Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (5) : 54203    https://doi.org/10.1007/s11467-024-1400-0
Atom-field dynamics in curved spacetime
Syed Masood A. S. Bukhari(), Li-Gang Wang()
School of Physics, Zhejiang University, Hangzhou 310027, China
 Download: PDF(4652 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Some aspects of atom-field interactions in curved spacetime are reviewed. Of great interest are quantum radiative and entanglement processes arising out of Rindler and black hole spacetimes, which involve the role of Hawking−Unruh and dynamical Casimir effects. Most of the discussion surrounds the radiative part of interactions. For this, we specifically reassess the conventional understandings of atomic radiative transitions and energy level shifts in curved spacetime. We also briefly outline the status quo of entanglement dynamics study in curved spacetime, and highlight literature related to some novel insights, like entanglement harvesting. On one hand, the study of the role played by spacetime curvature in quantum radiative and informational phenomena has implications for fundamental physics, notably the gravity-quantum interface. In particular, one examines the viability of the Equivalence Principle, which is at the heart of Einstein’s general theory of relativity. On the other hand, it can be instructive for manipulating quantum information and light propagation in arbitrary geometries. Some issues related to nonthermal effects of acceleration are also discussed.

Keywords atom-field interactions      general relativity      Minkowski and curved spacetime      quantum field theory in curved spacetime      light−matter interactions      spontaneous excitations     
Corresponding Author(s): Syed Masood A. S. Bukhari,Li-Gang Wang   
Issue Date: 22 May 2024
 Cite this article:   
Syed Masood A. S. Bukhari,Li-Gang Wang. Atom-field dynamics in curved spacetime[J]. Front. Phys. , 2024, 19(5): 54203.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1400-0
https://academic.hep.com.cn/fop/EN/Y2024/V19/I5/54203
Fig.1  Lightcone showing different regions of spacetime. Shaded region pertains to accelerated observer.
Fig.2  Rindler motion. Reproduced from Ref. [62].
Fig.3  Contributions of vacuum fluctuations (blue solid line) and radiation reaction (red dashed line) for an entangled accelerated two-atom system for the variation of a, where α =a e aξ. The chosen parameters include ω=5,μ=1, μ1= μ2=μ3=1 and Rindler coordinates ξ1= ξ2=0 in natural units (Menezes et al. [136]).
Fig.4  Enhancement of atomic energy shift D due to acceleration. Reproduced from Ref. [146].
1 A. Mourou G., Tajima T., V. Bulanov S.. Optics in the relativistic regime. Rev. Mod. Phys., 2006, 78(2): 309
https://doi.org/10.1103/RevModPhys.78.309
2 Walther H., T. H. Varcoe B., G. Englert B., Becker T.. Cavity quantum electrodynamics. Rep. Prog. Phys., 2006, 69(5): 1325
https://doi.org/10.1088/0034-4885/69/5/R02
3 E. Chang D., S. Douglas J., González-Tudela A., L. Hung C., J. Kimble H.. Quantum matter built from nanoscopic lattices of atoms and photons. Rev. Mod. Phys., 2018, 90(3): 031002
https://doi.org/10.1103/RevModPhys.90.031002
4 Ozawa T., M. Price H., Amo A., Goldman N., Hafezi M., Lu L., C. Rechtsman M., Schuster D., Simon J., Zilberberg O., Carusotto I.. Topological photonics. Rev. Mod. Phys., 2019, 91(1): 015006
https://doi.org/10.1103/RevModPhys.91.015006
5 M. Harry (for the LIGO Scientific Collaboration) G.. Advanced LIGO: The next generation of gravitational wave detectors. Class. Quantum Gravity, 2010, 27(8): 084006
https://doi.org/10.1088/0264-9381/27/8/084006
6 Aso Y., Michimura Y., Somiya K., Ando M., Miyakawa O., Sekiguchi T., Tatsumi D., Yamamoto (The KAGRA Collaboration) H.. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D, 2013, 88: 043007
https://doi.org/10.1103/PhysRevD.88.043007
7 L. Dooley K.R. Leong J.Adams T.Affeldt C.Bisht A. Bogan C.Degallaix J.Gräf C.Hild S.Hough J. Khalaidovski A.Lastzka N.Lough J. Lück H.Macleod D.Nuttall L.Prijatelj M.Schnabel R. Schreiber E.Slutsky J.Sorazu B.A. Strain K.Vahlbruch H.Was M.Willke B.Wittel H. Danzmann K.Grote H., GEO 600 and the GEO-HF upgrade program: Successes and challenges, Class. Quantum Gravity 33(7), 075009 (2016)
8 Yu H., (LIGO Scientific) .. et al.. Quantum correlations between light and the kilogram-mass mirrors of LIGO. Nature, 2020, 583(7814): 43
https://doi.org/10.1038/s41586-020-2420-8
9 Acernese F., (The Virgo Collaboration) .. et al.. Quantum backaction on kg-scale mirrors: Observation of radiation pressure noise in the advanced Virgo detector. Phys. Rev. Lett., 2020, 125(13): 131101
https://doi.org/10.1103/PhysRevLett.125.131101
10 S. Safronova M., Budker D., DeMille D., F. J. Kimball D., Derevianko A., W. Clark C.. Search for new physics with atoms and molecules. Rev. Mod. Phys., 2018, 90(2): 025008
https://doi.org/10.1103/RevModPhys.90.025008
11 H. Schultheiss V., Batz S., Szameit A., Dreisow F., Nolte S., Tünnermann A., Longhi S., Peschel U.. Optics in curved space. Phys. Rev. Lett., 2010, 105(14): 143901
https://doi.org/10.1103/PhysRevLett.105.143901
12 H. Schultheiss V., Batz S., Peschel U.. Light in curved two-dimensional space. Adv. Phys. X, 2020, 5(1): 1759451
https://doi.org/10.1080/23746149.2020.1759451
13 Leonhardt U., G. Philbin T.. General relativity in electrical engineering. New J. Phys., 2006, 8(10): 247
https://doi.org/10.1088/1367-2630/8/10/247
14 G. Philbin T., Kuklewicz C., Robertson S., Hill S., Konig F., Leonhardt U.. Fiber-optical analog of the event horizon. Science, 2008, 319(5868): 1367
https://doi.org/10.1126/science.1153625
15 Bekenstein R.Kabessa Y.Sharabi Y. Tal O.Engheta N.Eisenstein G.J. Agranat A.Segev M., in: 2016 Conference on Lasers and Electro-Optics (CLEO), 1 (2016)
16 Patsyk A., A. Bandres M., Bekenstein R., Segev M.. Observation of accelerating wave packets in curved space. Phys. Rev. X, 2018, 8(1): 011001
https://doi.org/10.1103/PhysRevX.8.011001
17 Faccio D.Belgiorno F.Cacciatori S.Gorini V.Liberati S. Moschella (Eds.) U., Analogue Gravity Phenomenology, Vol. 870, 2013
18 Viermann C., Sparn M., Liebster N., Hans M., Kath E., Parra-López Á., Tolosa-Simeón M., Sánchez-Kuntz N., Haas T., Strobel H., Floerchinger S., K. Oberthaler M.. Quantum field simulator for dynamics in curved spacetime. Nature, 2022, 611(7935): 260
https://doi.org/10.1038/s41586-022-05313-9
19 Lopp R., S. Martín-Martinez E., N. Page D.. Relativity and quantum optics: Accelerated atoms in optical cavities. Class. Quantum Gravity, 2018, 35(22): 224001
https://doi.org/10.1088/1361-6382/aae750
20 O. Scully M., Fulling S., Lee D., N. Page D., Schleich W., Svidzinsky A.. Quantum optics approach to radiation from atoms falling into a black hole. Proc. Natl. Acad. Sci. USA, 2018, 115(32): 8131
https://doi.org/10.1073/pnas.1807703115
21 Martín-Martínez E., R. Perche T., de S. L. Torres B.. General relativistic quantum optics: Finite-size particle detector models in curved spacetimes. Phys. Rev. D, 2020, 101(4): 045017
https://doi.org/10.1103/PhysRevD.101.045017
22 S. Zhan M., Y. Cai Q., C. Zhang B.. Gravitational effects of atomic and molecular systems. Sci. Sin. Phys. Mech. Astron., 2014, 44(9): 879
https://doi.org/10.1360/SSPMA-2013-00095
23 Leonhardt U., Essential Quantum Optics, Cambridge: Cambridge University Press, 2010
24 Boettcher I., Bienias P., Belyansky R., J. Kollár A., V. Gorshkov A.. Quantum simulation of hyperbolic space with circuit quantum electrodynamics: From graphs to geometry. Phys. Rev. A, 2020, 102(3): 032208
https://doi.org/10.1103/PhysRevA.102.032208
25 G. Garcia D., J. Chaplain G., Bĕlín J., Tyc T., Englert C., Courtial J.. Optical triangulations of curved spaces. Optica, 2020, 7: 142
https://doi.org/10.1364/OPTICA.378357
26 Steinhauer J.. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nat. Phys., 2016, 12(10): 959
https://doi.org/10.1038/nphys3863
27 Leonhardt U.. Questioning the recent observation of quantum Hawking radiation. Ann. Phys., 2018, 530(5): 1700114
https://doi.org/10.1002/andp.201700114
28 Hu J., Feng L., Zhang Z., Chin C.. Quantum simulation of Unruh radiation. Nat. Phys., 2019, 15(8): 785
https://doi.org/10.1038/s41567-019-0537-1
29 Sheng T., Qian J., Li X., Niu Y., Gong S.. Quantum simulation of the Unruh effect with a Rydberg-dressed Bose‒Einstein condensate. Phys. Rev. A, 2021, 103(1): 013301
https://doi.org/10.1103/PhysRevA.103.013301
30 Parker L.. Quantized fields and particle creation in expanding universes. I. Phys. Rev., 1969, 183(5): 1057
https://doi.org/10.1103/PhysRev.183.1057
31 Parker L., Quantized fields and particle creation in expanding universes. II, Phys. Rev. D 3(2), 346 (1971) [Erratum: Phys. Rev. D 3, 2546 (1971)]
32 Parker L.. Particle creation and particle number in an expanding universe. J. Phys. A Math. Theor., 2012, 45(37): 374023
https://doi.org/10.1088/1751-8113/45/37/374023
33 Eckel S.Kumar A.Jacobson T.B. Spielman I.K. Campbell G., A rapidly expanding Bose‒Einstein condensate: An expanding universe in the lab, Phys. Rev. X 8(2), 021021 (2018)
34 P. Schmit R., G. Taketani B., K. Wilhelm F.. Quantum simulation of particle creation in curved space-time. PLoS One, 2020, 15(3): e0229382
https://doi.org/10.1371/journal.pone.0229382
35 M. Alsing P., J. Milburn G.. Teleportation with a uniformly accelerated partner. Phys. Rev. Lett., 2003, 91(18): 180404
https://doi.org/10.1103/PhysRevLett.91.180404
36 Fuentes-Schuller I., B. Mann R.. Alice falls into a black hole: Entanglement in noninertial frames. Phys. Rev. Lett., 2005, 95(12): 120404
https://doi.org/10.1103/PhysRevLett.95.120404
37 G. Downes T., Fuentes I., C. Ralph T.. Entangling moving cavities in noninertial frames. Phys. Rev. Lett., 2011, 106(21): 210502
https://doi.org/10.1103/PhysRevLett.106.210502
38 Peres A., R. Terno D.. Quantum information and relativity theory. Rev. Mod. Phys., 2004, 76(1): 93
https://doi.org/10.1103/RevModPhys.76.93
39 B. Mann R., C. Ralph T.. Relativistic quantum information. Class. Quantum Gravity, 2012, 29(22): 220301
https://doi.org/10.1088/0264-9381/29/22/220301
40 M. Alsing P., Fuentes-Schuller I., B. Mann R., E. Tessier T.. Entanglement of Dirac fields in noninertial frames. Phys. Rev. A, 2006, 74(3): 032326
https://doi.org/10.1103/PhysRevA.74.032326
41 Wang J.Jing J., Multipartite entanglement of fermionic systems in noninertial frames, Phys. Rev. A 83, 022314 (2011), arXiv: 1012.4268 [quant-ph] [Erratum: Phys. Rev. A 97, 029902 (2018)]
42 Friis N., E. Bruschi D., Louko J., Fuentes I.. Motion generates entanglement. Phys. Rev. D, 2012, 85(8): 081701
https://doi.org/10.1103/PhysRevD.85.081701
43 E. Bruschi D., Dragan A., R. Lee A., Fuentes I., Louko J.. Relativistic motion generates quantum gates and entanglement resonances. Phys. Rev. Lett., 2013, 111(9): 090504
https://doi.org/10.1103/PhysRevLett.111.090504
44 Liu Z., Zhang J., B. Mann R., Yu H.. Does acceleration assist entanglement harvesting. Phys. Rev. D, 2022, 105(8): 085012
https://doi.org/10.1103/PhysRevD.105.085012
45 Lopp R.Martin-Martinez E.N. Page D., Relativity and quantum optics: Accelerated atoms in optical cavities, Class. Quant. Grav. 35, 224001 (2018), arXiv: 1806.10158 [quant-ph]
46 Martín-Martínez E., R. Perche T., de S. L. Torres B.. General relativistic quantum optics: Finite-size particle detector models in curved spacetimes. Phys. Rev. D, 2020, 101(4): 045017
https://doi.org/10.1103/PhysRevD.101.045017
47 Sabín C., E. Bruschi D., Ahmadi M., Fuentes I.. Phonon creation by gravitational waves. New J. Phys., 2014, 16(8): 085003
https://doi.org/10.1088/1367-2630/16/8/085003
48 Rätzel D., Howl R., Lindkvist J., Fuentes I.. Dynamical response of Bose–Einstein condensates to oscillating gravitational fields. New J. Phys., 2018, 20(7): 073044
https://doi.org/10.1088/1367-2630/aad272
49 Schützhold R.. Interaction of a Bose‒Einstein condensate with a gravitational wave. Phys. Rev. D, 2018, 98(10): 105019
https://doi.org/10.1103/PhysRevD.98.105019
50 Howl R., Hackermüller L., E. Bruschi D., Fuentes I.. Gravity in the quantum lab. Adv. Phys. X, 2018, 3(1): 1383184
https://doi.org/10.1080/23746149.2017.1383184
51 Collas P.Klein D., The Dirac equation in curved space-time: A guide for calculations, Springer Briefs in Physics, Springer, 2019, arXiv: 1809.02764 [gr-qc]
52 O. Scully M.S. Zubairy M., Quantum Optics, Cambridge: Cambridge University Press, 1997
53 Compagno G.Passante R.Persico F., Atom-Field Interactions and Dressed Atoms, Cambridge Studies in Modern Optics, Cambridge University Press, 1995
54 G. Unruh W.. Notes on black-hole evaporation. Phys. Rev. D, 1976, 14(4): 870
https://doi.org/10.1103/PhysRevD.14.870
55 A. Fulling S.. Nonuniqueness of canonical field quantization in riemannian space-time. Phys. Rev. D, 1973, 7(10): 2850
https://doi.org/10.1103/PhysRevD.7.2850
56 C. W. Davies P.. Scalar production in Schwarzschild and Rindler metrics. J. Phys. Math. Gen., 1975, 8(4): 609
https://doi.org/10.1088/0305-4470/8/4/022
57 C. B. Crispino L., Higuchi A., E. A. Matsas G.. The Unruh effect and its applications. Rev. Mod. Phys., 2008, 80(3): 787
https://doi.org/10.1103/RevModPhys.80.787
58 Rohrlich F.. The definition of electromagnetic radiation. Nuovo Cim., 1961, 21(5): 811
https://doi.org/10.1007/BF02785607
59 Rohrlich F.. The definition of electromagnetic radiation. Nuovo Cim., 1961, 21(5): 811
https://doi.org/10.1007/BF02785607
60 G. Boulware D.. Radiation from a uniformly accelerated charge. Ann. Phys., 1980, 124(1): 169
https://doi.org/10.1016/0003-4916(80)90360-7
61 W. Hawking S.. Particle creation by black holes. Commun. Math. Phys., 1975, 43(3): 199
https://doi.org/10.1007/BF02345020
62 Frodden E., Valdés N.. Unruh effect: Introductory notes to quantum effects for accelerated observers. Int. J. Mod. Phys. A, 2018, 33(27): 1830026
https://doi.org/10.1142/S0217751X18300260
63 B. G. Casimir H., Indag. Math. 10, 261 (1948)
64 Bordag M.L. Klimchitskaya G.Mohideen U. M. Mostepanenko V., Advances in the Casimir Effect, Vol. 145, Oxford University Press, 2009
65 T. Moore G.. Quantum theory of the electromagnetic field in a variable-length one-dimensional cavity. J. Math. Phys., 1970, 11(9): 2679
https://doi.org/10.1063/1.1665432
66 V. Dodonov V.. Fifty years of the dynamical Casimir effect. MDPI Physics, 2020, 2(1): 67
https://doi.org/10.3390/physics2010007
67 A. Fulling S., C. W. Davies P.. Radiation from a moving mirror in two dimensional space-time: Conformal anomaly. Proc. R. Soc. Lond. A, 1976, 348(1654): 393
https://doi.org/10.1098/rspa.1976.0045
68 C. W. Davies P., A. Fulling S.. Quantum vacuum energy in two dimensional space-times. Proc. R. Soc. Lond. A, 1977, 354(1676): 59
https://doi.org/10.1098/rspa.1977.0056
69 R. Anderson P.R. R. Good M.R. Evans C., Black hole − moving mirror I: An exact correspondence, in: 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Vol. 2 (2017), pp 1701–1704, arXiv: 1507.03489 [gr-qc]
70 R. R. Good M.R. Anderson P.R. Evans C., Black hole − moving mirror II: Particle creation, in: 14th Marcel Grossmann Meeting on Recent Developments in Theoretical and Experimental General Relativity, Astrophysics, and Relativistic Field Theories, Vol. 2 (2017), pp 1705–1708, arXiv: 1507.05048 [gr-qc]
71 Belyanin A., V. Kocharovsky V., Capasso F., Fry E., S. Zubairy M., O. Scully M.. Quantum electrodynamics of accelerated atoms in free space and in cavities. Phys. Rev. A, 2006, 74(2): 023807
https://doi.org/10.1103/PhysRevA.74.023807
72 O. Scully M.. Laser entropy: From lasers and masers to Bose condensates and black holes. Phys. Scr., 2020, 95: 024002
73 P. E. Lock M., Fuentes I.. Dynamical Casimir effect in curved spacetime. New J. Phys., 2017, 19(7): 073005
https://doi.org/10.1088/1367-2630/aa7651
74 Chandrasekhar S.. The solution of Dirac’s equation in Kerr geometry. Proc. R. Soc. Lond. A, 1976, 349(1659): 571
https://doi.org/10.1098/rspa.1976.0090
75 Carter B., G. McLenaghan R.. Generalized total angular momentum operator for the Dirac equation in curved space-time. Phys. Rev. D, 1979, 19(4): 1093
https://doi.org/10.1103/PhysRevD.19.1093
76 V. Shishkin G.. Some exact solutions of the Dirac equation in gravitational fields. Class. Quantum Gravity, 1991, 8(1): 175
https://doi.org/10.1088/0264-9381/8/1/017
77 Finster F.Reintjes M., The Dirac Equation and the Normalization of its Solutions in a Closed Friedmann−Robertson‒Walker Universe, Class. Quant. Grav. 26, 105021 (2009), arXiv: 0901.0602 [math-ph]
78 Collas P.Klein D., Dirac particles in a gravitational shock wave, Class. Quant. Grav. 35, 125006 (2018), arXiv: 1801.02756 [gr-qc]
79 Parker L.. One-electron atom in curved space-time. Phys. Rev. Lett., 1980, 44(23): 1559
https://doi.org/10.1103/PhysRevLett.44.1559
80 Parker L.. The atom as a probe of curved space-time. Gen. Relativ. Gravit., 1981, 13(4): 307
https://doi.org/10.1007/BF01025466
81 Parker L.. One-electron atom as a probe of spacetime curvature. Phys. Rev. D, 1980, 22(8): 1922
https://doi.org/10.1103/PhysRevD.22.1922
82 Parker L.. Self-forces and atoms in gravitational fields. Phys. Rev. D, 1981, 24(2): 535
https://doi.org/10.1103/PhysRevD.24.535
83 Pinto F.. Rydberg atoms in curved space-time. Phys. Rev. Lett., 1993, 70(25): 3839
https://doi.org/10.1103/PhysRevLett.70.3839
84 Parker L., Vollick D., Redmount I.. Atomic spectra in the gravitational field of a collapsing prolate spheroid. Phys. Rev. D, 1997, 56(4): 2113
https://doi.org/10.1103/PhysRevD.56.2113
85 de A. Marques G., B. Bezerra V.. Hydrogen atom in the gravitational fields of topological defects. Phys. Rev. D, 2002, 66(10): 105011
https://doi.org/10.1103/PhysRevD.66.105011
86 H. Zhao Z., X. Liu Y., G. Li X.. Energy-level shifts of a stationary hydrogen atom in a static external gravitational field with Schwarzschild geometry. Phys. Rev. D, 2007, 76(6): 064016
https://doi.org/10.1103/PhysRevD.76.064016
87 Carvalho J., Furtado C., Moraes F.. Dirac oscillator interacting with a topological defect. Phys. Rev. A, 2011, 84(3): 032109
https://doi.org/10.1103/PhysRevA.84.032109
88 Roura A.. Quantum probe of space-time curvature. Science, 2022, 375(6577): 142
https://doi.org/10.1126/science.abm6854
89 R. Caianiello E.. Is there a maximal acceleration. Lett. Nuovo Cimento, 1981, 32(3): 65
https://doi.org/10.1007/BF02745135
90 Lambiase G., Papini G., Scarpetta G.. Maximal acceleration corrections to the Lamb shift of hydrogen, deuterium and He+. Phys. Lett. A, 1998, 244(5): 349
https://doi.org/10.1016/S0375-9601(98)00364-8
91 Benedetto E., Feoli A.. Unruh temperature with maximal acceleration. Mod. Phys. Lett. A, 2015, 30(13): 1550075
https://doi.org/10.1142/S0217732315500753
92 Higuchi A., E. A. Matsas G., Sudarsky D.. Do static sources outside a Schwarzschild black hole radiate. Phys. Rev. D, 1997, 56(10): R6071
https://doi.org/10.1103/PhysRevD.56.R6071
93 C. B. Crispino L., R. Dolan S., S. Oliveira E.. Electromagnetic wave scattering by Schwarzschild black holes. Phys. Rev. Lett., 2009, 102(23): 231103
https://doi.org/10.1103/PhysRevLett.102.231103
94 F. B. Macedo C., C. S. Leite L., S. Oliveira E., R. Dolan S., C. B. Crispino L.. Absorption of planar massless scalar waves by Kerr black holes. Phys. Rev. D, 2013, 88(6): 064033
https://doi.org/10.1103/PhysRevD.88.064033
95 Cardoso V., Vicente R.. Moving black holes: Energy extraction, absorption cross section, and the ring of fire. Phys. Rev. D, 2019, 100(8): 084001
https://doi.org/10.1103/PhysRevD.100.084001
96 Brito R.Cardoso V.Pani P., Superradiance ‒ the 2020 Edition, Lect. Notes Phys. 906, 1 (2015), arXiv: 1501.06570 [gr-qc]
97 Bambi C.. Testing black hole candidates with electromagnetic radiation. Rev. Mod. Phys., 2017, 89(2): 025001
https://doi.org/10.1103/RevModPhys.89.025001
98 Passante R.. Dispersion interactions between neutral atoms and the quantum electrodynamical vacuum. Symmetry (Basel), 2018, 10(12): 735
https://doi.org/10.3390/sym10120735
99 P. Hobson M.P. Efstathiou G.N. Lasenby A., General Relativity: An Introduction for Physicists, 2006
100 W. Misner C.S. Thorne K.A. Wheeler J., Gravitation, San Francisco: W. H. Freeman, 1973
101 Weinberg S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, 1972
102 Socolovsky M., Rindler space and Unruh effect, arXiv: 1304.2833 [gr-qc] (2013)
103 Rindler W.. Kruskal space and the uniformly accelerated frame. Am. J. Phys., 1966, 34(12): 1174
https://doi.org/10.1119/1.1972547
104 Martin-Martinez E.C. Menicucci N., Entanglement in curved spacetimes and cosmology, Class. Quant. Grav. 31, 214001 (2014), arXiv: 1408.3420 [quant-ph]
105 D. Birrell N.C. W. Davies P., Quantum Fields in Curved Space, Cambridge Monographs on Mathematical Physics, Cambridge: Cambridge University Press, 1984
106 Jacobson T., Introduction to quantum fields in curved space- time and the hawking effect, in: Lectures on Quantum Gravity, edited by A. Gomberoff and D. Marolf, Springer US, Boston, MA, 2005, pp 39–89
107 E. Parker L.Toms D., Quantum Field Theory in Curved Spacetime: Quantized Field and Gravity, Cambridge Mono-graphs on Mathematical Physics, Cambridge: Cambridge University Press, 2009
108 M. Carroll S., Spacetime and Geometry, Cambridge: Cambridge University Press, 2019
109 Almheiri A.Marolf D.Polchinski J.Sully J., Black holes: Complementarity or firewalls? J. High Energy Phys. 02, 062 (2013), arXiv: 1207.3123 [hep-th]
110 D. Mathur S., The information paradox: A pedagogical introduction, Class. Quant. Grav. 26, 224001 (2009), arXiv: 0909.1038 [hep-th]
111 M. Wilson C., Johansson G., Pourkabirian A., Simoen M., R. Johansson J., Duty T., Nori F., Delsing P.. Observation of the dynamical Casimir effect in a superconducting circuit. Nature, 2011, 479(7373): 376
https://doi.org/10.1038/nature10561
112 Lähteenmäki P., S. Paraoanu G., Hassel J., J. Hakonen P.. Dynamical Casimir effect in a Josephson metamaterial. Proc. Natl. Acad. Sci. USA, 2013, 110(11): 4234
https://doi.org/10.1073/pnas.1212705110
113 C. Jaskula J., B. Partridge G., Bonneau M., Lopes R., Ruaudel J., Boiron D., I. Westbrook C.. Acoustic analog to the dynamical Casimir effect in a Bose‒Einstein condensate. Phys. Rev. Lett., 2012, 109(22): 220401
https://doi.org/10.1103/PhysRevLett.109.220401
114 T. Jaekel M.Reynaud S., Movement and fluctuations of the vacuum, Rep. Prog. Phys. 60, 863 (1997), arXiv: quant-ph/9706035
115 V. Dodonov V.. Dynamical Casimir effect: Some theoretical aspects. J. Phys. Conf. Ser., 2009, 161: 012027
https://doi.org/10.1088/1742-6596/161/1/012027
116 Nicolai E. XIX. On a dynamical illustration of the pressure of radiation, Lond. Edinb. Dublin Philos. Mag. J. Sci. 49(289), 171 (1925)
117 E. Lamb W., C. Retherford R.. Fine structure of the hydrogen atom by a microwave method. Phys. Rev., 1947, 72(3): 241
https://doi.org/10.1103/PhysRev.72.241
118 A. Welton T.. Some observable effects of the quantum-mechanical fluctuations of the electromagnetic field. Phys. Rev., 1948, 74(9): 1157
https://doi.org/10.1103/PhysRev.74.1157
119 R. Ackerhalt J., L. Knight P., H. Eberly J.. Radiation reaction and radiative frequency shifts. Phys. Rev. Lett., 1973, 30(10): 456
https://doi.org/10.1103/PhysRevLett.30.456
120 W. Milonni P., R. Ackerhalt J., A. Smith W.. Interpretation of radiative corrections in spontaneous emission. Phys. Rev. Lett., 1973, 31(15): 958
https://doi.org/10.1103/PhysRevLett.31.958
121 Audretsch J., Müller R.. Spontaneous excitation of an accelerated atom: The contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A, 1994, 50(2): 1755
https://doi.org/10.1103/PhysRevA.50.1755
122 Dalibard J., Dupont-Roc J., Cohen-Tannoudji C.. Vacuum fluctuations and radiation reaction: Identification of their respective contributions. J. Phys. (Paris), 1982, 43(11): 1617
https://doi.org/10.1051/jphys:0198200430110161700
123 Dalibard J., Dupont-Roc J., Cohen-Tannoudji C.. Dynamics of a small system coupled to a reservoir: Reservoir fluctuations and self-reaction. J. Phys. (Paris), 1984, 45(4): 637
https://doi.org/10.1051/jphys:01984004504063700
124 Hawking S.Israel W., General Relativity: An Einstein Centenary Survey, 2010
125 Zhu Z., W. Yu H., Lu S.. Spontaneous excitation of an accelerated hydrogen atom coupled with electromagnetic vacuum fluctuations. Phys. Rev. D, 2006, 73(10): 107501
https://doi.org/10.1103/PhysRevD.73.107501
126 Chen J., Hu J., Yu H.. Spontaneous excitation of a circularly accelerated atom coupled with vacuum Dirac field fluctuations. Ann. Phys., 2015, 353: 317
https://doi.org/10.1016/j.aop.2014.12.003
127 Zhou W.. Is the Fulling–Davies–Unruh effect valid for the case of an atom coupled to quantum electromagnetic field. Mod. Phys. Lett. A, 2016, 31(34): 1650189
https://doi.org/10.1142/S0217732316501893
128 Zhou W., Yu H.. Spontaneous excitation of a uniformly accelerated atom coupled to vacuum Dirac field fluctuations. Phys. Rev. A, 2012, 86(3): 033841
https://doi.org/10.1103/PhysRevA.86.033841
129 Langlois P.. Causal particle detectors and topology. Ann. Phys., 2006, 321(9): 2027
https://doi.org/10.1016/j.aop.2006.01.013
130 Rizzuto L., Spagnolo S.. Energy-level shifts of a uniformly accelerated atom between two reflecting plates. Phys. Scr., 2011, 2011: 014021
https://doi.org/10.1088/0031-8949/2011/T143/014021
131 Zhang A.. The formalism for energy changing rate of an accelerated atom coupled with electromagnetic vacuum fluctuations. Found. Phys., 2016, 46(9): 1199
https://doi.org/10.1007/s10701-016-0016-9
132 Barton G., Calogeracos A.. Transition rates in atoms constrained to move relativistically. J. Opt. B, 2005, 7(3): S21
https://doi.org/10.1088/1464-4266/7/3/003
133 Barton G., Calogeracos A.. Acceleration-induced radiative excitation of ground-state atoms. J. Phys. A Math. Theor., 2008, 41(16): 164030
https://doi.org/10.1088/1751-8113/41/16/164030
134 Calogeracos A.. Spontaneous excitation of an accelerated atom: (i) Acceleration of infinite duration (the Unruh effect), (ii) acceleration of finite duration. Results Phys., 2016, 6: 377
https://doi.org/10.1016/j.rinp.2016.05.008
135 M. Raimond J., Brune M., Haroche S.. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys., 2001, 73(3): 565
https://doi.org/10.1103/RevModPhys.73.565
136 Menezes G., F. Svaiter N.. Radiative processes of uniformly accelerated entangled atoms. Phys. Rev. A, 2016, 93(5): 052117
https://doi.org/10.1103/PhysRevA.93.052117
137 Yu T., H. Eberly J.. Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett., 2004, 93(14): 140404
https://doi.org/10.1103/PhysRevLett.93.140404
138 J. G. Dueñas, G. Menezes , N. F. Svaiter. E. Arias, Boundary effects on radiative processes of two entangled atoms, J. High Energy Phys. 07, 147 (2016), arXiv: 1510.00047 [quant-ph]
139 Zhang C., Zhou W.. Radiative processes of two accelerated entangled atoms near boundaries. Symmetry (Basel), 2019, 11(12): 1515
https://doi.org/10.3390/sym11121515
140 Menezes G., F. Svaiter N.. Vacuum fluctuations and radiation reaction in radiative processes of entangled states. Phys. Rev. A, 2015, 92(6): 062131
https://doi.org/10.1103/PhysRevA.92.062131
141 Zhou W., Yu H.. Radiation-reaction-induced transitions of two maximally entangled atoms in noninertial motion. Phys. Rev. D, 2020, 101(2): 025009
https://doi.org/10.1103/PhysRevD.101.025009
142 Zhou W., Yu H.. Collective transitions of two entangled atoms and the Fulling‒Davies‒Unruh effect. Phys. Rev. D, 2020, 101(8): 085009
https://doi.org/10.1103/PhysRevD.101.085009
143 Menezes G., F. Svaiter N.. Radiative processes of uniformly accelerated entangled atoms. Phys. Rev. A, 2016, 93(5): 052117
https://doi.org/10.1103/PhysRevA.93.052117
144 Passante R.. Radiative level shifts of an accelerated hydrogen atom and the Unruh effect in quantum electrodynamics. Phys. Rev. A, 1998, 57(3): 1590
https://doi.org/10.1103/PhysRevA.57.1590
145 Rizzuto L., Spagnolo S.. Lamb shift of a uniformly accelerated hydrogen atom in the presence of a conducting plate. Phys. Rev. A, 2009, 79(6): 062110
https://doi.org/10.1103/PhysRevA.79.062110
146 Audretsch J.Mueller R.Holzmann M., Generalized Unruh effect and Lamb shift for atoms on arbitrary stationary trajectories, Class. Quant. Grav. 12, 2927 (1995), arXiv: quant-ph/9510025
147 Audretsch J., Müller R.. Radiative energy shifts of an accelerated two-level system. Phys. Rev. A, 1995, 52(1): 629
https://doi.org/10.1103/PhysRevA.52.629
148 P. Marzlin K., Audretsch J.. States insensitive to the Unruh effect in multilevel detectors. Phys. Rev. D, 1998, 57(2): 1045
https://doi.org/10.1103/PhysRevD.57.1045
149 Audretsch J., P. Marzlin K.. Ramsey fringes in atomic interferometry: Measurability of the influence of space-time curvature. Phys. Rev. A, 1994, 50(3): 2080
https://doi.org/10.1103/PhysRevA.50.2080
150 J. Olmo G.. Hydrogen atom in Palatini theories of gravity. Phys. Rev. D, 2008, 77(8): 084021
https://doi.org/10.1103/PhysRevD.77.084021
151 Singh D.Mobed N., Local space-time curvature effects on quantum orbital angular momentum, Class. Quant. Grav. 28, 105024 (2011), arXiv: 1101.1030 [gr-qc]
152 K. Wong L., C. Davis A.. One-electron atoms in screened modified gravity. Phys. Rev. D, 2017, 95(10): 104010
https://doi.org/10.1103/PhysRevD.95.104010
153 Brax P., C. Davis A., Elder B., K. Wong L.. Constraining screened fifth forces with the electron magnetic moment. Phys. Rev. D, 2018, 97(8): 084050
https://doi.org/10.1103/PhysRevD.97.084050
154 O. Sabulsky D., Dutta I., A. Hinds E., Elder B., Burrage C., J. Copeland E.. Experiment to detect dark energy forces using atom interferometry. Phys. Rev. Lett., 2019, 123(6): 061102
https://doi.org/10.1103/PhysRevLett.123.061102
155 W. Sciama D., Candelas P., Deutsch D.. Quantum field theory, horizons and thermodynamics. Adv. Phys., 1981, 30(3): 327
https://doi.org/10.1080/00018738100101457
156 B. Hartle J., W. Hawking S.. Path-integral derivation of black-hole radiance. Phys. Rev. D, 1976, 13(8): 2188
https://doi.org/10.1103/PhysRevD.13.2188
157 Papini G.. Maximal acceleration and radiative processes. Mod. Phys. Lett. A, 2015, 30(31): 1550166
https://doi.org/10.1142/S0217732315501667
158 Higuchi A., E. A. Matsas G., Sudarsky D.. Interaction of Hawking radiation with static sources outside a Schwarzschild black hole. Phys. Rev. D, 1998, 58(10): 104021
https://doi.org/10.1103/PhysRevD.58.104021
159 C. B. Crispino L.Higuchi A.E. A. Matsas G., Quantization of the electromagnetic field outside static black holes and its application to low-energy phenomena, Phys. Rev. D 63, 124008 (2001), arXiv: gr-qc/0011070 [Erratum: Phys. Rev. D 80, 029906 (2009)]
160 Castineiras J., P. Costa e Silva I., E. A. Matsas G.. Do static sources respond to massive scalar particles from the Hawking radiation as uniformly accelerated ones do in the inertial vacuum. Phys. Rev. D, 2003, 67(6): 067502
https://doi.org/10.1103/PhysRevD.67.067502
161 M. Christensen S., A. Fulling S.. Trace anomalies and the Hawking effect. Phys. Rev. D, 1977, 15(8): 2088
https://doi.org/10.1103/PhysRevD.15.2088
162 Candelas P.. Vacuum polarization in Schwarzschild spacetime. Phys. Rev. D, 1980, 21(8): 2185
https://doi.org/10.1103/PhysRevD.21.2185
163 W. Yu H., Zhou W.. Do static atoms outside a Schwarzschild black hole spontaneously excite. Phys. Rev. D, 2007, 76(4): 044023
https://doi.org/10.1103/PhysRevD.76.044023
164 Zhou W.Yu H., Spontaneous excitation of a static multilevel atom coupled with electromagnetic vacuum fluctuations in Schwarzschild spacetime, Class. Quant. Grav. 29, 085003 (2012), arXiv: 1203.5867 [gr-qc]
165 W. Yu H., Zhou W.. Relationship between Hawking radiation from black holes and spontaneous excitation of atoms. Phys. Rev. D, 2007, 76(2): 027503
https://doi.org/10.1103/PhysRevD.76.027503
166 Cliché M., Kempf A.. Vacuum entanglement enhancement by a weak gravitational field. Phys. Rev. D, 2011, 83(4): 045019
https://doi.org/10.1103/PhysRevD.83.045019
167 Menezes G.. Radiative processes of two entangled atoms outside a Schwarzschild black hole. Phys. Rev. D, 2016, 94(10): 105008
https://doi.org/10.1103/PhysRevD.94.105008
168 Chen Y., Hu J., Yu H.. Collective transitions of two entangled atoms near a Schwarzschild black hole. Phys. Rev. D, 2023, 107(2): 025015
https://doi.org/10.1103/PhysRevD.107.025015
169 Yu H., W. Yu H., Zhu Z.. Spontaneous absorption of an accelerated hydrogen atom near a conducting plane in vacuum. Phys. Rev. D, 2006, 74(4): 044032
https://doi.org/10.1103/PhysRevD.74.044032
170 Visser M., The Kerr spacetime: A brief introduction, in: Kerr fest: Black holes in astrophysics, general relativity and quantum gravity, 2007, arXiv: 0706.0622 [gr-qc]
171 Jacobson T.. Note on Hartle‒Hawking vacua. Phys. Rev. D, 1994, 50(10): R6031
https://doi.org/10.1103/PhysRevD.50.R6031
172 Menezes G., Spontaneous excitation of an atom in a Kerr spacetime, Phys. Rev. D 95, 065015 (2017), arXiv: 1611.00056 [gr-qc] [Erratum: Phys. Rev. D 97, 029901 (2018)]
173 P. Frolov V., S. Thorne K.. Renormalized stress-energy tensor near the horizon of a slowly evolving, rotating black hole. Phys. Rev. D, 1989, 39(8): 2125
https://doi.org/10.1103/PhysRevD.39.2125
174 C. Ottewill A., Winstanley E.. Renormalized stress tensor in Kerr space-time: General results. Phys. Rev. D, 2000, 62(8): 084018
https://doi.org/10.1103/PhysRevD.62.084018
175 A. Starobinskii A.. Amplification of electromagnetic and gravitational waves scattered by a rotating “black hole”. Sov. Phys. JETP, 1973, 64: 48
176 G. Unruh W.. Second quantization in the Kerr metric. Phys. Rev. D, 1974, 10(10): 3194
https://doi.org/10.1103/PhysRevD.10.3194
177 L. Matacz A., C. W. Davies P., C. Ottewill A.. Quantum vacuum instability near rotating stars. Phys. Rev. D, 1993, 47(4): 1557
https://doi.org/10.1103/PhysRevD.47.1557
178 Menezes G.. Entanglement dynamics in a Kerr spacetime. Phys. Rev. D, 2018, 97(8): 085021
https://doi.org/10.1103/PhysRevD.97.085021
179 Liu X., Tian Z., Wang J., Jing J.. Radiative process of two entanglement atoms in de Sitter spacetime. Phys. Rev. D, 2018, 97(10): 105030
https://doi.org/10.1103/PhysRevD.97.105030
180 Zhou W., W. Yu H.. Lamb shift for static atoms outside a Schwarzschild black hole. Phys. Rev. D, 2010, 82(10): 104030
https://doi.org/10.1103/PhysRevD.82.104030
181 Meschede D., Jhe W., A. Hinds E.. Radiative properties of atoms near a conducting plane: An old problem in a new light. Phys. Rev. A, 1990, 41(3): 1587
https://doi.org/10.1103/PhysRevA.41.1587
182 W. Gibbons G., W. Hawking S.. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D, 1977, 15(10): 2738
https://doi.org/10.1103/PhysRevD.15.2738
183 Zhou W., W. Yu H.. Lamb shift in de Sitter spacetime. Phys. Rev. D, 2010, 82(12): 124067
https://doi.org/10.1103/PhysRevD.82.124067
184 Zhou W.Yu H., Can spacetime curvature induced corrections to Lamb shift be observable? J. High Energy Phys. 10, 172 (2012), arXiv: 1204.2015 [gr-qc]
185 Cheng S., Hu J., Yu H.. Spontaneous excitation of an accelerated atom coupled with quantum fluctuations of spacetime. Phys. Rev. D, 2019, 100(2): 025010
https://doi.org/10.1103/PhysRevD.100.025010
186 Cai H., Ren Z.. Radiative properties of an inertial multilevel atom in a compactified Minkowski spacetime. Class. Quantum Gravity, 2019, 36(16): 165001
https://doi.org/10.1088/1361-6382/ab30d0
187 Hu J., Yu H.. Entanglement dynamics for uniformly accelerated two-level atoms. Phys. Rev. A, 2015, 91(1): 012327
https://doi.org/10.1103/PhysRevA.91.012327
188 Chen Y., Hu J., Yu H.. Entanglement generation for uniformly accelerated atoms assisted by environment-induced interatomic interaction and the loss of the anti-Unruh effect. Phys. Rev. D, 2022, 105(4): 045013
https://doi.org/10.1103/PhysRevD.105.045013
189 Zhou Y.Hu J.Yu H., Entanglement dynamics for Unruh‒DeWitt detectors interacting with massive scalar fields: The Unruh and anti-Unruh effects, J. High Energy Phys. 09, 088 (2021), arXiv: 2105.14735 [gr-qc]
190 S. Soares M., Menezes G., F. Svaiter N.. Entanglement dynamics: Generalized master equation for uniformly accelerated two-level systems. Phys. Rev. A, 2022, 106(6): 062440
https://doi.org/10.1103/PhysRevA.106.062440
191 Hu J.Yu H., Entanglement generation outside a Schwarzschild black hole and the Hawking effect, J. High Energy Phys. 08, 137 (2011), arXiv: 1109.0335 [hep-th]
192 He P., Yu H., Hu J.. Entanglement dynamics for static two-level atoms in cosmic string spacetime. Eur. Phys. J. C, 2020, 80(2): 134
https://doi.org/10.1140/epjc/s10052-020-7663-x
193 Huang Z.. Quantum entanglement for atoms coupling to fluctuating electromagnetic field in the cosmic string spacetime. Quantum Inform. Process., 2021, 20(5): 173
https://doi.org/10.1007/s11128-021-03119-8
194 Liu X.Tian Z.Jing J., Entanglement dynamics in κ-deformed spacetime, arXiv: 2309.08135 [hep-th] (2023)
195 Kukita S.Nambu Y., Entanglement dynamics in de Sitter spacetime, Class. Quant. Grav. 34, 235010 (2017), arXiv: 1706.09175 [gr-qc]
196 Yan J.Zhang B., Effect of spacetime dimensions on quantum entanglement between two uniformly accelerated atoms, J. High Energy Phys. 10, 051 (2022), arXiv: 2206.13681 [gr-qc]
197 Yan J.Zhang B.Cai Q., Reveal the lost entanglement for accelerated atoms in the high-dimensional spacetime, arXiv: 2311.04610 [hep-th] (2023)
198 Salam A., Molecular Quantum Electrodynamics: Long-Range Intermolecular Interactions, Wiley Publishing, 2009
199 Salam A.. Molecular quantum electrodynamics in the Heisenberg picture: A field theoretic viewpoint. Int. Rev. Phys. Chem., 2008, 27(3): 405
https://doi.org/10.1080/01442350802045206
200 Fassioli F., Olaya-Castro A.. Distribution of entanglement in light-harvesting complexes and their quantum efficiency. New J. Phys., 2010, 12(8): 085006
https://doi.org/10.1088/1367-2630/12/8/085006
201 Preto J., Pettini M.. Resonant long-range interactions between polar macromolecules. Phys. Lett. A, 2013, 377(8): 587
https://doi.org/10.1016/j.physleta.2012.12.034
202 Galego J., Climent C., J. Garcia-Vidal F., Feist J.. Cavity Casimir‒Polder forces and their effects in ground-state chemical reactivity. Phys. Rev. X, 2019, 9(2): 021057
https://doi.org/10.1103/PhysRevX.9.021057
203 Fiscelli G., Rizzuto L., Passante R.. Dispersion interaction between two hydrogen atoms in a static electric field. Phys. Rev. Lett., 2020, 124(1): 013604
https://doi.org/10.1103/PhysRevLett.124.013604
204 L. Andrews D., P. Craig D., Thirunamachandran T.. Molecular quantum electrodynamics in chemical physics. Int. Rev. Phys. Chem., 1989, 8(4): 339
https://doi.org/10.1080/01442358909353233
205 B. Casimir H., Polder D.. The influence of retardation on the London-van der Waals forces. Phys. Rev., 1948, 73(4): 360
https://doi.org/10.1103/PhysRev.73.360
206 F. Babb J., in: Advances in Atomic, Molecular, and Optical Physics, Elsevier, 2010, pp 1–20
207 Zhang J., Yu H.. Casimir‒Polder-like force on an atom outside a Schwarzschild black hole. Phys. Rev. A, 2011, 84(4): 042103
https://doi.org/10.1103/PhysRevA.84.042103
208 Zhang J., Yu H.. Far-zone interatomic Casimir‒Polder potential between two ground-state atoms outside a Schwarzschild black hole. Phys. Rev. A, 2013, 88(6): 064501
https://doi.org/10.1103/PhysRevA.88.064501
209 Noto A.Passante R., van der Waals interaction energy between two atoms moving with uniform acceleration, Phys. Rev. D 88(2), 025041 (2013)
210 Marino J., Noto A., Passante R.. Thermal and nonthermal signatures of the Unruh effect in Casimir‒Polder forces. Phys. Rev. Lett., 2014, 113(2): 020403
https://doi.org/10.1103/PhysRevLett.113.020403
211 Barton G.. Long-range Casimir‒Polder‒Feinberg‒Sucher intermolecular potential at nonzero temperature. Phys. Rev. A, 2001, 64(3): 032102
https://doi.org/10.1103/PhysRevA.64.032102
212 Singleton D., Wilburn S., radiation Hawking. Unruh radiation, and the equivalence principle. Phys. Rev. Lett., 2011, 107(8): 081102
https://doi.org/10.1103/PhysRevLett.107.081102
213 Smerlak M., Singh S.. New perspectives on Hawking radiation. Phys. Rev. D, 2013, 88(10): 104023
https://doi.org/10.1103/PhysRevD.88.104023
214 Hodgkinson L., Louko J., C. Ottewill A.. Static detectors and circular‒geodesic detectors on the Schwarzschild black hole. Phys. Rev. D, 2014, 89(10): 104002
https://doi.org/10.1103/PhysRevD.89.104002
215 Singha C.. Remarks on distinguishability of Schwarzschild spacetime and thermal Minkowski spacetime using Resonance Casimir–Polder interaction. Mod. Phys. Lett. A, 2019, 35(2): 1950356
https://doi.org/10.1142/S0217732319503565
216 Menezes G., Kiefer C., Marino J.. Thermal and nonthermal scaling of the Casimir‒Polder interaction in a black hole spacetime. Phys. Rev. D, 2017, 95(8): 085014
https://doi.org/10.1103/PhysRevD.95.085014
217 H. Ford L., P. Hertzberg M., Karouby J.. Quantum gravitational force between polarizable objects. Phys. Rev. Lett., 2016, 116(15): 151301
https://doi.org/10.1103/PhysRevLett.116.151301
218 Wu P., Hu J., Yu H.. Quantum correction to classical gravitational interaction between two polarizable objects. Phys. Lett. B, 2016, 763: 40
https://doi.org/10.1016/j.physletb.2016.10.025
219 Hu J., Yu H.. Gravitational Casimir–Polder effect. Phys. Lett. B, 2017, 767: 16
https://doi.org/10.1016/j.physletb.2017.01.038
220 Huang Z.. Quantum correlation affected by quantum gravitational fluctuation. Class. Quantum Gravity, 2019, 36(15): 155001
https://doi.org/10.1088/1361-6382/ab2e41
221 Hu Y., Hu J., Yu H.. Quantum gravitational interaction between two objects induced by external gravitational radiation fields. Phys. Rev. D, 2020, 101(6): 066015
https://doi.org/10.1103/PhysRevD.101.066015
222 Zhou W., Cheng S., Yu H.. Interatomic interaction of two ground-state atoms in vacuum: Contributions of vacuum fluctuations and radiation reaction. Phys. Rev. A, 2021, 103(1): 012227
https://doi.org/10.1103/PhysRevA.103.012227
223 Cheng S., Zhou W., Yu H.. Probing long-range properties of vacuum altered by uniformly accelerating two spatially separated Unruh‒DeWitt detectors. Phys. Lett. B, 2022, 834: 137440
https://doi.org/10.1016/j.physletb.2022.137440
224 Zhou W., Cheng S., Yu H.. Understanding thermal nature of de Sitter spacetime via inter-detector interaction. Phys. Lett. B, 2023, 844: 138097
https://doi.org/10.1016/j.physletb.2023.138097
225 H. Dicke R.. Coherence in spontaneous radiation processes. Phys. Rev., 1954, 93(1): 99
https://doi.org/10.1103/PhysRev.93.99
226 O. Scully M., S. Fry E., H. R. Ooi C., Wódkiewicz K.. Directed spontaneous emission from an extended ensemble of N atoms: Timing is everything. Phys. Rev. Lett., 2006, 96(1): 010501
https://doi.org/10.1103/PhysRevLett.96.010501
227 H. Raymond Ooi C., Rostovtsev Y., O. Scully M.. Two-photon correlation of radiation emitted by two excited atoms: Detailed analysis of a Dicke problem. Laser Phys., 2007, 17(7): 956
https://doi.org/10.1134/S1054660X07070092
228 O. Scully M.. Collective lamb shift in single photon Dicke superradiance. Phys. Rev. Lett., 2009, 102(14): 143601
https://doi.org/10.1103/PhysRevLett.102.143601
229 Juzeliūnas G.L. Andrews D., Quantum electrodynamics of resonance energy transfer, in: Advances in Chemical Physics, John Wiley & Sons, 2000, pp 357–410
230 D. Phillips W.. Nobel lecture: Laser cooling and trapping of neutral atoms. Rev. Mod. Phys., 1998, 70(3): 721
https://doi.org/10.1103/RevModPhys.70.721
231 K. Brennen G., H. Deutsch I., S. Jessen P.. Entangling dipole‒dipole interactions for quantum logic with neutral atoms. Phys. Rev. A, 2000, 61(6): 062309
https://doi.org/10.1103/PhysRevA.61.062309
232 R. Berman P.. Interaction energy of nonidentical atoms. Phys. Rev. A, 2015, 91(4): 042127
https://doi.org/10.1103/PhysRevA.91.042127
233 W. Milonni P., M. H. Rafsanjani S.. Distance dependence of two-atom dipole interactions with one atom in an excited state. Phys. Rev. A, 2015, 92(6): 062711
https://doi.org/10.1103/PhysRevA.92.062711
234 Donaire M., Guérout R., Lambrecht A.. Quasiresonant van der Waals interaction between nonidentical atoms. Phys. Rev. Lett., 2015, 115(3): 033201
https://doi.org/10.1103/PhysRevLett.115.033201
235 D. Jentschura U., M. Adhikari C., Debierre V.. Virtual resonant emission and oscillatory long-range tails in van der Waals interactions of excited states: QED treatment and applications. Phys. Rev. Lett., 2017, 118(12): 123001
https://doi.org/10.1103/PhysRevLett.118.123001
236 Rizzuto L., Lattuca M., Marino J., Noto A., Spagnolo S., Zhou W., Passante R.. Nonthermal effects of acceleration in the resonance interaction between two uniformly accelerated atoms. Phys. Rev. A, 2016, 94(1): 012121
https://doi.org/10.1103/PhysRevA.94.012121
237 Zhou W., Passante R., Rizzuto L.. Resonance interaction energy between two accelerated identical atoms in a coaccelerated frame and the Unruh effect. Phys. Rev. D, 2016, 94(10): 105025
https://doi.org/10.1103/PhysRevD.94.105025
238 Zhou W., Passante R., Rizzuto L.. Resonance dipole–dipole interaction between two accelerated atoms in the presence of a reflecting plane boundary. Symmetry (Basel), 2018, 10(6): 185
https://doi.org/10.3390/sym10060185
239 Zhou W., Yu H.. Resonance interatomic energy in a Schwarzschild spacetime. Phys. Rev. D, 2017, 96(4): 045018
https://doi.org/10.1103/PhysRevD.96.045018
240 Zhou W., Yu H.. Boundarylike behaviors of the resonance interatomic energy in a cosmic string spacetime. Phys. Rev. D, 2018, 97(4): 045007
https://doi.org/10.1103/PhysRevD.97.045007
241 D. Nation P., R. Johansson J., P. Blencowe M., Nori F.. Stimulating uncertainty: Amplifying the quantum vacuum with superconducting circuits. Rev. Mod. Phys., 2012, 84(1): 1
https://doi.org/10.1103/RevModPhys.84.1
242 Haro J., Elizalde E.. Hamiltonian approach to the dynamical Casimir effect. Phys. Rev. Lett., 2006, 97(13): 130401
https://doi.org/10.1103/PhysRevLett.97.130401
243 F. Mundarain D., A. Maia Neto P.. Quantum radiation in a plane cavity with moving mirrors. Phys. Rev. A, 1998, 57(2): 1379
https://doi.org/10.1103/PhysRevA.57.1379
244 A. R. Dalvit D., D. Mazzitelli F.. Creation of photons in an oscillating cavity with two moving mirrors. Phys. Rev. A, 1999, 59(4): 3049
https://doi.org/10.1103/PhysRevA.59.3049
245 T. Alves D., R. Granhen E., P. Pires W.. Quantum radiation reaction force on a one-dimensional cavity with two relativistic moving mirrors. Phys. Rev. D, 2010, 82(4): 045028
https://doi.org/10.1103/PhysRevD.82.045028
246 D. Fosco C., Giraldo A., D. Mazzitelli F.. Dynamical Casimir effect for semitransparent mirrors. Phys. Rev. D, 2017, 96(4): 045004
https://doi.org/10.1103/PhysRevD.96.045004
247 M. E. Souza R., Impens F., A. M. Neto P.. Microscopic dynamical Casimir effect. Phys. Rev. A, 2018, 97(3): 032514
https://doi.org/10.1103/PhysRevA.97.032514
248 Lo L., K. Law C.. Quantum radiation from a shaken two-level atom in vacuum. Phys. Rev. A, 2018, 98(6): 063807
https://doi.org/10.1103/PhysRevA.98.063807
249 Lo L., T. Fong P., K. Law C.. Dynamical Casimir effect in resonance fluorescence. Phys. Rev. A, 2020, 102(3): 033703
https://doi.org/10.1103/PhysRevA.102.033703
250 H. Brevik I., A. Milton K., D. Odintsov S., E. Osetrin K.. Dynamical Casimir effect and quantum cosmology. Phys. Rev. D, 2000, 62(6): 064005
https://doi.org/10.1103/PhysRevD.62.064005
251 Wittemer M., Hakelberg F., Kiefer P., P. Schröder J., Fey C., Schützhold R., Warring U., Schaetz T.. Phonon pair creation by inflating quantum fluctuations in an ion trap. Phys. Rev. Lett., 2019, 123(18): 180502
https://doi.org/10.1103/PhysRevLett.123.180502
252 A. R. Dalvit D., A. Maia Neto P.. Decoherence via the dynamical Casimir effect. Phys. Rev. Lett., 2000, 84(5): 798
https://doi.org/10.1103/PhysRevLett.84.798
253 A. Andreata M., V. Dodonov V.. Dynamics of entanglement between field modes in a one-dimensional cavity with a vibrating boundary. J. Opt. B, 2005, 7: S11
https://doi.org/10.1088/1464-4266/7/3/002
254 Cong W.Tjoa E.B. Mann R., Entanglement harvesting with moving mirrors, J. High Energy Phys. 06, 021 (2019), arXiv: 1810.07359 [quant-ph] [Erratum: J. High Energy Phys. 07, 051 (2019)]
255 S. Ben-Benjamin J., O. Scully M., A. Fulling S., M. Lee D., N. Page D., A. Svidzinsky A., S. Zubairy M., J. Duff M., Glauber R., P. Schleich W., G. Unruh W.. Unruh acceleration radiation revisited. Int. J. Mod. Phys. A, 2019, 34(28): 1941005
https://doi.org/10.1142/S0217751X19410057
256 A. Svidzinsky A., S. Ben-Benjamin J., A. Fulling S., N. Page D.. Excitation of an atom by a uniformly accelerated mirror through virtual transitions. Phys. Rev. Lett., 2018, 121(7): 071301
https://doi.org/10.1103/PhysRevLett.121.071301
257 A. Svidzinsky A.. Excitation of a uniformly moving atom through vacuum fluctuations. Phys. Rev. Res., 2019, 1(3): 033027
https://doi.org/10.1103/PhysRevResearch.1.033027
258 A. Fulling S., H. Wilson J.. The equivalence principle at work in radiation from unaccelerated atoms and mirrors. Phys. Scr., 2019, 94(1): 014004
https://doi.org/10.1088/1402-4896/aaecaa
259 R. R. Good M., Quantized scalar fields under the influence of moving mirror and anisotropic curved spacetime, Ph. D. thesis, North Carolina University, 2011
260 D. Carlitz R., S. Willey R.. Reflections on moving mirrors. Phys. Rev. D, 1987, 36(8): 2327
https://doi.org/10.1103/PhysRevD.36.2327
261 Haro J., Elizalde E.. Black hole collapse simulated by vacuum fluctuations with a moving semitransparent mirror. Phys. Rev. D, 2008, 77(4): 045011
https://doi.org/10.1103/PhysRevD.77.045011
262 Nicolaevici N.. Semitransparency effects in the moving mirror model for Hawking radiation. Phys. Rev. D, 2009, 80(12): 125003
https://doi.org/10.1103/PhysRevD.80.125003
263 R. Walker W., C. W. Davies P.. An exactly soluble moving-mirror problem. J. Phys. Math. Gen., 1982, 15(9): L477
https://doi.org/10.1088/0305-4470/15/9/008
264 R. R. Good M., R. Anderson P., R. Evans C.. Time dependence of particle creation from accelerating mirrors. Phys. Rev. D, 2013, 88(2): 025023
https://doi.org/10.1103/PhysRevD.88.025023
265 R. R. Good M., R. Anderson P., R. Evans C.. Mirror reflections of a black hole. Phys. Rev. D, 2016, 94(6): 065010
https://doi.org/10.1103/PhysRevD.94.065010
266 R. R. Good M., V. Linder E.. Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect. Phys. Rev. D, 2017, 96(12): 125010
https://doi.org/10.1103/PhysRevD.96.125010
267 R. R. Good M., V. Linder E., Wilczek F.. Finite thermal particle creation of Casimir light. Mod. Phys. Lett. A, 2020, 35(3): 2040006
https://doi.org/10.1142/S0217732320400064
268 Mintz B., Farina C., A. Maia Neto P., B. Rodrigues R.. Particle creation by a moving boundary with a Robin boundary condition. J. Phys. Math. Gen., 2006, 39(36): 11325
https://doi.org/10.1088/0305-4470/39/36/013
269 Barton G., Calogeracos A.. On the quantum electrodynamics of a dispersive mirror. Ann. Phys., 1995, 238(2): 227
https://doi.org/10.1006/aphy.1995.1021
270 Calogeracos A., Barton G.. On the quantum electrodynamics of a dispersive mirror. Ann. Phys., 1995, 238(2): 268
https://doi.org/10.1006/aphy.1995.1022
271 Golestanian R., Kardar M.. Mechanical response of vacuum. Phys. Rev. Lett., 1997, 78(18): 3421
https://doi.org/10.1103/PhysRevLett.78.3421
272 Golestanian R., Kardar M.. Path-integral approach to the dynamic Casimir effect with fluctuating boundaries. Phys. Rev. A, 1998, 58(3): 1713
https://doi.org/10.1103/PhysRevA.58.1713
273 Sopova V., H. Ford L.. Energy density in the Casimir effect. Phys. Rev. D, 2002, 66(4): 045026
https://doi.org/10.1103/PhysRevD.66.045026
274 R. Galley C., O. Behunin R., L. Hu B.. Oscillator-field model of moving mirrors in quantum optomechanics. Phys. Rev. A, 2013, 87(4): 043832
https://doi.org/10.1103/PhysRevA.87.043832
275 Wang Q., G. Unruh W.. Motion of a mirror under infinitely fluctuating quantum vacuum stress. Phys. Rev. D, 2014, 89(8): 085009
https://doi.org/10.1103/PhysRevD.89.085009
276 Wang Q., G. Unruh W.. Mirror moving in quantum vacuum of a massive scalar field. Phys. Rev. D, 2015, 92(6): 063520
https://doi.org/10.1103/PhysRevD.92.063520
277 R. Walker W.. Particle and energy creation by moving mirrors. Phys. Rev. D, 1985, 31(4): 767
https://doi.org/10.1103/PhysRevD.31.767
278 Fabbri A.Navarro-Salas J., Modeling Black Hole Evaporation, 2005
279 Sorge F.. Casimir effect in a weak gravitational field. Class. Quantum Gravity, 2005, 22(23): 5109
https://doi.org/10.1088/0264-9381/22/23/012
280 Sorge F.. Casimir effect in a weak gravitational field: Schwinger’s approach. Class. Quantum Gravity, 2019, 36(23): 235006
https://doi.org/10.1088/1361-6382/ab4def
281 C. Celeri L.Pascoal F.H. Y. Moussa M., Action of the gravitational field on the dynamical Casimir effect, Class. Quant. Grav. 26, 105014 (2009), arXiv: 0809.3706 [quant-ph]
282 Rätzel D., Schneiter F., Braun D., Bravo T., Howl R., P. E. Lock M., Fuentes I.. Frequency spectrum of an optical resonator in a curved spacetime. New J. Phys., 2018, 20(5): 053046
https://doi.org/10.1088/1367-2630/aac0ac
283 Sorge F., H. Wilson J.. Casimir effect in free fall towards a Schwarzschild black hole. Phys. Rev. D, 2019, 100(10): 105007
https://doi.org/10.1103/PhysRevD.100.105007
284 H. Wilson J., Sorge F., A. Fulling S.. Tidal and nonequilibrium Casimir effects in free fall. Phys. Rev. D, 2020, 101(6): 065007
https://doi.org/10.1103/PhysRevD.101.065007
285 Fagnocchi S., Finazzi S., Liberati S., Kormos M., Trombettoni A.. Relativistic Bose–Einstein condensates: A new system for analogue models of gravity. New J. Phys., 2010, 12(9): 095012
https://doi.org/10.1088/1367-2630/12/9/095012
286 Friis N., R. Lee A., Louko J.. Scalar, spinor, and photon fields under relativistic cavity motion. Phys. Rev. D, 2013, 88(6): 064028
https://doi.org/10.1103/PhysRevD.88.064028
287 P. C. M. Lima A.Alencar G.R. Muniz C. R. Landim R., Null second order corrections to Casimir energy in weak gravitational field, J. Cosmol. Astropart. Phys. 07, 011 (2019), arXiv: 1903.00512 [hep-th]
288 O. Scully M.V. Kocharovsky V.Belyanin A. Fry E.Capasso F., Enhancing acceleration radiation from ground-state atoms via cavity quantum electrodynamics, Phys. Rev. Lett. 91, 243004 (2003), arXiv: quant-ph/0305178
289 P. Dolan B., Hunter-McCabe A., Twamley J.. Shaking photons from the vacuum: Acceleration radiation from vibrating atoms. New J. Phys., 2020, 22(3): 033026
https://doi.org/10.1088/1367-2630/ab7bd5
290 O. Scully M., A. Svidzinsky A., Unruh W.. Causality in acceleration radiation. Phys. Rev. Res., 2019, 1(3): 033115
https://doi.org/10.1103/PhysRevResearch.1.033115
291 R. R. Good M., Reflections on a black mirror, in: 2nd LeCosPA Symposium: Everything about Gravity, Celebrating the Centenary of Einstein’s General Relativity, 2016, arXiv: 1602.00683 [gr-qc]
292 R. R. Good M.. Extremal Hawking radiation. Phys. Rev. D, 2020, 101(10): 104050
https://doi.org/10.1103/PhysRevD.101.104050
293 R. R. Good M., Zhakenuly A., V. Linder E.. Mirror at the edge of the universe: Reflections on an accelerated boundary correspondence with de Sitter cosmology. Phys. Rev. D, 2020, 102(4): 045020
https://doi.org/10.1103/PhysRevD.102.045020
294 D. Bekenstein J.. Black holes and entropy. Phys. Rev. D, 1973, 7(8): 2333
https://doi.org/10.1103/PhysRevD.7.2333
295 Alfaro V., Fubini S., Furlan G.. Conformal invariance in quantum mechanics. Nuovo Cimento A Serie, 1976, 34: 569
https://doi.org/10.1007/BF02785666
296 E. Camblong H., R. Ordonez C.. Black hole thermodynamics from near-horizon conformal quantum mechanics. Phys. Rev. D, 2005, 71(10): 104029
https://doi.org/10.1103/PhysRevD.71.104029
297 E. Camblong H., R. Ordonez C.. Semiclassical methods in curved spacetime and black hole thermodynamics. Phys. Rev. D, 2005, 71(12): 124040
https://doi.org/10.1103/PhysRevD.71.124040
298 E. Camblong H., Chakraborty A., R. Ordonez C.. Near-horizon aspects of acceleration radiation by free fall of an atom into a black hole. Phys. Rev. D, 2020, 102(8): 085010
https://doi.org/10.1103/PhysRevD.102.085010
299 Azizi A.E. Camblong H.Chakraborty A.R. Ordonez C.O. Scully M., Quantum optics meets black hole thermodynamics via conformal quantum mechanics: I. Master equation for acceleration radiation, Phys. Rev. D 104, 084086 (2021), arXiv: 2108.07570 [gr-qc]
300 Azizi A.E. Camblong H.Chakraborty A.R. Ordonez C.O. Scully M., Quantum optics meets black hole thermodynamics via conformal quantum mechanics: II. Thermodynamics of acceleration radiation, Phys. Rev. D 104, 084085 (2021), arXiv: 2108.07572 [gr-qc]
301 M. Maldacena J.Seiberg N., Flux-vacua in two dimensional string theory, J. High Energy Phys. 09, 077 (2005), arXiv: hep-th/0506141
302 Morita T.. Thermal emission from semiclassical dynamical systems. Phys. Rev. Lett., 2019, 122(10): 101603
https://doi.org/10.1103/PhysRevLett.122.101603
303 Maitra M., Maity D., R. Majhi B.. Near horizon symmetries, emergence of Goldstone modes and thermality. Eur. Phys. J. Plus, 2020, 135(6): 483
https://doi.org/10.1140/epjp/s13360-020-00451-3
304 Dalui S., R. Majhi B.. Near-horizon local instability and quantum thermality. Phys. Rev. D, 2020, 102(12): 124047
https://doi.org/10.1103/PhysRevD.102.124047
305 Dalui S., R. Majhi B., Mishra P.. Horizon induces instability locally and creates quantum thermality. Phys. Rev. D, 2020, 102(4): 044006
https://doi.org/10.1103/PhysRevD.102.044006
306 Dalui S., R. Majhi B.. Horizon thermalization of Kerr black hole through local instability. Phys. Lett. B, 2022, 826: 136899
https://doi.org/10.1016/j.physletb.2022.136899
307 Dalui S., R. Majhi B., Padmanabhan T.. Thermal nature of a generic null surface. Phys. Rev. D, 2021, 104(12): 124080
https://doi.org/10.1103/PhysRevD.104.124080
308 R. Kane G.R. Majhi B., Thermality of horizon through near horizon instability: A path integral approach, arXiv: 2210.04056 [gr-qc] (2022)
309 Chatterjee R., Gangopadhyay S., S. Majumdar A.. Violation of equivalence in an accelerating atom-mirror system in the generalized uncertainty principle framework. Phys. Rev. D, 2021, 104(12): 124001
https://doi.org/10.1103/PhysRevD.104.124001
310 Sen S., Mandal R., Gangopadhyay S.. Equivalence principle and HBAR entropy of an atom falling into a quantum corrected black hole. Phys. Rev. D, 2022, 105(8): 085007
https://doi.org/10.1103/PhysRevD.105.085007
311 Chakraborty K., R. Majhi B.. Detector response along null geodesics in black hole spacetimes and in a Friedmann‒Lemaitre‒Robertson‒Walker universe. Phys. Rev. D, 2019, 100(4): 045004
https://doi.org/10.1103/PhysRevD.100.045004
312 M. A. S. Bukhari S.G. Wang L., Seeing dark matter via acceleration radiation, arXiv: 2309.11958 [gr-qc] (2023)
313 K. Parikh M., Wilczek F.. Hawking radiation as tunneling. Phys. Rev. Lett., 2000, 85(24): 5042
https://doi.org/10.1103/PhysRevLett.85.5042
314 Visser M., Thermality of the Hawking flux, J. High Energy Phys. 07, 009 (2015), arXiv: 1409.7754 [gr-qc]
315 H. Ma Y., Y. Cai Q., Dong H., P. Sun C.. Non-thermal radiation of black holes off canonical typicality. EPL, 2018, 122(3): 30001
https://doi.org/10.1209/0295-5075/122/30001
316 Kastor D.H. Traschen J., Particle production and positive energy theorems for charged black holes in de Sitter, Class. Quant. Grav. 13, 2753 (1996), arXiv: gr-qc/9311025
317 Bhattacharya S.. Particle creation by de Sitter black holes revisited. Phys. Rev. D, 2018, 98(12): 125013
https://doi.org/10.1103/PhysRevD.98.125013
318 Qiu Y.Traschen J., Black hole and cosmological particle production in Schwarzschild de Sitter, Class. Quant. Grav. 37, 135012 (2020), arXiv: 1908.02737 [hep-th]
319 M. A. S. Bukhari S., A. Bhat I., Xu C., G. Wang L.. Nonthermal acceleration radiation of atoms near a black hole in presence of dark energy. Phys. Rev. D, 2023, 107(10): 105017
https://doi.org/10.1103/PhysRevD.107.105017
320 D. Bartlett S., Rudolph T., W. Spekkens R.. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys., 2007, 79(2): 555
https://doi.org/10.1103/RevModPhys.79.555
321 C. Ralph T., G. Downes T.. Relativistic quantum information and time machines. Contemp. Phys., 2012, 53(1): 1
https://doi.org/10.1080/00107514.2011.640146
322 J. Summers S., Werner R.. Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys., 1987, 110(2): 247
https://doi.org/10.1007/BF01207366
323 Reznik B., Retzker A., Silman J.. Violating Bell’s inequalities in vacuum. Phys. Rev. A, 2005, 71(4): 042104
https://doi.org/10.1103/PhysRevA.71.042104
324 Salton G., B. Mann R., C. Menicucci N.. Acceleration-assisted entanglement harvesting and rangefinding. New J. Phys., 2015, 17(3): 035001
https://doi.org/10.1088/1367-2630/17/3/035001
325 Pozas-Kerstjens A., Martin-Martinez E.. Harvesting correlations from the quantum vacuum. Phys. Rev. D, 2015, 92(6): 064042
https://doi.org/10.1103/PhysRevD.92.064042
326 Zhou Y., Hu J., Yu H.. Steady-state entanglement for rotating Unruh‒DeWitt detectors. Phys. Rev. D, 2022, 106(10): 105028
https://doi.org/10.1103/PhysRevD.106.105028
327 Liu Z., Zhang J., Yu H.. Entanglement harvesting of accelerated detectors versus static ones in a thermal bath. Phys. Rev. D, 2023, 107(4): 045010
https://doi.org/10.1103/PhysRevD.107.045010
328 Bozanic L., Naeem M., Gallock-Yoshimura K., B. Mann R.. Correlation harvesting between particle detectors in uniform motion. Phys. Rev. D, 2023, 108(10): 105017
https://doi.org/10.1103/PhysRevD.108.105017
329 Zhang J., Yu H.. Entanglement harvesting for Unruh‒DeWitt detectors in circular motion. Phys. Rev. D, 2020, 102(6): 065013
https://doi.org/10.1103/PhysRevD.102.065013
330 Liu Z.Zhang J.Yu H., Entanglement harvesting in the presence of a reflecting boundary, J. High Energy Phys. 08, 020 (2021), arXiv: 2101.00114 [quant-ph]
331 Ye Y., Yu H., Hu J.. Entanglement generation and protection for two atoms in the presence of two parallel mirrors. Commum. Theor. Phys., 2021, 73(6): 065104
https://doi.org/10.1088/1572-9494/abf03d
332 Liu Z.Zhang J.Yu H., Harvesting correlations from vacuum quantum fields in the presence of a reflecting boundary, J. High Energy Phys. 11, 184 (2023), arXiv: 2310.07164 [quant-ph]
333 Li R.Zhao Z., Entanglement harvesting of circularly accelerated detectors with a reflecting boundary, arXiv: 2401.16018 [quant-ph] (2024)
334 Barman D., R. Majhi B.. Are multiple reflecting boundaries capable of enhancing entanglement harvesting. Phys. Rev. D, 2023, 108(8): 085007
https://doi.org/10.1103/PhysRevD.108.085007
335 Ji Y.Zhang J. Yu H., Entanglement harvesting in cosmic string spacetime, arXiv: 2401.13406 [quant-ph] (2024)
336 Martin-Martinez E., R. H. Smith A., R. Terno D.. Spacetime structure and vacuum entanglement. Phys. Rev. D, 2016, 93(4): 044001
https://doi.org/10.1103/PhysRevD.93.044001
337 Hu H.Zhang J. Yu H., Harvesting entanglement by non-identical detectors with different energy gaps, J. High Energy Phys. 05, 112 (2022), arXiv: 2204.01219 [quant-ph]
338 Cong W.Qian C.R. R. Good M.B. Mann R., Effects of horizons on entanglement harvesting, J. High Energy Phys. 10, 067 (2020), arXiv: 2006.01720 [gr-qc]
339 J. Henderson L.A. Hennigar R.B. Mann R. R. H. Smith A.Zhang J., Harvesting entanglement from the black hole vacuum, Class. Quant. Grav. 35, 21LT02 (2018), arXiv: 1712.10018 [quant-ph]
340 A. G. A. Caribé J., H. Jonsson R., Casals M., Kempf A., Martín-Martínez E.. Lensing of vacuum entanglement near Schwarzschild black holes. Phys. Rev. D, 2023, 108(2): 025016
https://doi.org/10.1103/PhysRevD.108.025016
341 Hu J., Yu H.. Quantum entanglement generation in de Sitter spacetime. Phys. Rev. D, 2013, 88(10): 104003
https://doi.org/10.1103/PhysRevD.88.104003
342 Bueley K., Huang L., Gallock-Yoshimura K., B. Mann R.. Harvesting mutual information from BTZ black hole spacetime. Phys. Rev. D, 2022, 106(2): 025010
https://doi.org/10.1103/PhysRevD.106.025010
343 Gallock-Yoshimura K., Tjoa E., B. Mann R.. Harvesting entanglement with detectors freely falling into a black hole. Phys. Rev. D, 2021, 104(2): 025001
https://doi.org/10.1103/PhysRevD.104.025001
[1] Li-Xin Li. A new unified theory of electromagnetic and gravitational interactions[J]. Front. Phys. , 2016, 11(6): 110402-.
[2] Ram Gopal Vishwakarma. Mysteries of Rik = 0: A novel paradigm in Einstein’s theory of gravitation[J]. Front. Phys. , 2014, 9(1): 98-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed