons and vortices of dense Bose‒Einstein condensates in moiré optical lattices. Chaos Solitons Fractals, 2023, 174: 113869
https://doi.org/10.1016/j.chaos.2023.113869
64 Liu X. , Zeng J. . Gap solitons in parity‒time symmetric moiré optical lattices. Photon. Res., 2023, 11(2): 196
https://doi.org/10.1364/PRJ.474527
65 Yang J., Nonlinear Waves in Integrable and Nonintegrable Systems, SIAM: Philadelphia, 2010
66 Cai M. , P. Li C. . On Riesz derivative. Fract. Calc. Appl. Anal., 2019, 22(2): 287
https://doi.org/10.1515/fca-2019-0019
67 Duo S. , Zhang Y. . Accurate numerical methods for two and three dimensional integral fractional Laplacian with applications. Comput. Methods Appl. Mech. Eng., 2019, 355: 639
https://doi.org/10.1016/j.cma.2019.06.016
68 Laskin N. . Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A, 2000, 268(4−6): 298
https://doi.org/10.1016/S0375-9601(00)00201-2
69 Laskin N. . Fractional quantum mechanics. Phys. Rev. E, 2000, (3): 3135
https://doi.org/10.1103/PhysRevE.62.3135
70 Laskin N. . Fractional Schrödinger equation. Phys. Rev. E, 2002, 66(5): 056108
https://doi.org/10.1103/PhysRevE.66.056108
71 Zhang L. , Li C. , Zhong H. , Xu C. , Lei D. , Li Y. , Fan D. . Propagation dynamics of super-Gaussian beams in fractional Schrödinger equation: From linear to nonlinear regimes. Opt. Express, 2016, 24(13): 14406
https://doi.org/10.1364/OE.24.014406
72 Zhang L. , He Z. , Conti C. , Wang Z. , Hu Y. , Lei D. , Li Y. , Fan D. . Modulational instability in fractional nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul., 2017, 48: 531
https://doi.org/10.1016/j.cnsns.2017.01.019
73 Vakhitov M. , Kolokolov A. . Stationary solutions of the wave equation in a medium with nonlinearity saturation. Radiophys. Quantum Electron., 1973, 16(7): 783
https://doi.org/10.1007/BF01031343
74 Ferrando A. , Zacarés M. , A. García-March M. . Vorticity cutoff in nonlinear photonic crystals. Phys. Rev. Lett., 2005, 95(4): 043901
https://doi.org/10.1103/PhysRevLett.95.043901
[1] Yanming Hu, Yifan Fei, Xiao-Long Chen, Yunbo Zhang. Collisional dynamics of symmetric two-dimensional quantum droplets[J]. Front. Phys. , 2022, 17(6): 61505-.
[2] Zhiming Chen, Xiuye Liu, Jianhua Zeng. Electromagnetically induced moiré optical lattices in a coherent atomic gas[J]. Front. Phys. , 2022, 17(4): 42508-.
[3] Dan-wei Zhang (张丹伟), Zi-dan Wang (汪子丹), Shi-liang Zhu (朱诗亮). Relativistic quantum effects of Dirac particles simulated by ultracold atoms[J]. Front. Phys. , 2012, 7(1): 31-53.
[4] LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum[J]. Front. Phys. , 2008, 3(2): 113-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed