|
|
Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory |
Jin-Man Chen1, Ze-Rui Liang1, De-Liang Yao1,2,3( ) |
1. School of Physics and Electronics, Hunan University, Changsha 410082, China 2. Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, Hunan University, Changsha 410082, China 3. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract The low-energy antineutrino- and neutrino−nucleon neutral current elastic scattering is studied within the framework of the relativistic SU(2) baryon chiral perturbation theory up to the order of . We have derived the model-independent hadronic amplitudes and extracted the form factors from them. It is found that differential cross sections for the processes of (anti)neutrino−proton scattering are in good agreement with the existing MiniBooNE data in the region GeV2, where nuclear effects are expected to be negligible. For GeV2, large deviation is observed, which is mainly owing to the sizeable Pauli blocking effect. Comparisons with the simulation data produced by the NuWro and GENIE Mento Carlo events generators are also discussed. The chiral results obtained in this work can be utilized as inputs in various nuclear models to achieve the goal of precise determination of the strangeness axial vector form factor, in particular when the low-energy MicroBooNE data are available in the near future.
|
Keywords
chiral perturbation theory
neutrino−nucleon scattering
form factors
chiral Lagrangians
one-loop amplitude
neutral weak current
|
Corresponding Author(s):
De-Liang Yao
|
Issue Date: 19 June 2024
|
|
1 |
Abe K., Hayato Y., Iida T., Ikeda M., Ishihara C.. et al.. Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D, 2011, 83(5): 052010
https://doi.org/10.1103/PhysRevD.83.052010
|
2 |
Abusleme A., Adam T., Ahmad S., Ahmed R., Aiello S.. et al.. Sub-percent precision measurement of neutrino oscillation parameters with JUNO. Chin. Phys. C, 2022, 46(12): 123001
https://doi.org/10.1088/1674-1137/ac8bc9
|
3 |
Adamson P., Andreopoulos C., Armstrong R., J. Auty D., S. Ayres D.. et al.. Measurement of the neutrino mass splitting and flavor mixing by MINOS. Phys. Rev. Lett., 2011, 106(18): 181801
https://doi.org/10.1103/PhysRevLett.106.181801
|
4 |
A. Aguilar-Arevalo A., E. Anderson C., O. Bazarko A., J. Brice S., C. Brown B.. et al.. Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at Eν ~ 1 GeV. Phys. Rev. D, 2010, 82(9): 092005
https://doi.org/10.1103/PhysRevD.82.092005
|
5 |
A. Aguilar-Arevalo A., C. Brown B., Bugel L., Cheng G., D. Church E.. et al.. Measurement of the antineutrino neutral-current elastic differential cross section. Phys. Rev. D, 2015, 91(1): 012004
https://doi.org/10.1103/PhysRevD.91.012004
|
6 |
A. Ahrens L., H. Aronson S., L. Connolly P., G. Gibbard B., J. Murtagh M.. et al.. Measurement of neutrino−proton and anti-neutrino−proton elastic scattering. Phys. Rev. D, 1987, 35(3): 785
https://doi.org/10.1103/PhysRevD.35.785
|
7 |
Alvarez-Ruso L., Sajjad Athar M., B. Barbaro M., Cherdack D., E. Christy M.. et al.. NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering. Prog. Part. Nucl. Phys., 2018, 100: 1
https://doi.org/10.1016/j.ppnp.2018.01.006
|
8 |
Alvarez-Ruso L., Neutrinos and their interactions in the Standard Model, Acta Phys. Pol. B Proc. Suppl. 9(4 Supp.), 669 (2016)
|
9 |
P. An F., Z. Bai J., B. Balantekin A., R. Band H., Beavis D.. et al.. Observation of electron−antineutrino disappearance at Daya Bay. Phys. Rev. Lett., 2012, 108(17): 171803
https://doi.org/10.1103/PhysRevLett.108.171803
|
10 |
Andreopoulos C., Bell A., Bhattacharya D., Cavanna F., Dobson J., Dytman S., Gallagher H., Guzowski P., Hatcher R., Kehayias P., Meregaglia A., Naples D., Pearce G., Rubbia A., Whalley M., Yang T.. The GENIE neutrino monte carlo generator. Nucl. Instrum. Methods Phys. Res. A, 2010, 614(1): 87
https://doi.org/10.1016/j.nima.2009.12.009
|
11 |
Ashman J.Badelek B.Baum G.Beaufays J.P. Bee C., et al.., A measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon−proton scattering, Phys. Lett. B 206(2), 364 (1988)
|
12 |
Bauer T., C. Bernauer J., Scherer S.. Electromagnetic form factors of the nucleon in effective field theory. Phys. Rev. C Nucl. Phys., 2012, 86(6): 065206
https://doi.org/10.1103/PhysRevC.86.065206
|
13 |
F. Beacom J., Chen S., Cheng J., N. Doustimotlagh S., Gao Y.. et al.. Physics prospects of the Jinping neutrino experiment. Chin. Phys. C, 2017, 41(2): 023002
https://doi.org/10.1088/1674-1137/41/2/023002
|
14 |
Benhar O., Huber P., Mariani C., Meloni D.. Neutrino–nucleus interactions and the determination of oscillation parameters. Phys. Rep., 2017, 700: 1
https://doi.org/10.1016/j.physrep.2017.07.004
|
15 |
Bernard V., Kaiser N., G. Meißner U.. Low-energy theorems for weak pion production. Phys. Lett. B, 1994, 331(1−2): 137
https://doi.org/10.1016/0370-2693(94)90954-7
|
16 |
Bernard V., Kaiser N., G. MEIßNER U.. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E, 1995, 4(2): 193
https://doi.org/10.1142/S0218301395000092
|
17 |
Bernard V.. Chiral perturbation theory and baryon properties. Prog. Part. Nucl. Phys., 2008, 60(1): 82
https://doi.org/10.1016/j.ppnp.2007.07.001
|
18 |
Bernard V., Elouadrhiri L., G. Meißner U.. Axial structure of the nucleon. J. Phys. G, 2002, 28(1): R1
https://doi.org/10.1088/0954-3899/28/1/201
|
19 |
A. Bertulani C., Gade A.. Nuclear astrophysics with radioactive beams. Phys. Rep., 2010, 485(6): 195
https://doi.org/10.1016/j.physrep.2009.09.002
|
20 |
Casper D.. The Nuance neutrino physics simulation, and the future. Nucl. Phys. B Proc. Suppl., 2002, 112(1−3): 161
https://doi.org/10.1016/S0920-5632(02)01756-5
|
21 |
H. Chen Y., L. Yao D., Q. Zheng H.. Analyses of pion-nucleon elastic scattering amplitudes up to O(p4) in extended-on-mass-shell subtraction scheme. Phys. Rev. D, 2013, 87(5): 054019
https://doi.org/10.1103/PhysRevD.87.054019
|
22 |
Denner A., Dittmaier S.. Reduction schemes for one-loop tensor integrals. Nucl. Phys. B, 2006, 734(1-2): 62
https://doi.org/10.1016/j.nuclphysb.2005.11.007
|
23 |
Fettes N., G. Meißner U., Mojžiš M., Steininger S.. The chiral effective pion nucleon Lagrangian of order p**4. Ann. Phys., 2000, 283(2): 273
https://doi.org/10.1006/aphy.2000.6059
|
24 |
A. Formaggio J., P. Zeller G.. From eV to EeV: Neutrino cross sections across energy scales. Rev. Mod. Phys., 2012, 84(3): 1307
https://doi.org/10.1103/RevModPhys.84.1307
|
25 |
Fuchs T., Gegelia J., Japaridze G., Scherer S.. Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D, 2003, 68(5): 056005
https://doi.org/10.1103/PhysRevD.68.056005
|
26 |
Fuchs T., Gegelia J., Scherer S.. Electromagnetic form factors of the nucleon in chiral perturbation theory. J. Phys. G, 2004, 30(10): 1407
https://doi.org/10.1088/0954-3899/30/10/008
|
27 |
T. Garvey G., C. Louis W., H. White D.. Determination of proton strange form-factors from neutrino p elastic scattering. Phys. Rev. C, 1993, 48(2): 761
https://doi.org/10.1103/PhysRevC.48.761
|
28 |
Gasser J., Leutwyler H.. Chiral perturbation theory to one loop. Ann. Phys., 1984, 158(1): 142
https://doi.org/10.1016/0003-4916(84)90242-2
|
29 |
Gasser J., Leutwyler H.. Chiral perturbation theory: Expansions in the mass of the strange quark. Nucl. Phys. B, 1985, 250(1-4): 465
https://doi.org/10.1016/0550-3213(85)90492-4
|
30 |
Gasser J., E. Sainio M., Svarc A.. Nucleons with chiral loops. Nucl. Phys. B, 1988, 307(4): 779
https://doi.org/10.1016/0550-3213(88)90108-3
|
31 |
Geng L.. Recent developments in SU(3) covariant baryon chiral perturbation theory. Front. Phys. (Beijing), 2013, 8(3): 328
https://doi.org/10.1007/s11467-013-0327-7
|
32 |
Golan T.T. Sobczyk J.Zmuda J., NuWro: the Wroclaw Monte Carlo generator of neutrino interactions, Nucl. Phys. B Proc. Suppl. 229–232, 499 (2012)
|
33 |
N. Hand L., G. Miller D., Wilson R.. Electric and magnetic form factors of the nucleon. Rev. Mod. Phys., 1963, 35(2): 335
https://doi.org/10.1103/RevModPhys.35.335
|
34 |
Horstkotte J., Entenberg A., S. Galik R., K. Mann A., H. Williams H., Kozanecki W., Rubbia C., Strait J., Sulak L., Wanderer P.. Measurement of neutrino−proton and anti-neutrinos−proton elastic scattering. Phys. Rev. D, 1982, 25(11): 2743
https://doi.org/10.1103/PhysRevD.25.2743
|
35 |
T. Janka H.. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci., 2012, 62(1): 407
https://doi.org/10.1146/annurev-nucl-102711-094901
|
36 |
Juszczak C., A. Nowak J., T. Sobczyk J.. Simulations from a new neutrino event generator. Nucl. Phys. B Proc. Suppl., 2006, 159: 211
https://doi.org/10.1016/j.nuclphysbps.2006.08.069
|
37 |
L. Korpa C.F. M. Lutz M.Y. Guo X.Heo Y.. Coupled-channel system with anomalous thresholds and unitarity, Phys. Rev. D 107(3), L031505 (2023)
|
38 |
Liang J., B. Yang Y., Draper T., Gong M., F. Liu K.. Quark spins and anomalous ward identity. Phys. Rev. D, 2018, 98(7): 074505
https://doi.org/10.1103/PhysRevD.98.074505
|
39 |
R. Liang Z., C. Qiu P., L. Yao D.. One-loop analysis of the interactions between doubly charmed baryons and Nambu−Goldstone bosons. J. High Energy Phys., 2023, 07(7): 124
https://doi.org/10.1007/JHEP07(2023)124
|
40 |
H. Llewellyn Smith C.. Neutrino reactions at accelerator energies. Phys. Rep., 1972, 3(5): 261
https://doi.org/10.1016/0370-1573(72)90010-5
|
41 |
Passarino G., J. G. Veltman M.. One loop corrections for e+e− annihilation into μ+μ− in the Weinberg Model. Nucl. Phys. B, 1979, 160(1): 151
https://doi.org/10.1016/0550-3213(79)90234-7
|
42 |
F. Pate S.Papavassiliou V.P. Schaub J.P. Trujillo D.V. Ivanov M.B. Barbaro M.Giusti C., Global fit of electron and neutrino elastic scattering data to determine the strange quark contribution to the vector and axial form factors of the nucleon, arXiv: 2402.10854 [hep-ph] (2024)
|
43 |
Patrignani C.. et al.. Review of particle physics. Chin. Phys. C, 2016, 40(10): 100001
https://doi.org/10.1088/1674-1137/40/10/100001
|
44 |
Perevalov D., Neutrino−nucleus neutral current elastic interactions measurement in Mini-BooNE, PhD thesis, Alabama University, 2009
|
45 |
Ren L.. Studies of neutral current neutrino-nucleon scattering with the MicroBooNE Detector. JPS Conf. Proc., 2022, 37: 020309
https://doi.org/10.7566/JPSCP.37.020309
|
46 |
S. Athar M., W. Barwick S., Brunner T., Cao J., Danilov M.. et al.. Status and perspectives of neutrino physics. Prog. Part. Nucl. Phys., 2022, 124: 103947
https://doi.org/10.1016/j.ppnp.2022.103947
|
47 |
Scherer S.. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 2003, 27: 277
https://doi.org/10.1007/0-306-47916-8_2
|
48 |
R. Schindler M., Fuchs T., Gegelia J., Scherer S.. Axial, induced pseudoscalar, and pion−nucleon form-factors in manifestly Lorentz-invariant chiral perturbation theory. Phys. Rev. C, 2007, 75(2): 025202
https://doi.org/10.1103/PhysRevC.75.025202
|
49 |
A. Smith R., J. Moniz E.. Neutrino reactions on nuclear targets. Nucl. Phys. B, 1972, 43: 605
https://doi.org/10.1016/0550-3213(72)90040-5
|
50 |
S. Sufian R., F. Liu K., G. Richards D.. Weak neutral current axial form factor using (ν)ν−nucleon scattering and lattice QCD inputs. J. High Energy Phys., 2020, 2020(1): 136
https://doi.org/10.1007/JHEP01(2020)136
|
51 |
Weinberg S.. Phenomenological Lagrangians. Physica A, 1979, 96(1−2): 327
https://doi.org/10.1016/0378-4371(79)90223-1
|
52 |
L. Workman R.. et al.. Review of particle physics. Prog. Theor. Exp. Phys., 2022, 2022(8): 083C01
https://doi.org/10.1093/ptep/ptac097
|
53 |
L. Yao D., Alvarez-Ruso L., J. Vicente-Vacas M.. Extraction of nucleon axial charge and radius from lattice QCD results using baryon chiral perturbation theory. Phys. Rev. D, 2017, 96(11): 116022
https://doi.org/10.1103/PhysRevD.96.116022
|
54 |
L. Yao D., Alvarez-Ruso L., N. H. Blin A., J. V. Vacas M.. Weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Rev. D, 2018, 98(7): 076004
https://doi.org/10.1103/PhysRevD.98.076004
|
55 |
L. Yao D., Alvarez-Ruso L., J. Vicente Vacas M.. Neutral-current weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Lett. B, 2019, 794: 109
https://doi.org/10.1016/j.physletb.2019.05.036
|
56 |
L. Yao D.Y. Dai L.Q. Zheng H.Y. Zhou Z., A review on partial-wave dynamics with chiral effective field theory and dispersion relation, Rep. Prog. Phys. 84(7), 076201 (2021)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|