Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (4) : 44201    https://doi.org/10.1007/s11467-023-1381-4
Generalized time-dependent generator coordinate method for induced fission dynamics
B. Li1, D. Vretenar2,1(), T. Nikšić2,1, J. Zhao3, P. W. Zhao1(), J. Meng1()
1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
2. Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
3. Center for Circuits and Systems, Peng Cheng Laboratory, Shenzhen 518055, China
 Download: PDF(5118 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The generalized time-dependent generator coordinate method (TD-GCM) is extended to include pairing correlations. The correlated GCM nuclear wave function is expressed in terms of time-dependent generator states and weight functions. The particle−hole channel of the effective interaction is determined by a Hamiltonian derived from an energy density functional, while pairing is treated dynamically in the standard BCS approximation with time-dependent pairing tensor and single-particle occupation probabilities. With the inclusion of pairing correlations, various time-dependent phenomena in open-shell nuclei can be described more realistically. The model is applied to the description of saddle-to-scission dynamics of induced fission. The generalized TD-GCM charge yields and total kinetic energy distribution for the fission of 240Pu, are compared to those obtained using the standard time-dependent density functional theory (TD-DFT) approach, and with available data.

Keywords nuclear density functional theory      generator coordinate method      fission dynamics     
Corresponding Author(s): D. Vretenar,P. W. Zhao,J. Meng   
Issue Date: 25 January 2024
 Cite this article:   
B. Li,D. Vretenar,T. Nikšić, et al. Generalized time-dependent generator coordinate method for induced fission dynamics[J]. Front. Phys. , 2024, 19(4): 44201.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-023-1381-4
https://academic.hep.com.cn/fop/EN/Y2024/V19/I4/44201
Fig.1  Self-consistent deformation energy surface of 240Pu in the plane of quadrupole-octupole axially-symmetric deformation parameters, calculated with the relativistic density functional PC-PK1 and a monopole pairing interaction. Contours join points on the surface with the same energy, and the open dots correspond to points on the iso-energy curve at 1 MeV below the energy of the equilibrium minimum. In the panel on the right, the normalized probability that the initial TD-GCM wave packet reaches a particular point after 30 zs, is plotted as function of the octupole deformation parameter. The curves correspond to self-consistent TD-DFT fission trajectories from the initial points, to be used as generator states of the generalized TD-GCM.
Fig.2  Fission of 240Pu with the five TD-DFT trajectories that start in region 1. The initial point for the generalized GCM evolution is at β20=2.91 and β30= 2.08 on the deformation energy surface. The top panel displays the eigenvalues of the overlap kernel, and the square moduli of components of the TD-GCM collective wave function are shown in the second panel. The time evolution of the quadrupole and octupole deformations on the way to scission and beyond, is compared to the single TD-DFT trajectory starting from the same point, in the two lower panels.
Fig.3  Same as in the caption to Fig.2 but for the five TD-DFT trajectories that start in region 3 on Fig.1. The initial point for the generalized GCM evolution is at β20=2.30 and β30= 1.13 on the deformation energy surface. The vertical dashed line denotes the instant of scission.
Fig.4  Probability distributions of charge yields for the TD-DFT trajectories that start in region 3 on the deformation energy surface in Fig.1. In each panel, from top to bottom, the blue bars denote the charge of the light and heavy fragments calculated for the TD-DFT trajectory that starts from the initial points: ( β20,β30)=( 2.41,1.30),(2.33 ,1.20),(2.30, 1.13),(2.36,1.00 ), and (2.50,0.96), respectively. The red bars, normalized to 1 for the light and heavy fragments, correspond to the charge yields obtained for the generalized TD-GCM trajectory that starts from the same initial point as the TD-DFT one, but is a superposition of all five basis trajectories.
Fig.5  Charge yields for induced fission of 240Pu. The yields calculated with the generalized TD-GCM (a), and TD-DFT (b) methods, are shown in comparison with the experimental charge distribution. The data are from Ref. [33], and correspond to an average excitation energy of 10.7 MeV.
Fig.6  The calculated total kinetic energies of the nascent fragments for induced fission of 240Pu, as functions of the fragment charge. The generalized TD-GCM and TD-DFT results are shown in comparison to the data [35].
Fig.7  Same as Fig.5, but with equal initial probabilities for each fission trajectory.
Fig.8  Same as the left panel of Fig.1, but the initial points in regions 1 and 2 are here merged into a larger basis 1−2, which includes 10 TD-DFT trajectories.
Fig.9  Probability distributions of charge yields for the TD-DFT trajectories that start in regions 1−2 on the deformation energy surface in Fig.8. In each panel, from (a) to (j), the blue bars denote the charge of the light and heavy fragments calculated for the TD-DFT trajectory that starts from an initial point in decreasing order of β30, respectively. The red bars, normalized to 1 for the light and heavy fragments, correspond to the charge yields obtained for the generalized TD-GCM trajectory that starts from the same initial point as the TD-DFT trajectroy, but is a superposition of all ten basis trajectories.
1 J. Krappe H.Pomorski K., Theory of Nuclear Fission, Berlin, Heidelberg: Springer, 2012
2 Schunck N., M. Robledo L.. Microscopic theory of nuclear fission: A review. Rep. Prog. Phys., 2016, 79(11): 116301
https://doi.org/10.1088/0034-4885/79/11/116301
3 Younes W.M. Gogny D.F. Berger J., A Microscopic Theory of Fission Dynamics Based on the Generator Coordinate Method, Springer Cham, 2019
4 Regnier D., Dubray N., Schunck N., Verrière M.. Fission fragment charge and mass distributions in 239Pu(n, f) in the adiabatic nuclear energy density functional theory. Phys. Rev. C, 2016, 93(5): 054611
https://doi.org/10.1103/PhysRevC.93.054611
5 Verriere M., Regnier D.. The time-dependent generator coordinate method in nuclear physics. Front. Phys. (Lausanne), 2020, 8: 233
https://doi.org/10.3389/fphy.2020.00233
6 Tao H., Zhao J., P. Li Z., Nikšić T., Vretenar D.. Microscopic study of induced fission dynamics of 226Th with covariant energy density functionals. Phys. Rev. C, 2017, 96(2): 024319
https://doi.org/10.1103/PhysRevC.96.024319
7 Zhao J., Xiang J., P. Li Z., Nikšić T., Vretenar D., G. Zhou S.. Time-dependent generator-coordinate-method study of mass-asymmetric fission of actinides. Phys. Rev. C, 2019, 99(5): 054613
https://doi.org/10.1103/PhysRevC.99.054613
8 Simenel C., Umar A.. Heavy-ion collisions and fission dynamics with the time-dependent Hartree−Fock theory and its extensions. Prog. Part. Nucl. Phys., 2018, 103: 19
https://doi.org/10.1016/j.ppnp.2018.07.002
9 Nakatsukasa T., Matsuyanagi K., Matsuo M., Yabana K.. Time-dependent density-functional description of nuclear dynamics. Rev. Mod. Phys., 2016, 88(4): 045004
https://doi.org/10.1103/RevModPhys.88.045004
10 Stevenson P., Barton M.. Low-energy heavy-ion reactions and the Skyrme effective interaction. Prog. Part. Nucl. Phys., 2019, 104: 142
https://doi.org/10.1016/j.ppnp.2018.09.002
11 Bulgac A., Magierski P., J. Roche K., Stetcu I.. Induced fission of 240Pu within a real-time microscopic framework. Phys. Rev. Lett., 2016, 116(12): 122504
https://doi.org/10.1103/PhysRevLett.116.122504
12 Magierski P., Sekizawa K., Wlazlowski G.. Novel role of superfluidity in low-energy nuclear reactions. Phys. Rev. Lett., 2017, 119(4): 042501
https://doi.org/10.1103/PhysRevLett.119.042501
13 Scamps G., Simenel C.. Impact of pear-shaped fission fragments on mass-asymmetric fission in actinides. Nature, 2018, 564(7736): 382
https://doi.org/10.1038/s41586-018-0780-0
14 Bulgac A., Jin S., J. Roche K., Schunck N., Stetcu I.. Fission dynamics of 240Pu from saddle to scission and beyond. Phys. Rev. C, 2019, 100(3): 034615
https://doi.org/10.1103/PhysRevC.100.034615
15 Bulgac A., Jin S., Stetcu I.. Nuclear fission dynamics: Past, present, needs, and future. Front. Phys. (Lausanne), 2020, 8: 63
https://doi.org/10.3389/fphy.2020.00063
16 X. Ren Z., Vretenar D., Nikšić T., W. Zhao P., Zhao J., Meng J.. Dynamical synthesis of 4He in the scission phase of nuclear fission. Phys. Rev. Lett., 2022, 128(17): 172501
https://doi.org/10.1103/PhysRevLett.128.172501
17 Li B., Vretenar D., Nikšić T., W. Zhao P., Meng J.. Generalized time-dependent generator coordinate method for small- and large-amplitude collective motion. Phys. Rev. C, 2023, 108(1): 014321
https://doi.org/10.1103/PhysRevC.108.014321
18 Marević P., Regnier D., Lacroix D.. Quantum fluctuations induce collective multiphonons in finite Fermi liquids. Phys. Rev. C, 2023, 108(1): 014620
https://doi.org/10.1103/PhysRevC.108.014620
19 G. Reinhard P., Cusson R., Goeke K.. Time evolution of coherent ground-state correlations and the TDHF approach. Nucl. Phys. A, 1983, 398(1): 141
https://doi.org/10.1016/0375-9474(83)90653-X
20 Regnier D., Lacroix D.. Microscopic description of pair transfer between two superfluid Fermi systems (ii): quantum mixing of time-dependent Hartree−Fock−Bogolyubov trajectories. Phys. Rev. C, 2019, 99(6): 064615
https://doi.org/10.1103/PhysRevC.99.064615
21 X. Ren Z., Zhao J., Vretenar D., Nikšić T., W. Zhao P., Meng J.. Microscopic analysis of induced nuclear fission dynamics. Phys. Rev. C, 2022, 105(4): 044313
https://doi.org/10.1103/PhysRevC.105.044313
22 Ebata S., Nakatsukasa T., Inakura T., Yoshida K., Hashimoto Y., Yabana K.. Canonical-basis time-dependent Hartree−Fock−Bogoliubov theory and linear-response calculations. Phys. Rev. C Nucl. Phys., 2010, 82(3): 034306
https://doi.org/10.1103/PhysRevC.82.034306
23 Scamps G., Lacroix D.. Effect of pairing on one- and two-nucleon transfer below the coulomb barrier: A time-dependent microscopic description. Phys. Rev. C, 2013, 87(1): 014605
https://doi.org/10.1103/PhysRevC.87.014605
24 W. Zhao P., P. Li Z., M. Yao J., Meng J.. New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C, 2010, 82(5): 054319
https://doi.org/10.1103/PhysRevC.82.054319
25 M. Robledo L.. Sign of the overlap of Hartree−Fock−Bogoliubov wave functions. Phys. Rev. C, 2009, 79(2): 021302
https://doi.org/10.1103/PhysRevC.79.021302
26 L. Hu Q., C. Gao Z., Chen Y.. Matrix elements of one-body and two-body operators between arbitrary HFB multi-quasiparticle states. Phys. Lett. B, 2014, 734: 162
https://doi.org/10.1016/j.physletb.2014.05.045
27 Bonche P., Dobaczewski J., Flocard H., H. Heenen P., Meyer J.. Analysis of the generator coordinate method in a study of shape isomerism in 194Hg. Nucl. Phys. A, 1990, 510(3): 466
https://doi.org/10.1016/0375-9474(90)90062-Q
28 G. Reinhard P., Goeke K.. The generator coordinate method and quantised collective motion in nuclear systems. Rep. Prog. Phys., 1987, 50(1): 1
https://doi.org/10.1088/0034-4885/50/1/001
29 Bender M., Rutz K., G. Reinhard P., A. Maruhn J.. Pairing gaps from nuclear mean field models. Eur. Phys. J. A, 2000, 8(1): 59
https://doi.org/10.1007/s10050-000-4504-z
30 X. Ren Z., Q. Zhang S., Meng J.. Solving Dirac equations on a 3D lattice with inverse hamiltonian and spectral methods. Phys. Rev. C, 2017, 95(2): 024313
https://doi.org/10.1103/PhysRevC.95.024313
31 X. Ren Z., Q. Zhang S., W. Zhao P., Itagaki N., A. Maruhn J., Meng J.. Stability of the linear chain structure for 12C in covariant density functional theory on a 3D lattice. Sci. China Phys. Mech. Astron., 2019, 62(11): 112062
https://doi.org/10.1007/s11433-019-9412-3
32 X. Ren Z., W. Zhao P., Q. Zhang S., Meng J.. Toroidal states in 28Si with covariant density functional theory in 3D lattice space. Nucl. Phys. A, 2020, 996: 121696
https://doi.org/10.1016/j.nuclphysa.2020.121696
33 Ramos D., Caamaño M., Farget F., Rodríguez-Tajes C., Audouin L., Benlliure J., Casarejos E., Clement E., Cortina D., Delaune O., Derkx X., Dijon A., Doré D., Fernańdez-Domínguez B., de France G., Heinz A., Jacquot B., Navin A., Paradela C., Rejmund M., Roger T., D. Salsac M., Schmitt C.. Isotopic fission-fragment distributions of 238U, 239Np, 240Pu, 244Cm, and 250Cf produced through inelastic scattering, transfer, and fusion reactions in inverse kinematics. Phys. Rev. C, 2018, 97(5): 054612
https://doi.org/10.1103/PhysRevC.97.054612
34 Zhao J., Nikšić T., Vretenar D., G. Zhou S.. Microscopic self-consistent description of induced fission dynamics: Finite-temperature effects. Phys. Rev. C, 2019, 99(1): 014618
https://doi.org/10.1103/PhysRevC.99.014618
35 Caamaño M., Farget F., Delaune O., H. Schmidt K., Schmitt C., Audouin L., O. Bacri C., Benlliure J., Casarejos E., Derkx X., Fernańdez-Domínguez B., Gaudefroy L., Golabek C., Jurado B., Lemasson A., Ramos D., Rodríguez-Tajes C., Roger T., Shrivastava A.. Characterization of the scission point from fission-fragment velocities. Phys. Rev. C, 2015, 92(3): 034606
https://doi.org/10.1103/PhysRevC.92.034606
36 Li B., Vretenar D., X. Ren Z., Nikšić T., Zhao J., W. Zhao P., Meng J.. Fission dynamics, dissipation, and clustering at finite temperature. Phys. Rev. C, 2023, 107(1): 014303
https://doi.org/10.1103/PhysRevC.107.014303
[1] Qian-Shun Zhang (张前顺), Zhong-Ming Niu (牛中明), Zhi-Pan Li (李志攀), Jiang-Ming Yao (尧江明), Jie Meng (孟杰). Global dynamical correlation energies in covariant density functional theory: Cranking approximation[J]. Front. Phys. , 2014, 9(4): 529-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed