|
|
Atom-field dynamics in curved spacetime |
Syed Masood A. S. Bukhari(), Li-Gang Wang() |
School of Physics, Zhejiang University, Hangzhou 310027, China |
|
|
Abstract Some aspects of atom-field interactions in curved spacetime are reviewed. Of great interest are quantum radiative and entanglement processes arising out of Rindler and black hole spacetimes, which involve the role of Hawking−Unruh and dynamical Casimir effects. Most of the discussion surrounds the radiative part of interactions. For this, we specifically reassess the conventional understandings of atomic radiative transitions and energy level shifts in curved spacetime. We also briefly outline the status quo of entanglement dynamics study in curved spacetime, and highlight literature related to some novel insights, like entanglement harvesting. On one hand, the study of the role played by spacetime curvature in quantum radiative and informational phenomena has implications for fundamental physics, notably the gravity-quantum interface. In particular, one examines the viability of the Equivalence Principle, which is at the heart of Einstein’s general theory of relativity. On the other hand, it can be instructive for manipulating quantum information and light propagation in arbitrary geometries. Some issues related to nonthermal effects of acceleration are also discussed.
|
Keywords
atom-field interactions
general relativity
Minkowski and curved spacetime
quantum field theory in curved spacetime
light−matter interactions
spontaneous excitations
|
Corresponding Author(s):
Syed Masood A. S. Bukhari,Li-Gang Wang
|
Issue Date: 22 May 2024
|
|
1 |
A. Mourou G., Tajima T., V. Bulanov S.. Optics in the relativistic regime. Rev. Mod. Phys., 2006, 78(2): 309
https://doi.org/10.1103/RevModPhys.78.309
|
2 |
Walther H., T. H. Varcoe B., G. Englert B., Becker T.. Cavity quantum electrodynamics. Rep. Prog. Phys., 2006, 69(5): 1325
https://doi.org/10.1088/0034-4885/69/5/R02
|
3 |
E. Chang D., S. Douglas J., González-Tudela A., L. Hung C., J. Kimble H.. Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys., 2018, 90(3): 031002
https://doi.org/10.1103/RevModPhys.90.031002
|
4 |
Ozawa T., M. Price H., Amo A., Goldman N., Hafezi M., Lu L., C. Rechtsman M., Schuster D., Simon J., Zilberberg O., Carusotto I.. Topological photonics. Rev. Mod. Phys., 2019, 91(1): 015006
https://doi.org/10.1103/RevModPhys.91.015006
|
5 |
M. Harry (for the LIGO Scientific Collaboration) G.. Advanced LIGO: The next generation of gravitational wave detectors. Class. Quantum Gravity, 2010, 27(8): 084006
https://doi.org/10.1088/0264-9381/27/8/084006
|
6 |
Aso Y., Michimura Y., Somiya K., Ando M., Miyakawa O., Sekiguchi T., Tatsumi D., Yamamoto (The KAGRA Collaboration) H.. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D, 2013, 88: 043007
https://doi.org/10.1103/PhysRevD.88.043007
|
7 |
L. Dooley K.R. Leong J.Adams T.Affeldt C.Bisht A. Bogan C.Degallaix J.Gräf C.Hild S.Hough J. Khalaidovski A.Lastzka N.Lough J. Lück H.Macleod D.Nuttall L.Prijatelj M.Schnabel R. Schreiber E.Slutsky J.Sorazu B.A. Strain K.Vahlbruch H.Was M.Willke B.Wittel H. Danzmann K.Grote H., GEO 600 and the GEO-HF upgrade program: Successes and challenges, Class. Quantum Gravity 33(7), 075009 (2016)
|
8 |
Yu H., (LIGO Scientific) .. et al.. Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature, 2020, 583(7814): 43
https://doi.org/10.1038/s41586-020-2420-8
|
9 |
Acernese F., (The Virgo Collaboration) .. et al.. Quantum backaction on kg-scale mirrors: Observation of radiation pressure noise in the advanced Virgo detector. Phys. Rev. Lett., 2020, 125(13): 131101
https://doi.org/10.1103/PhysRevLett.125.131101
|
10 |
S. Safronova M., Budker D., DeMille D., F. J. Kimball D., Derevianko A., W. Clark C.. Search for new physics with atoms and molecules. Rev. Mod. Phys., 2018, 90(2): 025008
https://doi.org/10.1103/RevModPhys.90.025008
|
11 |
H. Schultheiss V., Batz S., Szameit A., Dreisow F., Nolte S., Tünnermann A., Longhi S., Peschel U.. Optics in curved space. Phys. Rev. Lett., 2010, 105(14): 143901
https://doi.org/10.1103/PhysRevLett.105.143901
|
12 |
H. Schultheiss V., Batz S., Peschel U.. Light in curved two-dimensional space. Adv. Phys. X, 2020, 5(1): 1759451
https://doi.org/10.1080/23746149.2020.1759451
|
13 |
Leonhardt U., G. Philbin T.. General relativity in electrical engineering. New J. Phys., 2006, 8(10): 247
https://doi.org/10.1088/1367-2630/8/10/247
|
14 |
G. Philbin T., Kuklewicz C., Robertson S., Hill S., Konig F., Leonhardt U.. Fiber-optical analog of the event horizon. Science, 2008, 319(5868): 1367
https://doi.org/10.1126/science.1153625
|
15 |
Bekenstein R.Kabessa Y.Sharabi Y. Tal O.Engheta N.Eisenstein G.J. Agranat A.Segev M., in: 2016 Conference on Lasers and Electro-Optics (CLEO), 1 (2016)
|
16 |
Patsyk A., A. Bandres M., Bekenstein R., Segev M.. Observation of accelerating wave packets in curved space. Phys. Rev. X, 2018, 8(1): 011001
https://doi.org/10.1103/PhysRevX.8.011001
|
17 |
Faccio D.Belgiorno F.Cacciatori S.Gorini V.Liberati S. Moschella (Eds.) U., Analogue Gravity Phenomenology, Vol. 870, 2013
|
18 |
Viermann C., Sparn M., Liebster N., Hans M., Kath E., Parra-López Á., Tolosa-Simeón M., Sánchez-Kuntz N., Haas T., Strobel H., Floerchinger S., K. Oberthaler M.. Quantum field simulator for dynamics in curved spacetime. Nature, 2022, 611(7935): 260
https://doi.org/10.1038/s41586-022-05313-9
|
19 |
Lopp R., S. Martín-Martinez E., N. Page D.. Relativity and quantum optics: Accelerated atoms in optical cavities. Class. Quantum Gravity, 2018, 35(22): 224001
https://doi.org/10.1088/1361-6382/aae750
|
20 |
O. Scully M., Fulling S., Lee D., N. Page D., Schleich W., Svidzinsky A.. Quantum optics approach to radiation from atoms falling into a black hole. Proc. Natl. Acad. Sci. USA, 2018, 115(32): 8131
https://doi.org/10.1073/pnas.1807703115
|
21 |
Martín-Martínez E., R. Perche T., de S. L. Torres B.. General relativistic quantum optics: Finite-size particle detector models in curved spacetimes. Phys. Rev. D, 2020, 101(4): 045017
https://doi.org/10.1103/PhysRevD.101.045017
|
22 |
S. Zhan M., Y. Cai Q., C. Zhang B.. Gravitational effects of atomic and molecular systems. Sci. Sin. Phys. Mech. Astron., 2014, 44(9): 879
https://doi.org/10.1360/SSPMA-2013-00095
|
23 |
Leonhardt U., Essential Quantum Optics, Cambridge: Cambridge University Press, 2010
|
24 |
Boettcher I., Bienias P., Belyansky R., J. Kollár A., V. Gorshkov A.. Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry. Phys. Rev. A, 2020, 102(3): 032208
https://doi.org/10.1103/PhysRevA.102.032208
|
25 |
G. Garcia D., J. Chaplain G., Bĕlín J., Tyc T., Englert C., Courtial J.. Optical triangulations of curved spaces. Optica, 2020, 7: 142
https://doi.org/10.1364/OPTICA.378357
|
26 |
Steinhauer J.. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys., 2016, 12(10): 959
https://doi.org/10.1038/nphys3863
|
27 |
Leonhardt U.. Questioning the recent observation of quantum Hawking radiation. Ann. Phys., 2018, 530(5): 1700114
https://doi.org/10.1002/andp.201700114
|
28 |
Hu J., Feng L., Zhang Z., Chin C.. Quantum simulation of Unruh radiation. Nat. Phys., 2019, 15(8): 785
https://doi.org/10.1038/s41567-019-0537-1
|
29 |
Sheng T., Qian J., Li X., Niu Y., Gong S.. Quantum simulation of the Unruh effect with a Rydberg-dressed Bose‒Einstein condensate. Phys. Rev. A, 2021, 103(1): 013301
https://doi.org/10.1103/PhysRevA.103.013301
|
30 |
Parker L.. Quantized fields and particle creation in expanding universes. I. Phys. Rev., 1969, 183(5): 1057
https://doi.org/10.1103/PhysRev.183.1057
|
31 |
Parker L., Quantized fields and particle creation in expanding universes. II, Phys. Rev. D 3(2), 346 (1971) [Erratum: Phys. Rev. D 3, 2546 (1971)]
|
32 |
Parker L.. Particle creation and particle number in an expanding universe. J. Phys. A Math. Theor., 2012, 45(37): 374023
https://doi.org/10.1088/1751-8113/45/37/374023
|
33 |
Eckel S.Kumar A.Jacobson T.B. Spielman I.K. Campbell G., A rapidly expanding Bose‒Einstein condensate: An expanding universe in the lab, Phys. Rev. X 8(2), 021021 (2018)
|
34 |
P. Schmit R., G. Taketani B., K. Wilhelm F.. Quantum simulation of particle creation in curved space-time. PLoS One, 2020, 15(3): e0229382
https://doi.org/10.1371/journal.pone.0229382
|
35 |
M. Alsing P., J. Milburn G.. Teleportation with a uniformly accelerated partner. Phys. Rev. Lett., 2003, 91(18): 180404
https://doi.org/10.1103/PhysRevLett.91.180404
|
36 |
Fuentes-Schuller I., B. Mann R.. Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett., 2005, 95(12): 120404
https://doi.org/10.1103/PhysRevLett.95.120404
|
37 |
G. Downes T., Fuentes I., C. Ralph T.. Entangling moving cavities in noninertial frames. Phys. Rev. Lett., 2011, 106(21): 210502
https://doi.org/10.1103/PhysRevLett.106.210502
|
38 |
Peres A., R. Terno D.. Quantum information and relativity theory. Rev. Mod. Phys., 2004, 76(1): 93
https://doi.org/10.1103/RevModPhys.76.93
|
39 |
B. Mann R., C. Ralph T.. Relativistic quantum information. Class. Quantum Gravity, 2012, 29(22): 220301
https://doi.org/10.1088/0264-9381/29/22/220301
|
40 |
M. Alsing P., Fuentes-Schuller I., B. Mann R., E. Tessier T.. Entanglement of Dirac fields in noninertial frames. Phys. Rev. A, 2006, 74(3): 032326
https://doi.org/10.1103/PhysRevA.74.032326
|
41 |
Wang J.Jing J., Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83, 022314 (2011), arXiv: 1012.4268 [quant-ph] [Erratum: Phys. Rev. A 97, 029902 (2018)]
|
42 |
Friis N., E. Bruschi D., Louko J., Fuentes I.. Motion generates entanglement. Phys. Rev. D, 2012, 85(8): 081701
https://doi.org/10.1103/PhysRevD.85.081701
|
43 |
E. Bruschi D., Dragan A., R. Lee A., Fuentes I., Louko J.. Relativistic motion generates quantum gates and entanglement resonances. Phys. Rev. Lett., 2013, 111(9): 090504
https://doi.org/10.1103/PhysRevLett.111.090504
|
44 |
Liu Z., Zhang J., B. Mann R., Yu H.. Does acceleration assist entanglement harvesting. Phys. Rev. D, 2022, 105(8): 085012
https://doi.org/10.1103/PhysRevD.105.085012
|
45 |
Lopp R.Martin-Martinez E.N. Page D., Relativity and quantum optics: Accelerated atoms in optical cavities, Class. Quant. Grav. 35, 224001 (2018), arXiv: 1806.10158 [quant-ph]
|
46 |
Martín-Martínez E., R. Perche T., de S. L. Torres B.. General relativistic quantum optics: Finite-size particle detector models in curved spacetimes. Phys. Rev. D, 2020, 101(4): 045017
https://doi.org/10.1103/PhysRevD.101.045017
|
47 |
Sabín C., E. Bruschi D., Ahmadi M., Fuentes I.. Phonon creation by gravitational waves. New J. Phys., 2014, 16(8): 085003
https://doi.org/10.1088/1367-2630/16/8/085003
|
48 |
Rätzel D., Howl R., Lindkvist J., Fuentes I.. Dynamical response of Bose–Einstein condensates to oscillating gravitational fields. New J. Phys., 2018, 20(7): 073044
https://doi.org/10.1088/1367-2630/aad272
|
49 |
Schützhold R.. Interaction of a Bose‒Einstein condensate with a gravitational wave. Phys. Rev. D, 2018, 98(10): 105019
https://doi.org/10.1103/PhysRevD.98.105019
|
50 |
Howl R., Hackermüller L., E. Bruschi D., Fuentes I.. Gravity in the quantum lab. Adv. Phys. X, 2018, 3(1): 1383184
https://doi.org/10.1080/23746149.2017.1383184
|
51 |
Collas P.Klein D., The Dirac equation in curved space-time: A guide for calculations, Springer Briefs in Physics, Springer, 2019, arXiv: 1809.02764 [gr-qc]
|
52 |
O. Scully M.S. Zubairy M., Quantum Optics, Cambridge: Cambridge University Press, 1997
|
53 |
Compagno G.Passante R.Persico F., Atom-Field Interactions and Dressed Atoms, Cambridge Studies in Modern Optics, Cambridge University Press, 1995
|
54 |
G. Unruh W.. Notes on black-hole evaporation. Phys. Rev. D, 1976, 14(4): 870
https://doi.org/10.1103/PhysRevD.14.870
|
55 |
A. Fulling S.. Nonuniqueness of canonical field quantization in riemannian space-time. Phys. Rev. D, 1973, 7(10): 2850
https://doi.org/10.1103/PhysRevD.7.2850
|
56 |
C. W. Davies P.. Scalar production in Schwarzschild and Rindler metrics. J. Phys. Math. Gen., 1975, 8(4): 609
https://doi.org/10.1088/0305-4470/8/4/022
|
57 |
C. B. Crispino L., Higuchi A., E. A. Matsas G.. The Unruh effect and its applications. Rev. Mod. Phys., 2008, 80(3): 787
https://doi.org/10.1103/RevModPhys.80.787
|
58 |
Rohrlich F.. The definition of electromagnetic radiation. Nuovo Cim., 1961, 21(5): 811
https://doi.org/10.1007/BF02785607
|
59 |
Rohrlich F.. The definition of electromagnetic radiation. Nuovo Cim., 1961, 21(5): 811
https://doi.org/10.1007/BF02785607
|
60 |
G. Boulware D.. Radiation from a uniformly accelerated charge. Ann. Phys., 1980, 124(1): 169
https://doi.org/10.1016/0003-4916(80)90360-7
|
61 |
W. Hawking S.. Particle creation by black holes. Commun. Math. Phys., 1975, 43(3): 199
https://doi.org/10.1007/BF02345020
|
62 |
Frodden E., Valdés N.. Unruh effect: Introductory notes to quantum effects for accelerated observers. Int. J. Mod. Phys. A, 2018, 33(27): 1830026
https://doi.org/10.1142/S0217751X18300260
|
63 |
B. G. Casimir H., Indag. Math. 10, 261 (1948)
|
64 |
Bordag M.L. Klimchitskaya G.Mohideen U. M. Mostepanenko V., Advances in the Casimir Effect, Vol. 145, Oxford University Press, 2009
|
65 |
T. Moore G.. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys., 1970, 11(9): 2679
https://doi.org/10.1063/1.1665432
|
66 |
V. Dodonov V.. Fifty years of the dynamical Casimir effect. MDPI Physics, 2020, 2(1): 67
https://doi.org/10.3390/physics2010007
|
67 |
A. Fulling S., C. W. Davies P.. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A, 1976, 348(1654): 393
https://doi.org/10.1098/rspa.1976.0045
|
68 |
C. W. Davies P., A. Fulling S.. Quantum vacuum energy in two dimensional space-times. Proc. R. Soc. Lond. A, 1977, 354(1676): 59
https://doi.org/10.1098/rspa.1977.0056
|
69 |
R. Anderson P.R. R. Good M.R. Evans C., Black hole − moving mirror I: An exact correspondence, in: 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Vol. 2 (2017), pp 1701–1704, arXiv: 1507.03489 [gr-qc]
|
70 |
R. R. Good M.R. Anderson P.R. Evans C., Black hole − moving mirror II: Particle creation, in: 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Vol. 2 (2017), pp 1705–1708, arXiv: 1507.05048 [gr-qc]
|
71 |
Belyanin A., V. Kocharovsky V., Capasso F., Fry E., S. Zubairy M., O. Scully M.. Quantum electrodynamics of accelerated atoms in free space and in cavities. Phys. Rev. A, 2006, 74(2): 023807
https://doi.org/10.1103/PhysRevA.74.023807
|
72 |
O. Scully M.. Laser entropy: From lasers and masers to Bose condensates and black holes. Phys. Scr., 2020, 95: 024002
|
73 |
P. E. Lock M., Fuentes I.. Dynamical Casimir effect in curved spacetime. New J. Phys., 2017, 19(7): 073005
https://doi.org/10.1088/1367-2630/aa7651
|
74 |
Chandrasekhar S.. The solution of Dirac’s equation in Kerr geometry. Proc. R. Soc. Lond. A, 1976, 349(1659): 571
https://doi.org/10.1098/rspa.1976.0090
|
75 |
Carter B., G. McLenaghan R.. Generalized total angular momentum operator for the Dirac equation in curved space-time. Phys. Rev. D, 1979, 19(4): 1093
https://doi.org/10.1103/PhysRevD.19.1093
|
76 |
V. Shishkin G.. Some exact solutions of the Dirac equation in gravitational fields. Class. Quantum Gravity, 1991, 8(1): 175
https://doi.org/10.1088/0264-9381/8/1/017
|
77 |
Finster F.Reintjes M., The Dirac Equation and the Normalization of its Solutions in a Closed Friedmann−Robertson‒Walker Universe, Class. Quant. Grav. 26, 105021 (2009), arXiv: 0901.0602 [math-ph]
|
78 |
Collas P.Klein D., Dirac particles in a gravitational shock wave, Class. Quant. Grav. 35, 125006 (2018), arXiv: 1801.02756 [gr-qc]
|
79 |
Parker L.. One-electron atom in curved space-time. Phys. Rev. Lett., 1980, 44(23): 1559
https://doi.org/10.1103/PhysRevLett.44.1559
|
80 |
Parker L.. The atom as a probe of curved space-time. Gen. Relativ. Gravit., 1981, 13(4): 307
https://doi.org/10.1007/BF01025466
|
81 |
Parker L.. One-electron atom as a probe of spacetime curvature. Phys. Rev. D, 1980, 22(8): 1922
https://doi.org/10.1103/PhysRevD.22.1922
|
82 |
Parker L.. Self-forces and atoms in gravitational fields. Phys. Rev. D, 1981, 24(2): 535
https://doi.org/10.1103/PhysRevD.24.535
|
83 |
Pinto F.. Rydberg atoms in curved space-time. Phys. Rev. Lett., 1993, 70(25): 3839
https://doi.org/10.1103/PhysRevLett.70.3839
|
84 |
Parker L., Vollick D., Redmount I.. Atomic spectra in the gravitational field of a collapsing prolate spheroid. Phys. Rev. D, 1997, 56(4): 2113
https://doi.org/10.1103/PhysRevD.56.2113
|
85 |
de A. Marques G., B. Bezerra V.. Hydrogen atom in the gravitational fields of topological defects. Phys. Rev. D, 2002, 66(10): 105011
https://doi.org/10.1103/PhysRevD.66.105011
|
86 |
H. Zhao Z., X. Liu Y., G. Li X.. Energy-level shifts of a stationary hydrogen atom in a static external gravitational field with Schwarzschild geometry. Phys. Rev. D, 2007, 76(6): 064016
https://doi.org/10.1103/PhysRevD.76.064016
|
87 |
Carvalho J., Furtado C., Moraes F.. Dirac oscillator interacting with a topological defect. Phys. Rev. A, 2011, 84(3): 032109
https://doi.org/10.1103/PhysRevA.84.032109
|
88 |
Roura A.. Quantum probe of space-time curvature. Science, 2022, 375(6577): 142
https://doi.org/10.1126/science.abm6854
|
89 |
R. Caianiello E.. Is there a maximal acceleration. Lett. Nuovo Cimento, 1981, 32(3): 65
https://doi.org/10.1007/BF02745135
|
90 |
Lambiase G., Papini G., Scarpetta G.. Maximal acceleration corrections to the Lamb shift of hydrogen, deuterium and He+. Phys. Lett. A, 1998, 244(5): 349
https://doi.org/10.1016/S0375-9601(98)00364-8
|
91 |
Benedetto E., Feoli A.. Unruh temperature with maximal acceleration. Mod. Phys. Lett. A, 2015, 30(13): 1550075
https://doi.org/10.1142/S0217732315500753
|
92 |
Higuchi A., E. A. Matsas G., Sudarsky D.. Do static sources outside a Schwarzschild black hole radiate. Phys. Rev. D, 1997, 56(10): R6071
https://doi.org/10.1103/PhysRevD.56.R6071
|
93 |
C. B. Crispino L., R. Dolan S., S. Oliveira E.. Electromagnetic wave scattering by Schwarzschild black holes. Phys. Rev. Lett., 2009, 102(23): 231103
https://doi.org/10.1103/PhysRevLett.102.231103
|
94 |
F. B. Macedo C., C. S. Leite L., S. Oliveira E., R. Dolan S., C. B. Crispino L.. Absorption of planar massless scalar waves by Kerr black holes. Phys. Rev. D, 2013, 88(6): 064033
https://doi.org/10.1103/PhysRevD.88.064033
|
95 |
Cardoso V., Vicente R.. Moving black holes: Energy extraction, absorption cross section, and the ring of fire. Phys. Rev. D, 2019, 100(8): 084001
https://doi.org/10.1103/PhysRevD.100.084001
|
96 |
Brito R.Cardoso V.Pani P., Superradiance ‒ the 2020 Edition, Lect. Notes Phys. 906, 1 (2015), arXiv: 1501.06570 [gr-qc]
|
97 |
Bambi C.. Testing black hole candidates with electromagnetic radiation. Rev. Mod. Phys., 2017, 89(2): 025001
https://doi.org/10.1103/RevModPhys.89.025001
|
98 |
Passante R.. Dispersion interactions between neutral atoms and the quantum electrodynamical vacuum. Symmetry (Basel), 2018, 10(12): 735
https://doi.org/10.3390/sym10120735
|
99 |
P. Hobson M.P. Efstathiou G.N. Lasenby A., General Relativity: An Introduction for Physicists, 2006
|
100 |
W. Misner C.S. Thorne K.A. Wheeler J., Gravitation, San Francisco: W. H. Freeman, 1973
|
101 |
Weinberg S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, 1972
|
102 |
Socolovsky M., Rindler space and Unruh effect, arXiv: 1304.2833 [gr-qc] (2013)
|
103 |
Rindler W.. Kruskal space and the uniformly accelerated frame. Am. J. Phys., 1966, 34(12): 1174
https://doi.org/10.1119/1.1972547
|
104 |
Martin-Martinez E.C. Menicucci N., Entanglement in curved spacetimes and cosmology, Class. Quant. Grav. 31, 214001 (2014), arXiv: 1408.3420 [quant-ph]
|
105 |
D. Birrell N.C. W. Davies P., Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 1984
|
106 |
Jacobson T., Introduction to quantum fields in curved space- time and the hawking effect, in: Lectures on Quantum Gravity, edited by A. Gomberoff and D. Marolf, Springer US, Boston, MA, 2005, pp 39–89
|
107 |
E. Parker L.Toms D., Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity, Cambridge Mono-graphs on Mathematical Physics, Cambridge: Cambridge University Press, 2009
|
108 |
M. Carroll S., Spacetime and Geometry, Cambridge: Cambridge University Press, 2019
|
109 |
Almheiri A.Marolf D.Polchinski J.Sully J., Black holes: Complementarity or firewalls? J. High Energy Phys. 02, 062 (2013), arXiv: 1207.3123 [hep-th]
|
110 |
D. Mathur S., The information paradox: A pedagogical introduction, Class. Quant. Grav. 26, 224001 (2009), arXiv: 0909.1038 [hep-th]
|
111 |
M. Wilson C., Johansson G., Pourkabirian A., Simoen M., R. Johansson J., Duty T., Nori F., Delsing P.. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 2011, 479(7373): 376
https://doi.org/10.1038/nature10561
|
112 |
Lähteenmäki P., S. Paraoanu G., Hassel J., J. Hakonen P.. Dynamical Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. USA, 2013, 110(11): 4234
https://doi.org/10.1073/pnas.1212705110
|
113 |
C. Jaskula J., B. Partridge G., Bonneau M., Lopes R., Ruaudel J., Boiron D., I. Westbrook C.. Acoustic analog to the dynamical Casimir effect in a Bose‒Einstein condensate. Phys. Rev. Lett., 2012, 109(22): 220401
https://doi.org/10.1103/PhysRevLett.109.220401
|
114 |
T. Jaekel M.Reynaud S., Movement and fluctuations of the vacuum, Rep. Prog. Phys. 60, 863 (1997), arXiv: quant-ph/9706035
|
115 |
V. Dodonov V.. Dynamical Casimir effect: Some theoretical aspects. J. Phys. Conf. Ser., 2009, 161: 012027
https://doi.org/10.1088/1742-6596/161/1/012027
|
116 |
Nicolai E. XIX. On a dynamical illustration of the pressure of radiation, Lond. Edinb. Dublin Philos. Mag. J. Sci. 49(289), 171 (1925)
|
117 |
E. Lamb W., C. Retherford R.. Fine structure of the hydrogen atom by a microwave method. Phys. Rev., 1947, 72(3): 241
https://doi.org/10.1103/PhysRev.72.241
|
118 |
A. Welton T.. Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field. Phys. Rev., 1948, 74(9): 1157
https://doi.org/10.1103/PhysRev.74.1157
|
119 |
R. Ackerhalt J., L. Knight P., H. Eberly J.. Radiation reaction and radiative frequency shifts. Phys. Rev. Lett., 1973, 30(10): 456
https://doi.org/10.1103/PhysRevLett.30.456
|
120 |
W. Milonni P., R. Ackerhalt J., A. Smith W.. Interpretation of radiative corrections in spontaneous emission. Phys. Rev. Lett., 1973, 31(15): 958
https://doi.org/10.1103/PhysRevLett.31.958
|
121 |
Audretsch J., Müller R.. Spontaneous excitation of an accelerated atom: The contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A, 1994, 50(2): 1755
https://doi.org/10.1103/PhysRevA.50.1755
|
122 |
Dalibard J., Dupont-Roc J., Cohen-Tannoudji C.. Vacuum fluctuations and radiation reaction: Identification of their respective contributions. J. Phys. (Paris), 1982, 43(11): 1617
https://doi.org/10.1051/jphys:0198200430110161700
|
123 |
Dalibard J., Dupont-Roc J., Cohen-Tannoudji C.. Dynamics of a small system coupled to a reservoir: Reservoir fluctuations and self-reaction. J. Phys. (Paris), 1984, 45(4): 637
https://doi.org/10.1051/jphys:01984004504063700
|
124 |
Hawking S.Israel W., General Relativity: An Einstein Centenary Survey, 2010
|
125 |
Zhu Z., W. Yu H., Lu S.. Spontaneous excitation of an accelerated hydrogen atom coupled with electromagnetic vacuum fluctuations. Phys. Rev. D, 2006, 73(10): 107501
https://doi.org/10.1103/PhysRevD.73.107501
|
126 |
Chen J., Hu J., Yu H.. Spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations. Ann. Phys., 2015, 353: 317
https://doi.org/10.1016/j.aop.2014.12.003
|
127 |
Zhou W.. Is the Fulling–Davies–Unruh effect valid for the case of an atom coupled to quantum electromagnetic field. Mod. Phys. Lett. A, 2016, 31(34): 1650189
https://doi.org/10.1142/S0217732316501893
|
128 |
Zhou W., Yu H.. Spontaneous excitation of a uniformly accelerated atom coupled to vacuum Dirac field fluctuations. Phys. Rev. A, 2012, 86(3): 033841
https://doi.org/10.1103/PhysRevA.86.033841
|
129 |
Langlois P.. Causal particle detectors and topology. Ann. Phys., 2006, 321(9): 2027
https://doi.org/10.1016/j.aop.2006.01.013
|
130 |
Rizzuto L., Spagnolo S.. Energy-level shifts of a uniformly accelerated atom between two reflecting plates. Phys. Scr., 2011, 2011: 014021
https://doi.org/10.1088/0031-8949/2011/T143/014021
|
131 |
Zhang A.. The formalism for energy changing rate of an accelerated atom coupled with electromagnetic vacuum fluctuations. Found. Phys., 2016, 46(9): 1199
https://doi.org/10.1007/s10701-016-0016-9
|
132 |
Barton G., Calogeracos A.. Transition rates in atoms constrained to move relativistically. J. Opt. B, 2005, 7(3): S21
https://doi.org/10.1088/1464-4266/7/3/003
|
133 |
Barton G., Calogeracos A.. Acceleration-induced radiative excitation of ground-state atoms. J. Phys. A Math. Theor., 2008, 41(16): 164030
https://doi.org/10.1088/1751-8113/41/16/164030
|
134 |
Calogeracos A.. Spontaneous excitation of an accelerated atom: (i) Acceleration of infinite duration (the Unruh effect), (ii) acceleration of finite duration. Results Phys., 2016, 6: 377
https://doi.org/10.1016/j.rinp.2016.05.008
|
135 |
M. Raimond J., Brune M., Haroche S.. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 2001, 73(3): 565
https://doi.org/10.1103/RevModPhys.73.565
|
136 |
Menezes G., F. Svaiter N.. Radiative processes of uniformly accelerated entangled atoms. Phys. Rev. A, 2016, 93(5): 052117
https://doi.org/10.1103/PhysRevA.93.052117
|
137 |
Yu T., H. Eberly J.. Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett., 2004, 93(14): 140404
https://doi.org/10.1103/PhysRevLett.93.140404
|
138 |
J. G. Dueñas, G. Menezes , N. F. Svaiter. E. Arias, Boundary effects on radiative processes of two entangled atoms, J. High Energy Phys. 07, 147 (2016), arXiv: 1510.00047 [quant-ph]
|
139 |
Zhang C., Zhou W.. Radiative processes of two accelerated entangled atoms near boundaries. Symmetry (Basel), 2019, 11(12): 1515
https://doi.org/10.3390/sym11121515
|
140 |
Menezes G., F. Svaiter N.. Vacuum fluctuations and radiation reaction in radiative processes of entangled states. Phys. Rev. A, 2015, 92(6): 062131
https://doi.org/10.1103/PhysRevA.92.062131
|
141 |
Zhou W., Yu H.. Radiation-reaction-induced transitions of two maximally entangled atoms in noninertial motion. Phys. Rev. D, 2020, 101(2): 025009
https://doi.org/10.1103/PhysRevD.101.025009
|
142 |
Zhou W., Yu H.. Collective transitions of two entangled atoms and the Fulling‒Davies‒Unruh effect. Phys. Rev. D, 2020, 101(8): 085009
https://doi.org/10.1103/PhysRevD.101.085009
|
143 |
Menezes G., F. Svaiter N.. Radiative processes of uniformly accelerated entangled atoms. Phys. Rev. A, 2016, 93(5): 052117
https://doi.org/10.1103/PhysRevA.93.052117
|
144 |
Passante R.. Radiative level shifts of an accelerated hydrogen atom and the Unruh effect in quantum electrodynamics. Phys. Rev. A, 1998, 57(3): 1590
https://doi.org/10.1103/PhysRevA.57.1590
|
145 |
Rizzuto L., Spagnolo S.. Lamb shift of a uniformly accelerated hydrogen atom in the presence of a conducting plate. Phys. Rev. A, 2009, 79(6): 062110
https://doi.org/10.1103/PhysRevA.79.062110
|
146 |
Audretsch J.Mueller R.Holzmann M., Generalized Unruh effect and Lamb shift for atoms on arbitrary stationary trajectories, Class. Quant. Grav. 12, 2927 (1995), arXiv: quant-ph/9510025
|
147 |
Audretsch J., Müller R.. Radiative energy shifts of an accelerated two-level system. Phys. Rev. A, 1995, 52(1): 629
https://doi.org/10.1103/PhysRevA.52.629
|
148 |
P. Marzlin K., Audretsch J.. States insensitive to the Unruh effect in multilevel detectors. Phys. Rev. D, 1998, 57(2): 1045
https://doi.org/10.1103/PhysRevD.57.1045
|
149 |
Audretsch J., P. Marzlin K.. Ramsey fringes in atomic interferometry: Measurability of the influence of space-time curvature. Phys. Rev. A, 1994, 50(3): 2080
https://doi.org/10.1103/PhysRevA.50.2080
|
150 |
J. Olmo G.. Hydrogen atom in Palatini theories of gravity. Phys. Rev. D, 2008, 77(8): 084021
https://doi.org/10.1103/PhysRevD.77.084021
|
151 |
Singh D.Mobed N., Local space-time curvature effects on quantum orbital angular momentum, Class. Quant. Grav. 28, 105024 (2011), arXiv: 1101.1030 [gr-qc]
|
152 |
K. Wong L., C. Davis A.. One-electron atoms in screened modified gravity. Phys. Rev. D, 2017, 95(10): 104010
https://doi.org/10.1103/PhysRevD.95.104010
|
153 |
Brax P., C. Davis A., Elder B., K. Wong L.. Constraining screened fifth forces with the electron magnetic moment. Phys. Rev. D, 2018, 97(8): 084050
https://doi.org/10.1103/PhysRevD.97.084050
|
154 |
O. Sabulsky D., Dutta I., A. Hinds E., Elder B., Burrage C., J. Copeland E.. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett., 2019, 123(6): 061102
https://doi.org/10.1103/PhysRevLett.123.061102
|
155 |
W. Sciama D., Candelas P., Deutsch D.. Quantum field theory, horizons and thermodynamics. Adv. Phys., 1981, 30(3): 327
https://doi.org/10.1080/00018738100101457
|
156 |
B. Hartle J., W. Hawking S.. Path-integral derivation of black-hole radiance. Phys. Rev. D, 1976, 13(8): 2188
https://doi.org/10.1103/PhysRevD.13.2188
|
157 |
Papini G.. Maximal acceleration and radiative processes. Mod. Phys. Lett. A, 2015, 30(31): 1550166
https://doi.org/10.1142/S0217732315501667
|
158 |
Higuchi A., E. A. Matsas G., Sudarsky D.. Interaction of Hawking radiation with static sources outside a Schwarzschild black hole. Phys. Rev. D, 1998, 58(10): 104021
https://doi.org/10.1103/PhysRevD.58.104021
|
159 |
C. B. Crispino L.Higuchi A.E. A. Matsas G., Quantization of the electromagnetic field outside static black holes and its application to low-energy phenomena, Phys. Rev. D 63, 124008 (2001), arXiv: gr-qc/0011070 [Erratum: Phys. Rev. D 80, 029906 (2009)]
|
160 |
Castineiras J., P. Costa e Silva I., E. A. Matsas G.. Do static sources respond to massive scalar particles from the Hawking radiation as uniformly accelerated ones do in the inertial vacuum. Phys. Rev. D, 2003, 67(6): 067502
https://doi.org/10.1103/PhysRevD.67.067502
|
161 |
M. Christensen S., A. Fulling S.. Trace anomalies and the Hawking effect. Phys. Rev. D, 1977, 15(8): 2088
https://doi.org/10.1103/PhysRevD.15.2088
|
162 |
Candelas P.. Vacuum polarization in Schwarzschild spacetime. Phys. Rev. D, 1980, 21(8): 2185
https://doi.org/10.1103/PhysRevD.21.2185
|
163 |
W. Yu H., Zhou W.. Do static atoms outside a Schwarzschild black hole spontaneously excite. Phys. Rev. D, 2007, 76(4): 044023
https://doi.org/10.1103/PhysRevD.76.044023
|
164 |
Zhou W.Yu H., Spontaneous excitation of a static multilevel atom coupled with electromagnetic vacuum fluctuations in Schwarzschild spacetime, Class. Quant. Grav. 29, 085003 (2012), arXiv: 1203.5867 [gr-qc]
|
165 |
W. Yu H., Zhou W.. Relationship between Hawking radiation from black holes and spontaneous excitation of atoms. Phys. Rev. D, 2007, 76(2): 027503
https://doi.org/10.1103/PhysRevD.76.027503
|
166 |
Cliché M., Kempf A.. Vacuum entanglement enhancement by a weak gravitational field. Phys. Rev. D, 2011, 83(4): 045019
https://doi.org/10.1103/PhysRevD.83.045019
|
167 |
Menezes G.. Radiative processes of two entangled atoms outside a Schwarzschild black hole. Phys. Rev. D, 2016, 94(10): 105008
https://doi.org/10.1103/PhysRevD.94.105008
|
168 |
Chen Y., Hu J., Yu H.. Collective transitions of two entangled atoms near a Schwarzschild black hole. Phys. Rev. D, 2023, 107(2): 025015
https://doi.org/10.1103/PhysRevD.107.025015
|
169 |
Yu H., W. Yu H., Zhu Z.. Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum. Phys. Rev. D, 2006, 74(4): 044032
https://doi.org/10.1103/PhysRevD.74.044032
|
170 |
Visser M., The Kerr spacetime: A brief introduction, in: Kerr fest: Black holes in astrophysics, general relativity and quantum gravity, 2007, arXiv: 0706.0622 [gr-qc]
|
171 |
Jacobson T.. Note on Hartle‒Hawking vacua. Phys. Rev. D, 1994, 50(10): R6031
https://doi.org/10.1103/PhysRevD.50.R6031
|
172 |
Menezes G., Spontaneous excitation of an atom in a Kerr spacetime, Phys. Rev. D 95, 065015 (2017), arXiv: 1611.00056 [gr-qc] [Erratum: Phys. Rev. D 97, 029901 (2018)]
|
173 |
P. Frolov V., S. Thorne K.. Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole. Phys. Rev. D, 1989, 39(8): 2125
https://doi.org/10.1103/PhysRevD.39.2125
|
174 |
C. Ottewill A., Winstanley E.. Renormalized stress tensor in Kerr space-time: General results. Phys. Rev. D, 2000, 62(8): 084018
https://doi.org/10.1103/PhysRevD.62.084018
|
175 |
A. Starobinskii A.. Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”. Sov. Phys. JETP, 1973, 64: 48
|
176 |
G. Unruh W.. Second quantization in the Kerr metric. Phys. Rev. D, 1974, 10(10): 3194
https://doi.org/10.1103/PhysRevD.10.3194
|
177 |
L. Matacz A., C. W. Davies P., C. Ottewill A.. Quantum vacuum instability near rotating stars. Phys. Rev. D, 1993, 47(4): 1557
https://doi.org/10.1103/PhysRevD.47.1557
|
178 |
Menezes G.. Entanglement dynamics in a Kerr spacetime. Phys. Rev. D, 2018, 97(8): 085021
https://doi.org/10.1103/PhysRevD.97.085021
|
179 |
Liu X., Tian Z., Wang J., Jing J.. Radiative process of two entanglement atoms in de Sitter spacetime. Phys. Rev. D, 2018, 97(10): 105030
https://doi.org/10.1103/PhysRevD.97.105030
|
180 |
Zhou W., W. Yu H.. Lamb shift for static atoms outside a Schwarzschild black hole. Phys. Rev. D, 2010, 82(10): 104030
https://doi.org/10.1103/PhysRevD.82.104030
|
181 |
Meschede D., Jhe W., A. Hinds E.. Radiative properties of atoms near a conducting plane: An old problem in a new light. Phys. Rev. A, 1990, 41(3): 1587
https://doi.org/10.1103/PhysRevA.41.1587
|
182 |
W. Gibbons G., W. Hawking S.. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D, 1977, 15(10): 2738
https://doi.org/10.1103/PhysRevD.15.2738
|
183 |
Zhou W., W. Yu H.. Lamb shift in de Sitter spacetime. Phys. Rev. D, 2010, 82(12): 124067
https://doi.org/10.1103/PhysRevD.82.124067
|
184 |
Zhou W.Yu H., Can spacetime curvature induced corrections to Lamb shift be observable? J. High Energy Phys. 10, 172 (2012), arXiv: 1204.2015 [gr-qc]
|
185 |
Cheng S., Hu J., Yu H.. Spontaneous excitation of an accelerated atom coupled with quantum fluctuations of spacetime. Phys. Rev. D, 2019, 100(2): 025010
https://doi.org/10.1103/PhysRevD.100.025010
|
186 |
Cai H., Ren Z.. Radiative properties of an inertial multilevel atom in a compactified Minkowski spacetime. Class. Quantum Gravity, 2019, 36(16): 165001
https://doi.org/10.1088/1361-6382/ab30d0
|
187 |
Hu J., Yu H.. Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A, 2015, 91(1): 012327
https://doi.org/10.1103/PhysRevA.91.012327
|
188 |
Chen Y., Hu J., Yu H.. Entanglement generation for uniformly accelerated atoms assisted by environment-induced interatomic interaction and the loss of the anti-Unruh effect. Phys. Rev. D, 2022, 105(4): 045013
https://doi.org/10.1103/PhysRevD.105.045013
|
189 |
Zhou Y.Hu J.Yu H., Entanglement dynamics for Unruh‒DeWitt detectors interacting with massive scalar fields: The Unruh and anti-Unruh effects, J. High Energy Phys. 09, 088 (2021), arXiv: 2105.14735 [gr-qc]
|
190 |
S. Soares M., Menezes G., F. Svaiter N.. Entanglement dynamics: Generalized master equation for uniformly accelerated two-level systems. Phys. Rev. A, 2022, 106(6): 062440
https://doi.org/10.1103/PhysRevA.106.062440
|
191 |
Hu J.Yu H., Entanglement generation outside a Schwarzschild black hole and the Hawking effect, J. High Energy Phys. 08, 137 (2011), arXiv: 1109.0335 [hep-th]
|
192 |
He P., Yu H., Hu J.. Entanglement dynamics for static two-level atoms in cosmic string spacetime. Eur. Phys. J. C, 2020, 80(2): 134
https://doi.org/10.1140/epjc/s10052-020-7663-x
|
193 |
Huang Z.. Quantum entanglement for atoms coupling to fluctuating electromagnetic field in the cosmic string spacetime. Quantum Inform. Process., 2021, 20(5): 173
https://doi.org/10.1007/s11128-021-03119-8
|
194 |
Liu X.Tian Z.Jing J., Entanglement dynamics in κ-deformed spacetime, arXiv: 2309.08135 [hep-th] (2023)
|
195 |
Kukita S.Nambu Y., Entanglement dynamics in de Sitter spacetime, Class. Quant. Grav. 34, 235010 (2017), arXiv: 1706.09175 [gr-qc]
|
196 |
Yan J.Zhang B., Effect of spacetime dimensions on quantum entanglement between two uniformly accelerated atoms, J. High Energy Phys. 10, 051 (2022), arXiv: 2206.13681 [gr-qc]
|
197 |
Yan J.Zhang B.Cai Q., Reveal the lost entanglement for accelerated atoms in the high-dimensional spacetime, arXiv: 2311.04610 [hep-th] (2023)
|
198 |
Salam A., Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions, Wiley Publishing, 2009
|
199 |
Salam A.. Molecular quantum electrodynamics in the Heisenberg picture: A field theoretic viewpoint. Int. Rev. Phys. Chem., 2008, 27(3): 405
https://doi.org/10.1080/01442350802045206
|
200 |
Fassioli F., Olaya-Castro A.. Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New J. Phys., 2010, 12(8): 085006
https://doi.org/10.1088/1367-2630/12/8/085006
|
201 |
Preto J., Pettini M.. Resonant long-range interactions between polar macromolecules. Phys. Lett. A, 2013, 377(8): 587
https://doi.org/10.1016/j.physleta.2012.12.034
|
202 |
Galego J., Climent C., J. Garcia-Vidal F., Feist J.. Cavity Casimir‒Polder forces and their effects in ground-state chemical reactivity. Phys. Rev. X, 2019, 9(2): 021057
https://doi.org/10.1103/PhysRevX.9.021057
|
203 |
Fiscelli G., Rizzuto L., Passante R.. Dispersion interaction between two hydrogen atoms in a static electric field. Phys. Rev. Lett., 2020, 124(1): 013604
https://doi.org/10.1103/PhysRevLett.124.013604
|
204 |
L. Andrews D., P. Craig D., Thirunamachandran T.. Molecular quantum electrodynamics in chemical physics. Int. Rev. Phys. Chem., 1989, 8(4): 339
https://doi.org/10.1080/01442358909353233
|
205 |
B. Casimir H., Polder D.. The influence of retardation on the London-van der Waals forces. Phys. Rev., 1948, 73(4): 360
https://doi.org/10.1103/PhysRev.73.360
|
206 |
F. Babb J., in: Advances in Atomic, Molecular, and Optical Physics, Elsevier, 2010, pp 1–20
|
207 |
Zhang J., Yu H.. Casimir‒Polder-like force on an atom outside a Schwarzschild black hole. Phys. Rev. A, 2011, 84(4): 042103
https://doi.org/10.1103/PhysRevA.84.042103
|
208 |
Zhang J., Yu H.. Far-zone interatomic Casimir‒Polder potential between two ground-state atoms outside a Schwarzschild black hole. Phys. Rev. A, 2013, 88(6): 064501
https://doi.org/10.1103/PhysRevA.88.064501
|
209 |
Noto A.Passante R., van der Waals interaction energy between two atoms moving with uniform acceleration, Phys. Rev. D 88(2), 025041 (2013)
|
210 |
Marino J., Noto A., Passante R.. Thermal and nonthermal signatures of the Unruh effect in Casimir‒Polder forces. Phys. Rev. Lett., 2014, 113(2): 020403
https://doi.org/10.1103/PhysRevLett.113.020403
|
211 |
Barton G.. Long-range Casimir‒Polder‒Feinberg‒Sucher intermolecular potential at nonzero temperature. Phys. Rev. A, 2001, 64(3): 032102
https://doi.org/10.1103/PhysRevA.64.032102
|
212 |
Singleton D., Wilburn S., radiation Hawking. Unruh radiation, and the equivalence principle. Phys. Rev. Lett., 2011, 107(8): 081102
https://doi.org/10.1103/PhysRevLett.107.081102
|
213 |
Smerlak M., Singh S.. New perspectives on Hawking radiation. Phys. Rev. D, 2013, 88(10): 104023
https://doi.org/10.1103/PhysRevD.88.104023
|
214 |
Hodgkinson L., Louko J., C. Ottewill A.. Static detectors and circular‒geodesic detectors on the Schwarzschild black hole. Phys. Rev. D, 2014, 89(10): 104002
https://doi.org/10.1103/PhysRevD.89.104002
|
215 |
Singha C.. Remarks on distinguishability of Schwarzschild spacetime and thermal Minkowski spacetime using Resonance Casimir–Polder interaction. Mod. Phys. Lett. A, 2019, 35(2): 1950356
https://doi.org/10.1142/S0217732319503565
|
216 |
Menezes G., Kiefer C., Marino J.. Thermal and nonthermal scaling of the Casimir‒Polder interaction in a black hole spacetime. Phys. Rev. D, 2017, 95(8): 085014
https://doi.org/10.1103/PhysRevD.95.085014
|
217 |
H. Ford L., P. Hertzberg M., Karouby J.. Quantum gravitational force between polarizable objects. Phys. Rev. Lett., 2016, 116(15): 151301
https://doi.org/10.1103/PhysRevLett.116.151301
|
218 |
Wu P., Hu J., Yu H.. Quantum correction to classical gravitational interaction between two polarizable objects. Phys. Lett. B, 2016, 763: 40
https://doi.org/10.1016/j.physletb.2016.10.025
|
219 |
Hu J., Yu H.. Gravitational Casimir–Polder effect. Phys. Lett. B, 2017, 767: 16
https://doi.org/10.1016/j.physletb.2017.01.038
|
220 |
Huang Z.. Quantum correlation affected by quantum gravitational fluctuation. Class. Quantum Gravity, 2019, 36(15): 155001
https://doi.org/10.1088/1361-6382/ab2e41
|
221 |
Hu Y., Hu J., Yu H.. Quantum gravitational interaction between two objects induced by external gravitational radiation fields. Phys. Rev. D, 2020, 101(6): 066015
https://doi.org/10.1103/PhysRevD.101.066015
|
222 |
Zhou W., Cheng S., Yu H.. Interatomic interaction of two ground-state atoms in vacuum: Contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A, 2021, 103(1): 012227
https://doi.org/10.1103/PhysRevA.103.012227
|
223 |
Cheng S., Zhou W., Yu H.. Probing long-range properties of vacuum altered by uniformly accelerating two spatially separated Unruh‒DeWitt detectors. Phys. Lett. B, 2022, 834: 137440
https://doi.org/10.1016/j.physletb.2022.137440
|
224 |
Zhou W., Cheng S., Yu H.. Understanding thermal nature of de Sitter spacetime via inter-detector interaction. Phys. Lett. B, 2023, 844: 138097
https://doi.org/10.1016/j.physletb.2023.138097
|
225 |
H. Dicke R.. Coherence in spontaneous radiation processes. Phys. Rev., 1954, 93(1): 99
https://doi.org/10.1103/PhysRev.93.99
|
226 |
O. Scully M., S. Fry E., H. R. Ooi C., Wódkiewicz K.. Directed spontaneous emission from an extended ensemble of N atoms: Timing is everything. Phys. Rev. Lett., 2006, 96(1): 010501
https://doi.org/10.1103/PhysRevLett.96.010501
|
227 |
H. Raymond Ooi C., Rostovtsev Y., O. Scully M.. Two-photon correlation of radiation emitted by two excited atoms: Detailed analysis of a Dicke problem. Laser Phys., 2007, 17(7): 956
https://doi.org/10.1134/S1054660X07070092
|
228 |
O. Scully M.. Collective lamb shift in single photon Dicke superradiance. Phys. Rev. Lett., 2009, 102(14): 143601
https://doi.org/10.1103/PhysRevLett.102.143601
|
229 |
Juzeliūnas G.L. Andrews D., Quantum electrodynamics of resonance energy transfer, in: Advances in Chemical Physics, John Wiley & Sons, 2000, pp 357–410
|
230 |
D. Phillips W.. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 1998, 70(3): 721
https://doi.org/10.1103/RevModPhys.70.721
|
231 |
K. Brennen G., H. Deutsch I., S. Jessen P.. Entangling dipole‒dipole interactions for quantum logic with neutral atoms. Phys. Rev. A, 2000, 61(6): 062309
https://doi.org/10.1103/PhysRevA.61.062309
|
232 |
R. Berman P.. Interaction energy of nonidentical atoms. Phys. Rev. A, 2015, 91(4): 042127
https://doi.org/10.1103/PhysRevA.91.042127
|
233 |
W. Milonni P., M. H. Rafsanjani S.. Distance dependence of two-atom dipole interactions with one atom in an excited state. Phys. Rev. A, 2015, 92(6): 062711
https://doi.org/10.1103/PhysRevA.92.062711
|
234 |
Donaire M., Guérout R., Lambrecht A.. Quasiresonant van der Waals interaction between nonidentical atoms. Phys. Rev. Lett., 2015, 115(3): 033201
https://doi.org/10.1103/PhysRevLett.115.033201
|
235 |
D. Jentschura U., M. Adhikari C., Debierre V.. Virtual resonant emission and oscillatory long-range tails in van der Waals interactions of excited states: QED treatment and applications. Phys. Rev. Lett., 2017, 118(12): 123001
https://doi.org/10.1103/PhysRevLett.118.123001
|
236 |
Rizzuto L., Lattuca M., Marino J., Noto A., Spagnolo S., Zhou W., Passante R.. Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms. Phys. Rev. A, 2016, 94(1): 012121
https://doi.org/10.1103/PhysRevA.94.012121
|
237 |
Zhou W., Passante R., Rizzuto L.. Resonance interaction energy between two accelerated identical atoms in a coaccelerated frame and the Unruh effect. Phys. Rev. D, 2016, 94(10): 105025
https://doi.org/10.1103/PhysRevD.94.105025
|
238 |
Zhou W., Passante R., Rizzuto L.. Resonance dipole–dipole interaction between two accelerated atoms in the presence of a reflecting plane boundary. Symmetry (Basel), 2018, 10(6): 185
https://doi.org/10.3390/sym10060185
|
239 |
Zhou W., Yu H.. Resonance interatomic energy in a Schwarzschild spacetime. Phys. Rev. D, 2017, 96(4): 045018
https://doi.org/10.1103/PhysRevD.96.045018
|
240 |
Zhou W., Yu H.. Boundarylike behaviors of the resonance interatomic energy in a cosmic string spacetime. Phys. Rev. D, 2018, 97(4): 045007
https://doi.org/10.1103/PhysRevD.97.045007
|
241 |
D. Nation P., R. Johansson J., P. Blencowe M., Nori F.. Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys., 2012, 84(1): 1
https://doi.org/10.1103/RevModPhys.84.1
|
242 |
Haro J., Elizalde E.. Hamiltonian approach to the dynamical Casimir effect. Phys. Rev. Lett., 2006, 97(13): 130401
https://doi.org/10.1103/PhysRevLett.97.130401
|
243 |
F. Mundarain D., A. Maia Neto P.. Quantum radiation in a plane cavity with moving mirrors. Phys. Rev. A, 1998, 57(2): 1379
https://doi.org/10.1103/PhysRevA.57.1379
|
244 |
A. R. Dalvit D., D. Mazzitelli F.. Creation of photons in an oscillating cavity with two moving mirrors. Phys. Rev. A, 1999, 59(4): 3049
https://doi.org/10.1103/PhysRevA.59.3049
|
245 |
T. Alves D., R. Granhen E., P. Pires W.. Quantum radiation reaction force on a one-dimensional cavity with two relativistic moving mirrors. Phys. Rev. D, 2010, 82(4): 045028
https://doi.org/10.1103/PhysRevD.82.045028
|
246 |
D. Fosco C., Giraldo A., D. Mazzitelli F.. Dynamical Casimir effect for semitransparent mirrors. Phys. Rev. D, 2017, 96(4): 045004
https://doi.org/10.1103/PhysRevD.96.045004
|
247 |
M. E. Souza R., Impens F., A. M. Neto P.. Microscopic dynamical Casimir effect. Phys. Rev. A, 2018, 97(3): 032514
https://doi.org/10.1103/PhysRevA.97.032514
|
248 |
Lo L., K. Law C.. Quantum radiation from a shaken two-level atom in vacuum. Phys. Rev. A, 2018, 98(6): 063807
https://doi.org/10.1103/PhysRevA.98.063807
|
249 |
Lo L., T. Fong P., K. Law C.. Dynamical Casimir effect in resonance fluorescence. Phys. Rev. A, 2020, 102(3): 033703
https://doi.org/10.1103/PhysRevA.102.033703
|
250 |
H. Brevik I., A. Milton K., D. Odintsov S., E. Osetrin K.. Dynamical Casimir effect and quantum cosmology. Phys. Rev. D, 2000, 62(6): 064005
https://doi.org/10.1103/PhysRevD.62.064005
|
251 |
Wittemer M., Hakelberg F., Kiefer P., P. Schröder J., Fey C., Schützhold R., Warring U., Schaetz T.. Phonon pair creation by inflating quantum fluctuations in an ion trap. Phys. Rev. Lett., 2019, 123(18): 180502
https://doi.org/10.1103/PhysRevLett.123.180502
|
252 |
A. R. Dalvit D., A. Maia Neto P.. Decoherence via the dynamical Casimir effect. Phys. Rev. Lett., 2000, 84(5): 798
https://doi.org/10.1103/PhysRevLett.84.798
|
253 |
A. Andreata M., V. Dodonov V.. Dynamics of entanglement between field modes in a one-dimensional cavity with a vibrating boundary. J. Opt. B, 2005, 7: S11
https://doi.org/10.1088/1464-4266/7/3/002
|
254 |
Cong W.Tjoa E.B. Mann R., Entanglement harvesting with moving mirrors, J. High Energy Phys. 06, 021 (2019), arXiv: 1810.07359 [quant-ph] [Erratum: J. High Energy Phys. 07, 051 (2019)]
|
255 |
S. Ben-Benjamin J., O. Scully M., A. Fulling S., M. Lee D., N. Page D., A. Svidzinsky A., S. Zubairy M., J. Duff M., Glauber R., P. Schleich W., G. Unruh W.. Unruh acceleration radiation revisited. Int. J. Mod. Phys. A, 2019, 34(28): 1941005
https://doi.org/10.1142/S0217751X19410057
|
256 |
A. Svidzinsky A., S. Ben-Benjamin J., A. Fulling S., N. Page D.. Excitation of an atom by a uniformly accelerated mirror through virtual transitions. Phys. Rev. Lett., 2018, 121(7): 071301
https://doi.org/10.1103/PhysRevLett.121.071301
|
257 |
A. Svidzinsky A.. Excitation of a uniformly moving atom through vacuum fluctuations. Phys. Rev. Res., 2019, 1(3): 033027
https://doi.org/10.1103/PhysRevResearch.1.033027
|
258 |
A. Fulling S., H. Wilson J.. The equivalence principle at work in radiation from unaccelerated atoms and mirrors. Phys. Scr., 2019, 94(1): 014004
https://doi.org/10.1088/1402-4896/aaecaa
|
259 |
R. R. Good M., Quantized scalar fields under the influence of moving mirror and anisotropic curved spacetime, Ph. D. thesis, North Carolina University, 2011
|
260 |
D. Carlitz R., S. Willey R.. Reflections on moving mirrors. Phys. Rev. D, 1987, 36(8): 2327
https://doi.org/10.1103/PhysRevD.36.2327
|
261 |
Haro J., Elizalde E.. Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror. Phys. Rev. D, 2008, 77(4): 045011
https://doi.org/10.1103/PhysRevD.77.045011
|
262 |
Nicolaevici N.. Semitransparency effects in the moving mirror model for Hawking radiation. Phys. Rev. D, 2009, 80(12): 125003
https://doi.org/10.1103/PhysRevD.80.125003
|
263 |
R. Walker W., C. W. Davies P.. An exactly soluble moving-mirror problem. J. Phys. Math. Gen., 1982, 15(9): L477
https://doi.org/10.1088/0305-4470/15/9/008
|
264 |
R. R. Good M., R. Anderson P., R. Evans C.. Time dependence of particle creation from accelerating mirrors. Phys. Rev. D, 2013, 88(2): 025023
https://doi.org/10.1103/PhysRevD.88.025023
|
265 |
R. R. Good M., R. Anderson P., R. Evans C.. Mirror reflections of a black hole. Phys. Rev. D, 2016, 94(6): 065010
https://doi.org/10.1103/PhysRevD.94.065010
|
266 |
R. R. Good M., V. Linder E.. Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect. Phys. Rev. D, 2017, 96(12): 125010
https://doi.org/10.1103/PhysRevD.96.125010
|
267 |
R. R. Good M., V. Linder E., Wilczek F.. Finite thermal particle creation of Casimir light. Mod. Phys. Lett. A, 2020, 35(3): 2040006
https://doi.org/10.1142/S0217732320400064
|
268 |
Mintz B., Farina C., A. Maia Neto P., B. Rodrigues R.. Particle creation by a moving boundary with a Robin boundary condition. J. Phys. Math. Gen., 2006, 39(36): 11325
https://doi.org/10.1088/0305-4470/39/36/013
|
269 |
Barton G., Calogeracos A.. On the quantum electrodynamics of a dispersive mirror. Ann. Phys., 1995, 238(2): 227
https://doi.org/10.1006/aphy.1995.1021
|
270 |
Calogeracos A., Barton G.. On the quantum electrodynamics of a dispersive mirror. Ann. Phys., 1995, 238(2): 268
https://doi.org/10.1006/aphy.1995.1022
|
271 |
Golestanian R., Kardar M.. Mechanical response of vacuum. Phys. Rev. Lett., 1997, 78(18): 3421
https://doi.org/10.1103/PhysRevLett.78.3421
|
272 |
Golestanian R., Kardar M.. Path-integral approach to the dynamic Casimir effect with fluctuating boundaries. Phys. Rev. A, 1998, 58(3): 1713
https://doi.org/10.1103/PhysRevA.58.1713
|
273 |
Sopova V., H. Ford L.. Energy density in the Casimir effect. Phys. Rev. D, 2002, 66(4): 045026
https://doi.org/10.1103/PhysRevD.66.045026
|
274 |
R. Galley C., O. Behunin R., L. Hu B.. Oscillator-field model of moving mirrors in quantum optomechanics. Phys. Rev. A, 2013, 87(4): 043832
https://doi.org/10.1103/PhysRevA.87.043832
|
275 |
Wang Q., G. Unruh W.. Motion of a mirror under infinitely fluctuating quantum vacuum stress. Phys. Rev. D, 2014, 89(8): 085009
https://doi.org/10.1103/PhysRevD.89.085009
|
276 |
Wang Q., G. Unruh W.. Mirror moving in quantum vacuum of a massive scalar field. Phys. Rev. D, 2015, 92(6): 063520
https://doi.org/10.1103/PhysRevD.92.063520
|
277 |
R. Walker W.. Particle and energy creation by moving mirrors. Phys. Rev. D, 1985, 31(4): 767
https://doi.org/10.1103/PhysRevD.31.767
|
278 |
Fabbri A.Navarro-Salas J., Modeling Black Hole Evaporation, 2005
|
279 |
Sorge F.. Casimir effect in a weak gravitational field. Class. Quantum Gravity, 2005, 22(23): 5109
https://doi.org/10.1088/0264-9381/22/23/012
|
280 |
Sorge F.. Casimir effect in a weak gravitational field: Schwinger’s approach. Class. Quantum Gravity, 2019, 36(23): 235006
https://doi.org/10.1088/1361-6382/ab4def
|
281 |
C. Celeri L.Pascoal F.H. Y. Moussa M., Action of the gravitational field on the dynamical Casimir effect, Class. Quant. Grav. 26, 105014 (2009), arXiv: 0809.3706 [quant-ph]
|
282 |
Rätzel D., Schneiter F., Braun D., Bravo T., Howl R., P. E. Lock M., Fuentes I.. Frequency spectrum of an optical resonator in a curved spacetime. New J. Phys., 2018, 20(5): 053046
https://doi.org/10.1088/1367-2630/aac0ac
|
283 |
Sorge F., H. Wilson J.. Casimir effect in free fall towards a Schwarzschild black hole. Phys. Rev. D, 2019, 100(10): 105007
https://doi.org/10.1103/PhysRevD.100.105007
|
284 |
H. Wilson J., Sorge F., A. Fulling S.. Tidal and nonequilibrium Casimir effects in free fall. Phys. Rev. D, 2020, 101(6): 065007
https://doi.org/10.1103/PhysRevD.101.065007
|
285 |
Fagnocchi S., Finazzi S., Liberati S., Kormos M., Trombettoni A.. Relativistic Bose–Einstein condensates: A new system for analogue models of gravity. New J. Phys., 2010, 12(9): 095012
https://doi.org/10.1088/1367-2630/12/9/095012
|
286 |
Friis N., R. Lee A., Louko J.. Scalar, spinor, and photon fields under relativistic cavity motion. Phys. Rev. D, 2013, 88(6): 064028
https://doi.org/10.1103/PhysRevD.88.064028
|
287 |
P. C. M. Lima A.Alencar G.R. Muniz C. R. Landim R., Null second order corrections to Casimir energy in weak gravitational field, J. Cosmol. Astropart. Phys. 07, 011 (2019), arXiv: 1903.00512 [hep-th]
|
288 |
O. Scully M.V. Kocharovsky V.Belyanin A. Fry E.Capasso F., Enhancing acceleration radiation from ground-state atoms via cavity quantum electrodynamics, Phys. Rev. Lett. 91, 243004 (2003), arXiv: quant-ph/0305178
|
289 |
P. Dolan B., Hunter-McCabe A., Twamley J.. Shaking photons from the vacuum: Acceleration radiation from vibrating atoms. New J. Phys., 2020, 22(3): 033026
https://doi.org/10.1088/1367-2630/ab7bd5
|
290 |
O. Scully M., A. Svidzinsky A., Unruh W.. Causality in acceleration radiation. Phys. Rev. Res., 2019, 1(3): 033115
https://doi.org/10.1103/PhysRevResearch.1.033115
|
291 |
R. R. Good M., Reflections on a black mirror, in: 2nd LeCosPA Symposium: Everything about Gravity, Celebrating the Centenary of Einstein’s General Relativity, 2016, arXiv: 1602.00683 [gr-qc]
|
292 |
R. R. Good M.. Extremal Hawking radiation. Phys. Rev. D, 2020, 101(10): 104050
https://doi.org/10.1103/PhysRevD.101.104050
|
293 |
R. R. Good M., Zhakenuly A., V. Linder E.. Mirror at the edge of the universe: Reflections on an accelerated boundary correspondence with de Sitter cosmology. Phys. Rev. D, 2020, 102(4): 045020
https://doi.org/10.1103/PhysRevD.102.045020
|
294 |
D. Bekenstein J.. Black holes and entropy. Phys. Rev. D, 1973, 7(8): 2333
https://doi.org/10.1103/PhysRevD.7.2333
|
295 |
Alfaro V., Fubini S., Furlan G.. Conformal invariance in quantum mechanics. Nuovo Cimento A Serie, 1976, 34: 569
https://doi.org/10.1007/BF02785666
|
296 |
E. Camblong H., R. Ordonez C.. Black hole thermodynamics from near-horizon conformal quantum mechanics. Phys. Rev. D, 2005, 71(10): 104029
https://doi.org/10.1103/PhysRevD.71.104029
|
297 |
E. Camblong H., R. Ordonez C.. Semiclassical methods in curved spacetime and black hole thermodynamics. Phys. Rev. D, 2005, 71(12): 124040
https://doi.org/10.1103/PhysRevD.71.124040
|
298 |
E. Camblong H., Chakraborty A., R. Ordonez C.. Near-horizon aspects of acceleration radiation by free fall of an atom into a black hole. Phys. Rev. D, 2020, 102(8): 085010
https://doi.org/10.1103/PhysRevD.102.085010
|
299 |
Azizi A.E. Camblong H.Chakraborty A.R. Ordonez C.O. Scully M., Quantum optics meets black hole thermodynamics via conformal quantum mechanics: I. Master equation for acceleration radiation, Phys. Rev. D 104, 084086 (2021), arXiv: 2108.07570 [gr-qc]
|
300 |
Azizi A.E. Camblong H.Chakraborty A.R. Ordonez C.O. Scully M., Quantum optics meets black hole thermodynamics via conformal quantum mechanics: II. Thermodynamics of acceleration radiation, Phys. Rev. D 104, 084085 (2021), arXiv: 2108.07572 [gr-qc]
|
301 |
M. Maldacena J.Seiberg N., Flux-vacua in two dimensional string theory, J. High Energy Phys. 09, 077 (2005), arXiv: hep-th/0506141
|
302 |
Morita T.. Thermal emission from semiclassical dynamical systems. Phys. Rev. Lett., 2019, 122(10): 101603
https://doi.org/10.1103/PhysRevLett.122.101603
|
303 |
Maitra M., Maity D., R. Majhi B.. Near horizon symmetries, emergence of Goldstone modes and thermality. Eur. Phys. J. Plus, 2020, 135(6): 483
https://doi.org/10.1140/epjp/s13360-020-00451-3
|
304 |
Dalui S., R. Majhi B.. Near-horizon local instability and quantum thermality. Phys. Rev. D, 2020, 102(12): 124047
https://doi.org/10.1103/PhysRevD.102.124047
|
305 |
Dalui S., R. Majhi B., Mishra P.. Horizon induces instability locally and creates quantum thermality. Phys. Rev. D, 2020, 102(4): 044006
https://doi.org/10.1103/PhysRevD.102.044006
|
306 |
Dalui S., R. Majhi B.. Horizon thermalization of Kerr black hole through local instability. Phys. Lett. B, 2022, 826: 136899
https://doi.org/10.1016/j.physletb.2022.136899
|
307 |
Dalui S., R. Majhi B., Padmanabhan T.. Thermal nature of a generic null surface. Phys. Rev. D, 2021, 104(12): 124080
https://doi.org/10.1103/PhysRevD.104.124080
|
308 |
R. Kane G.R. Majhi B., Thermality of horizon through near horizon instability: A path integral approach, arXiv: 2210.04056 [gr-qc] (2022)
|
309 |
Chatterjee R., Gangopadhyay S., S. Majumdar A.. Violation of equivalence in an accelerating atom-mirror system in the generalized uncertainty principle framework. Phys. Rev. D, 2021, 104(12): 124001
https://doi.org/10.1103/PhysRevD.104.124001
|
310 |
Sen S., Mandal R., Gangopadhyay S.. Equivalence principle and HBAR entropy of an atom falling into a quantum corrected black hole. Phys. Rev. D, 2022, 105(8): 085007
https://doi.org/10.1103/PhysRevD.105.085007
|
311 |
Chakraborty K., R. Majhi B.. Detector response along null geodesics in black hole spacetimes and in a Friedmann‒Lemaitre‒Robertson‒Walker universe. Phys. Rev. D, 2019, 100(4): 045004
https://doi.org/10.1103/PhysRevD.100.045004
|
312 |
M. A. S. Bukhari S.G. Wang L., Seeing dark matter via acceleration radiation, arXiv: 2309.11958 [gr-qc] (2023)
|
313 |
K. Parikh M., Wilczek F.. Hawking radiation as tunneling. Phys. Rev. Lett., 2000, 85(24): 5042
https://doi.org/10.1103/PhysRevLett.85.5042
|
314 |
Visser M., Thermality of the Hawking flux, J. High Energy Phys. 07, 009 (2015), arXiv: 1409.7754 [gr-qc]
|
315 |
H. Ma Y., Y. Cai Q., Dong H., P. Sun C.. Non-thermal radiation of black holes off canonical typicality. EPL, 2018, 122(3): 30001
https://doi.org/10.1209/0295-5075/122/30001
|
316 |
Kastor D.H. Traschen J., Particle production and positive energy theorems for charged black holes in de Sitter, Class. Quant. Grav. 13, 2753 (1996), arXiv: gr-qc/9311025
|
317 |
Bhattacharya S.. Particle creation by de Sitter black holes revisited. Phys. Rev. D, 2018, 98(12): 125013
https://doi.org/10.1103/PhysRevD.98.125013
|
318 |
Qiu Y.Traschen J., Black hole and cosmological particle production in Schwarzschild de Sitter, Class. Quant. Grav. 37, 135012 (2020), arXiv: 1908.02737 [hep-th]
|
319 |
M. A. S. Bukhari S., A. Bhat I., Xu C., G. Wang L.. Nonthermal acceleration radiation of atoms near a black hole in presence of dark energy. Phys. Rev. D, 2023, 107(10): 105017
https://doi.org/10.1103/PhysRevD.107.105017
|
320 |
D. Bartlett S., Rudolph T., W. Spekkens R.. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys., 2007, 79(2): 555
https://doi.org/10.1103/RevModPhys.79.555
|
321 |
C. Ralph T., G. Downes T.. Relativistic quantum information and time machines. Contemp. Phys., 2012, 53(1): 1
https://doi.org/10.1080/00107514.2011.640146
|
322 |
J. Summers S., Werner R.. Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys., 1987, 110(2): 247
https://doi.org/10.1007/BF01207366
|
323 |
Reznik B., Retzker A., Silman J.. Violating Bell’s inequalities in vacuum. Phys. Rev. A, 2005, 71(4): 042104
https://doi.org/10.1103/PhysRevA.71.042104
|
324 |
Salton G., B. Mann R., C. Menicucci N.. Acceleration-assisted entanglement harvesting and rangefinding. New J. Phys., 2015, 17(3): 035001
https://doi.org/10.1088/1367-2630/17/3/035001
|
325 |
Pozas-Kerstjens A., Martin-Martinez E.. Harvesting correlations from the quantum vacuum. Phys. Rev. D, 2015, 92(6): 064042
https://doi.org/10.1103/PhysRevD.92.064042
|
326 |
Zhou Y., Hu J., Yu H.. Steady-state entanglement for rotating Unruh‒DeWitt detectors. Phys. Rev. D, 2022, 106(10): 105028
https://doi.org/10.1103/PhysRevD.106.105028
|
327 |
Liu Z., Zhang J., Yu H.. Entanglement harvesting of accelerated detectors versus static ones in a thermal bath. Phys. Rev. D, 2023, 107(4): 045010
https://doi.org/10.1103/PhysRevD.107.045010
|
328 |
Bozanic L., Naeem M., Gallock-Yoshimura K., B. Mann R.. Correlation harvesting between particle detectors in uniform motion. Phys. Rev. D, 2023, 108(10): 105017
https://doi.org/10.1103/PhysRevD.108.105017
|
329 |
Zhang J., Yu H.. Entanglement harvesting for Unruh‒DeWitt detectors in circular motion. Phys. Rev. D, 2020, 102(6): 065013
https://doi.org/10.1103/PhysRevD.102.065013
|
330 |
Liu Z.Zhang J.Yu H., Entanglement harvesting in the presence of a reflecting boundary, J. High Energy Phys. 08, 020 (2021), arXiv: 2101.00114 [quant-ph]
|
331 |
Ye Y., Yu H., Hu J.. Entanglement generation and protection for two atoms in the presence of two parallel mirrors. Commum. Theor. Phys., 2021, 73(6): 065104
https://doi.org/10.1088/1572-9494/abf03d
|
332 |
Liu Z.Zhang J.Yu H., Harvesting correlations from vacuum quantum fields in the presence of a reflecting boundary, J. High Energy Phys. 11, 184 (2023), arXiv: 2310.07164 [quant-ph]
|
333 |
Li R.Zhao Z., Entanglement harvesting of circularly accelerated detectors with a reflecting boundary, arXiv: 2401.16018 [quant-ph] (2024)
|
334 |
Barman D., R. Majhi B.. Are multiple reflecting boundaries capable of enhancing entanglement harvesting. Phys. Rev. D, 2023, 108(8): 085007
https://doi.org/10.1103/PhysRevD.108.085007
|
335 |
Ji Y.Zhang J. Yu H., Entanglement harvesting in cosmic string spacetime, arXiv: 2401.13406 [quant-ph] (2024)
|
336 |
Martin-Martinez E., R. H. Smith A., R. Terno D.. Spacetime structure and vacuum entanglement. Phys. Rev. D, 2016, 93(4): 044001
https://doi.org/10.1103/PhysRevD.93.044001
|
337 |
Hu H.Zhang J. Yu H., Harvesting entanglement by non-identical detectors with different energy gaps, J. High Energy Phys. 05, 112 (2022), arXiv: 2204.01219 [quant-ph]
|
338 |
Cong W.Qian C.R. R. Good M.B. Mann R., Effects of horizons on entanglement harvesting, J. High Energy Phys. 10, 067 (2020), arXiv: 2006.01720 [gr-qc]
|
339 |
J. Henderson L.A. Hennigar R.B. Mann R. R. H. Smith A.Zhang J., Harvesting entanglement from the black hole vacuum, Class. Quant. Grav. 35, 21LT02 (2018), arXiv: 1712.10018 [quant-ph]
|
340 |
A. G. A. Caribé J., H. Jonsson R., Casals M., Kempf A., Martín-Martínez E.. Lensing of vacuum entanglement near Schwarzschild black holes. Phys. Rev. D, 2023, 108(2): 025016
https://doi.org/10.1103/PhysRevD.108.025016
|
341 |
Hu J., Yu H.. Quantum entanglement generation in de Sitter spacetime. Phys. Rev. D, 2013, 88(10): 104003
https://doi.org/10.1103/PhysRevD.88.104003
|
342 |
Bueley K., Huang L., Gallock-Yoshimura K., B. Mann R.. Harvesting mutual information from BTZ black hole spacetime. Phys. Rev. D, 2022, 106(2): 025010
https://doi.org/10.1103/PhysRevD.106.025010
|
343 |
Gallock-Yoshimura K., Tjoa E., B. Mann R.. Harvesting entanglement with detectors freely falling into a black hole. Phys. Rev. D, 2021, 104(2): 025001
https://doi.org/10.1103/PhysRevD.104.025001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|