|
|
Generalized time-dependent generator coordinate method for induced fission dynamics |
B. Li1, D. Vretenar2,1( ), T. Nikšić2,1, J. Zhao3, P. W. Zhao1( ), J. Meng1( ) |
1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China 2. Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia 3. Center for Circuits and Systems, Peng Cheng Laboratory, Shenzhen 518055, China |
|
|
Abstract The generalized time-dependent generator coordinate method (TD-GCM) is extended to include pairing correlations. The correlated GCM nuclear wave function is expressed in terms of time-dependent generator states and weight functions. The particle−hole channel of the effective interaction is determined by a Hamiltonian derived from an energy density functional, while pairing is treated dynamically in the standard BCS approximation with time-dependent pairing tensor and single-particle occupation probabilities. With the inclusion of pairing correlations, various time-dependent phenomena in open-shell nuclei can be described more realistically. The model is applied to the description of saddle-to-scission dynamics of induced fission. The generalized TD-GCM charge yields and total kinetic energy distribution for the fission of 240Pu, are compared to those obtained using the standard time-dependent density functional theory (TD-DFT) approach, and with available data.
|
Keywords
nuclear density functional theory
generator coordinate method
fission dynamics
|
Corresponding Author(s):
D. Vretenar,P. W. Zhao,J. Meng
|
Issue Date: 25 January 2024
|
|
1 |
J. Krappe H.Pomorski K., Theory of Nuclear Fission, Berlin, Heidelberg: Springer, 2012
|
2 |
Schunck N., M. Robledo L.. Microscopic theory of nuclear fission: A review. Rep. Prog. Phys., 2016, 79(11): 116301
https://doi.org/10.1088/0034-4885/79/11/116301
|
3 |
Younes W.M. Gogny D.F. Berger J., A Microscopic Theory of Fission Dynamics Based on the Generator Coordinate Method, Springer Cham, 2019
|
4 |
Regnier D., Dubray N., Schunck N., Verrière M.. Fission fragment charge and mass distributions in 239Pu(n, f) in the adiabatic nuclear energy density functional theory. Phys. Rev. C, 2016, 93(5): 054611
https://doi.org/10.1103/PhysRevC.93.054611
|
5 |
Verriere M., Regnier D.. The time-dependent generator coordinate method in nuclear physics. Front. Phys. (Lausanne), 2020, 8: 233
https://doi.org/10.3389/fphy.2020.00233
|
6 |
Tao H., Zhao J., P. Li Z., Nikšić T., Vretenar D.. Microscopic study of induced fission dynamics of 226Th with covariant energy density functionals. Phys. Rev. C, 2017, 96(2): 024319
https://doi.org/10.1103/PhysRevC.96.024319
|
7 |
Zhao J., Xiang J., P. Li Z., Nikšić T., Vretenar D., G. Zhou S.. Time-dependent generator-coordinate-method study of mass-asymmetric fission of actinides. Phys. Rev. C, 2019, 99(5): 054613
https://doi.org/10.1103/PhysRevC.99.054613
|
8 |
Simenel C., Umar A.. Heavy-ion collisions and fission dynamics with the time-dependent Hartree−Fock theory and its extensions. Prog. Part. Nucl. Phys., 2018, 103: 19
https://doi.org/10.1016/j.ppnp.2018.07.002
|
9 |
Nakatsukasa T., Matsuyanagi K., Matsuo M., Yabana K.. Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys., 2016, 88(4): 045004
https://doi.org/10.1103/RevModPhys.88.045004
|
10 |
Stevenson P., Barton M.. Low-energy heavy-ion reactions and the Skyrme effective interaction. Prog. Part. Nucl. Phys., 2019, 104: 142
https://doi.org/10.1016/j.ppnp.2018.09.002
|
11 |
Bulgac A., Magierski P., J. Roche K., Stetcu I.. Induced fission of 240Pu within a real-time microscopic framework. Phys. Rev. Lett., 2016, 116(12): 122504
https://doi.org/10.1103/PhysRevLett.116.122504
|
12 |
Magierski P., Sekizawa K., Wlazlowski G.. Novel role of superfluidity in low-energy nuclear reactions. Phys. Rev. Lett., 2017, 119(4): 042501
https://doi.org/10.1103/PhysRevLett.119.042501
|
13 |
Scamps G., Simenel C.. Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides. Nature, 2018, 564(7736): 382
https://doi.org/10.1038/s41586-018-0780-0
|
14 |
Bulgac A., Jin S., J. Roche K., Schunck N., Stetcu I.. Fission dynamics of 240Pu from saddle to scission and beyond. Phys. Rev. C, 2019, 100(3): 034615
https://doi.org/10.1103/PhysRevC.100.034615
|
15 |
Bulgac A., Jin S., Stetcu I.. Nuclear fission dynamics: Past, present, needs, and future. Front. Phys. (Lausanne), 2020, 8: 63
https://doi.org/10.3389/fphy.2020.00063
|
16 |
X. Ren Z., Vretenar D., Nikšić T., W. Zhao P., Zhao J., Meng J.. Dynamical synthesis of 4He in the scission phase of nuclear fission. Phys. Rev. Lett., 2022, 128(17): 172501
https://doi.org/10.1103/PhysRevLett.128.172501
|
17 |
Li B., Vretenar D., Nikšić T., W. Zhao P., Meng J.. Generalized time-dependent generator coordinate method for small- and large-amplitude collective motion. Phys. Rev. C, 2023, 108(1): 014321
https://doi.org/10.1103/PhysRevC.108.014321
|
18 |
Marević P., Regnier D., Lacroix D.. Quantum fluctuations induce collective multiphonons in finite Fermi liquids. Phys. Rev. C, 2023, 108(1): 014620
https://doi.org/10.1103/PhysRevC.108.014620
|
19 |
G. Reinhard P., Cusson R., Goeke K.. Time evolution of coherent ground-state correlations and the TDHF approach. Nucl. Phys. A, 1983, 398(1): 141
https://doi.org/10.1016/0375-9474(83)90653-X
|
20 |
Regnier D., Lacroix D.. Microscopic description of pair transfer between two superfluid Fermi systems (ii): quantum mixing of time-dependent Hartree−Fock−Bogolyubov trajectories. Phys. Rev. C, 2019, 99(6): 064615
https://doi.org/10.1103/PhysRevC.99.064615
|
21 |
X. Ren Z., Zhao J., Vretenar D., Nikšić T., W. Zhao P., Meng J.. Microscopic analysis of induced nuclear fission dynamics. Phys. Rev. C, 2022, 105(4): 044313
https://doi.org/10.1103/PhysRevC.105.044313
|
22 |
Ebata S., Nakatsukasa T., Inakura T., Yoshida K., Hashimoto Y., Yabana K.. Canonical-basis time-dependent Hartree−Fock−Bogoliubov theory and linear-response calculations. Phys. Rev. C Nucl. Phys., 2010, 82(3): 034306
https://doi.org/10.1103/PhysRevC.82.034306
|
23 |
Scamps G., Lacroix D.. Effect of pairing on one- and two-nucleon transfer below the coulomb barrier: A time-dependent microscopic description. Phys. Rev. C, 2013, 87(1): 014605
https://doi.org/10.1103/PhysRevC.87.014605
|
24 |
W. Zhao P., P. Li Z., M. Yao J., Meng J.. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C, 2010, 82(5): 054319
https://doi.org/10.1103/PhysRevC.82.054319
|
25 |
M. Robledo L.. Sign of the overlap of Hartree−Fock−Bogoliubov wave functions. Phys. Rev. C, 2009, 79(2): 021302
https://doi.org/10.1103/PhysRevC.79.021302
|
26 |
L. Hu Q., C. Gao Z., Chen Y.. Matrix elements of one-body and two-body operators between arbitrary HFB multi-quasiparticle states. Phys. Lett. B, 2014, 734: 162
https://doi.org/10.1016/j.physletb.2014.05.045
|
27 |
Bonche P., Dobaczewski J., Flocard H., H. Heenen P., Meyer J.. Analysis of the generator coordinate method in a study of shape isomerism in 194Hg. Nucl. Phys. A, 1990, 510(3): 466
https://doi.org/10.1016/0375-9474(90)90062-Q
|
28 |
G. Reinhard P., Goeke K.. The generator coordinate method and quantised collective motion in nuclear systems. Rep. Prog. Phys., 1987, 50(1): 1
https://doi.org/10.1088/0034-4885/50/1/001
|
29 |
Bender M., Rutz K., G. Reinhard P., A. Maruhn J.. Pairing gaps from nuclear mean field models. Eur. Phys. J. A, 2000, 8(1): 59
https://doi.org/10.1007/s10050-000-4504-z
|
30 |
X. Ren Z., Q. Zhang S., Meng J.. Solving Dirac equations on a 3D lattice with inverse hamiltonian and spectral methods. Phys. Rev. C, 2017, 95(2): 024313
https://doi.org/10.1103/PhysRevC.95.024313
|
31 |
X. Ren Z., Q. Zhang S., W. Zhao P., Itagaki N., A. Maruhn J., Meng J.. Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice. Sci. China Phys. Mech. Astron., 2019, 62(11): 112062
https://doi.org/10.1007/s11433-019-9412-3
|
32 |
X. Ren Z., W. Zhao P., Q. Zhang S., Meng J.. Toroidal states in 28Si with covariant density functional theory in 3D lattice space. Nucl. Phys. A, 2020, 996: 121696
https://doi.org/10.1016/j.nuclphysa.2020.121696
|
33 |
Ramos D., Caamaño M., Farget F., Rodríguez-Tajes C., Audouin L., Benlliure J., Casarejos E., Clement E., Cortina D., Delaune O., Derkx X., Dijon A., Doré D., Fernańdez-Domínguez B., de France G., Heinz A., Jacquot B., Navin A., Paradela C., Rejmund M., Roger T., D. Salsac M., Schmitt C.. Isotopic fission-fragment distributions of 238U, 239Np, 240Pu, 244Cm, and 250Cf produced through inelastic scattering, transfer, and fusion reactions in inverse kinematics. Phys. Rev. C, 2018, 97(5): 054612
https://doi.org/10.1103/PhysRevC.97.054612
|
34 |
Zhao J., Nikšić T., Vretenar D., G. Zhou S.. Microscopic self-consistent description of induced fission dynamics: Finite-temperature effects. Phys. Rev. C, 2019, 99(1): 014618
https://doi.org/10.1103/PhysRevC.99.014618
|
35 |
Caamaño M., Farget F., Delaune O., H. Schmidt K., Schmitt C., Audouin L., O. Bacri C., Benlliure J., Casarejos E., Derkx X., Fernańdez-Domínguez B., Gaudefroy L., Golabek C., Jurado B., Lemasson A., Ramos D., Rodríguez-Tajes C., Roger T., Shrivastava A.. Characterization of the scission point from fission-fragment velocities. Phys. Rev. C, 2015, 92(3): 034606
https://doi.org/10.1103/PhysRevC.92.034606
|
36 |
Li B., Vretenar D., X. Ren Z., Nikšić T., Zhao J., W. Zhao P., Meng J.. Fission dynamics, dissipation, and clustering at finite temperature. Phys. Rev. C, 2023, 107(1): 014303
https://doi.org/10.1103/PhysRevC.107.014303
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|