Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2024, Vol. 19 Issue (6) : 64202    https://doi.org/10.1007/s11467-024-1417-4
Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory
Jin-Man Chen1, Ze-Rui Liang1, De-Liang Yao1,2,3()
1. School of Physics and Electronics, Hunan University, Changsha 410082, China
2. Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, Hunan University, Changsha 410082, China
3. CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(3828 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The low-energy antineutrino- and neutrino−nucleon neutral current elastic scattering is studied within the framework of the relativistic SU(2) baryon chiral perturbation theory up to the order of O( p3). We have derived the model-independent hadronic amplitudes and extracted the form factors from them. It is found that differential cross sections dσ /d Q2 for the processes of (anti)neutrino−proton scattering are in good agreement with the existing MiniBooNE data in the Q2 region [ 0.13,0.20] GeV2, where nuclear effects are expected to be negligible. For Q2 0.13 GeV2, large deviation is observed, which is mainly owing to the sizeable Pauli blocking effect. Comparisons with the simulation data produced by the NuWro and GENIE Mento Carlo events generators are also discussed. The chiral results obtained in this work can be utilized as inputs in various nuclear models to achieve the goal of precise determination of the strangeness axial vector form factor, in particular when the low-energy MicroBooNE data are available in the near future.

Keywords chiral perturbation theory      neutrino−nucleon scattering      form factors      chiral Lagrangians      one-loop amplitude      neutral weak current     
Corresponding Author(s): De-Liang Yao   
Issue Date: 19 June 2024
 Cite this article:   
Jin-Man Chen,Ze-Rui Liang,De-Liang Yao. Low-energy elastic (anti)neutrino−nucleon scattering in covariant baryon chiral perturbation theory[J]. Front. Phys. , 2024, 19(6): 64202.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-024-1417-4
https://academic.hep.com.cn/fop/EN/Y2024/V19/I6/64202
Fig.1  Kinematics of neutral current elastic neutrino-nucleon scattering under the one-boson exchange approximation.
Physical process C3 C0
ν+pν+p 1 1
ν¯+p ν¯+p 1 1
ν+nν+n 1 1
ν¯+n ν¯+n 1 1
Tab.1  Isospin factors for physical processes.
Fig.2  Tree-level Feynman diagrams up to and including O(p3). The solid, dashed and wavy lines represent the nucleon, pions and the Z boson, in order. The circled numbers indicate the chiral orders of the vertices.
Fig.3  One-loop Feynman diagrams up to and including O(p3). The solid, dashed and wavy lines represent the nucleon, pions and the Z boson, in order. The circled numbers indicate the chiral orders of the vertices.
LEC Value Source
LπN( 1) g 1.13± 0.01 GA [53]
LπN( 2) c6 1.35± 0.04 κp and κn [12, 43]
c7 2.68 ±0.08 κp and κn [12, 43]
LπN( 3) d6 0.0± 1.0
d7 0.49 Electromagnetic radii [26]
d16 0.83 ±0.03 GA [53]
d22 0.96± 0.03 GA [53]
Tab.2  Values of the LECs involved in neutrino−nucleon NCE scattering. The axial coupling constant g is dimensionless. The LECs ci and dj are in units of GeV−1 and GeV−2, respectively.
Fig.4  Differential cross section dσ /d Q2 of νp NCE scattering, with the neutrino energy being Eν=0.8 GeV. The MiniBooNE data [4, 5] are marked by black dots with error bars. The NuWro data for free nucleon, bound nucleon with and without Pauli blocking effect are represented by orange diamonds, red crosses and green triangles in order. The blue solid line denotes the ChPT result up to O(p3), while the magenta dashed line stands for the sum of our ChPT prediction and Pauli blocking effect. The error bands are obtained by varying the LECs in their 1−σ uncertainties. We use the abbreviation “PBE” for “Pauli blocking effect” in the figure.
Fig.5  Differential cross section dσ /d Q2 of ν¯ p NCE scattering, with the anti neutrino energy being E ν¯=0.65 GeV. Other description is the same as Fig.4.
Fig.6  Differential cross sections [dσ/dQ2]ν nν n with Eν=0.8 GeV and [ dσ /dQ 2]ν¯ nν¯n with Eν¯=0.65 GeV. The ChPT and NuWro simulation results are represented by solid lines and blue diamonds, respectively. The red error bands are obtained by varying the LECs in their 1−σ uncertainties.
Fig.7  Contour plot of Q2 with varying Eν and cos?θ.
Fig.8  Total cross sections at different chiral orders. Our ChPT prediction is expected to be reliable up to Eν ( ν¯ ) m ax=0.28 GeV, indicated by the gray vertical line. For comparison, the simulation data produced by NuWro and GENIE events generators are also shown by red crosses and black diamonds, respectively.
1 Abe K., Hayato Y., Iida T., Ikeda M., Ishihara C.. et al.. Solar neutrino results in Super-Kamiokande-III. Phys. Rev. D, 2011, 83(5): 052010
https://doi.org/10.1103/PhysRevD.83.052010
2 Abusleme A., Adam T., Ahmad S., Ahmed R., Aiello S.. et al.. Sub-percent precision measurement of neutrino oscillation parameters with JUNO. Chin. Phys. C, 2022, 46(12): 123001
https://doi.org/10.1088/1674-1137/ac8bc9
3 Adamson P., Andreopoulos C., Armstrong R., J. Auty D., S. Ayres D.. et al.. Measurement of the neutrino mass splitting and flavor mixing by MINOS. Phys. Rev. Lett., 2011, 106(18): 181801
https://doi.org/10.1103/PhysRevLett.106.181801
4 A. Aguilar-Arevalo A., E. Anderson C., O. Bazarko A., J. Brice S., C. Brown B.. et al.. Measurement of the neutrino neutral-current elastic differential cross section on mineral oil at ~ 1 GeV. Phys. Rev. D, 2010, 82(9): 092005
https://doi.org/10.1103/PhysRevD.82.092005
5 A. Aguilar-Arevalo A., C. Brown B., Bugel L., Cheng G., D. Church E.. et al.. Measurement of the antineutrino neutral-current elastic differential cross section. Phys. Rev. D, 2015, 91(1): 012004
https://doi.org/10.1103/PhysRevD.91.012004
6 A. Ahrens L., H. Aronson S., L. Connolly P., G. Gibbard B., J. Murtagh M.. et al.. Measurement of neutrino−proton and anti-neutrino−proton elastic scattering. Phys. Rev. D, 1987, 35(3): 785
https://doi.org/10.1103/PhysRevD.35.785
7 Alvarez-Ruso L., Sajjad Athar M., B. Barbaro M., Cherdack D., E. Christy M.. et al.. NuSTEC White Paper: Status and challenges of neutrino–nucleus scattering. Prog. Part. Nucl. Phys., 2018, 100: 1
https://doi.org/10.1016/j.ppnp.2018.01.006
8 Alvarez-Ruso L., Neutrinos and their interactions in the Standard Model, Acta Phys. Pol. B Proc. Suppl. 9(4 Supp.), 669 (2016)
9 P. An F., Z. Bai J., B. Balantekin A., R. Band H., Beavis D.. et al.. Observation of electron−antineutrino disappearance at Daya Bay. Phys. Rev. Lett., 2012, 108(17): 171803
https://doi.org/10.1103/PhysRevLett.108.171803
10 Andreopoulos C., Bell A., Bhattacharya D., Cavanna F., Dobson J., Dytman S., Gallagher H., Guzowski P., Hatcher R., Kehayias P., Meregaglia A., Naples D., Pearce G., Rubbia A., Whalley M., Yang T.. The GENIE neutrino monte carlo generator. Nucl. Instrum. Methods Phys. Res. A, 2010, 614(1): 87
https://doi.org/10.1016/j.nima.2009.12.009
11 Ashman J.Badelek B.Baum G.Beaufays J.P. Bee C., et al.., A measurement of the spin asymmetry and determination of the structure function g(1) in deep inelastic muon−proton scattering, Phys. Lett. B 206(2), 364 (1988)
12 Bauer T., C. Bernauer J., Scherer S.. Electromagnetic form factors of the nucleon in effective field theory. Phys. Rev. C Nucl. Phys., 2012, 86(6): 065206
https://doi.org/10.1103/PhysRevC.86.065206
13 F. Beacom J., Chen S., Cheng J., N. Doustimotlagh S., Gao Y.. et al.. Physics prospects of the Jinping neutrino experiment. Chin. Phys. C, 2017, 41(2): 023002
https://doi.org/10.1088/1674-1137/41/2/023002
14 Benhar O., Huber P., Mariani C., Meloni D.. Neutrino–nucleus interactions and the determination of oscillation parameters. Phys. Rep., 2017, 700: 1
https://doi.org/10.1016/j.physrep.2017.07.004
15 Bernard V., Kaiser N., G. Meißner U.. Low-energy theorems for weak pion production. Phys. Lett. B, 1994, 331(1−2): 137
https://doi.org/10.1016/0370-2693(94)90954-7
16 Bernard V., Kaiser N., G. MEIßNER U.. Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E, 1995, 4(2): 193
https://doi.org/10.1142/S0218301395000092
17 Bernard V.. Chiral perturbation theory and baryon properties. Prog. Part. Nucl. Phys., 2008, 60(1): 82
https://doi.org/10.1016/j.ppnp.2007.07.001
18 Bernard V., Elouadrhiri L., G. Meißner U.. Axial structure of the nucleon. J. Phys. G, 2002, 28(1): R1
https://doi.org/10.1088/0954-3899/28/1/201
19 A. Bertulani C., Gade A.. Nuclear astrophysics with radioactive beams. Phys. Rep., 2010, 485(6): 195
https://doi.org/10.1016/j.physrep.2009.09.002
20 Casper D.. The Nuance neutrino physics simulation, and the future. Nucl. Phys. B Proc. Suppl., 2002, 112(1−3): 161
https://doi.org/10.1016/S0920-5632(02)01756-5
21 H. Chen Y., L. Yao D., Q. Zheng H.. Analyses of pion-nucleon elastic scattering amplitudes up to O(p4) in extended-on-mass-shell subtraction scheme. Phys. Rev. D, 2013, 87(5): 054019
https://doi.org/10.1103/PhysRevD.87.054019
22 Denner A., Dittmaier S.. Reduction schemes for one-loop tensor integrals. Nucl. Phys. B, 2006, 734(1-2): 62
https://doi.org/10.1016/j.nuclphysb.2005.11.007
23 Fettes N., G. Meißner U., Mojžiš M., Steininger S.. The chiral effective pion nucleon Lagrangian of order p**4. Ann. Phys., 2000, 283(2): 273
https://doi.org/10.1006/aphy.2000.6059
24 A. Formaggio J., P. Zeller G.. From eV to EeV: Neutrino cross sections across energy scales. Rev. Mod. Phys., 2012, 84(3): 1307
https://doi.org/10.1103/RevModPhys.84.1307
25 Fuchs T., Gegelia J., Japaridze G., Scherer S.. Renormalization of relativistic baryon chiral perturbation theory and power counting. Phys. Rev. D, 2003, 68(5): 056005
https://doi.org/10.1103/PhysRevD.68.056005
26 Fuchs T., Gegelia J., Scherer S.. Electromagnetic form factors of the nucleon in chiral perturbation theory. J. Phys. G, 2004, 30(10): 1407
https://doi.org/10.1088/0954-3899/30/10/008
27 T. Garvey G., C. Louis W., H. White D.. Determination of proton strange form-factors from neutrino p elastic scattering. Phys. Rev. C, 1993, 48(2): 761
https://doi.org/10.1103/PhysRevC.48.761
28 Gasser J., Leutwyler H.. Chiral perturbation theory to one loop. Ann. Phys., 1984, 158(1): 142
https://doi.org/10.1016/0003-4916(84)90242-2
29 Gasser J., Leutwyler H.. Chiral perturbation theory: Expansions in the mass of the strange quark. Nucl. Phys. B, 1985, 250(1-4): 465
https://doi.org/10.1016/0550-3213(85)90492-4
30 Gasser J., E. Sainio M., Svarc A.. Nucleons with chiral loops. Nucl. Phys. B, 1988, 307(4): 779
https://doi.org/10.1016/0550-3213(88)90108-3
31 Geng L.. Recent developments in SU(3) covariant baryon chiral perturbation theory. Front. Phys. (Beijing), 2013, 8(3): 328
https://doi.org/10.1007/s11467-013-0327-7
32 Golan T.T. Sobczyk J.Zmuda J., NuWro: the Wroclaw Monte Carlo generator of neutrino interactions, Nucl. Phys. B Proc. Suppl. 229–232, 499 (2012)
33 N. Hand L., G. Miller D., Wilson R.. Electric and magnetic form factors of the nucleon. Rev. Mod. Phys., 1963, 35(2): 335
https://doi.org/10.1103/RevModPhys.35.335
34 Horstkotte J., Entenberg A., S. Galik R., K. Mann A., H. Williams H., Kozanecki W., Rubbia C., Strait J., Sulak L., Wanderer P.. Measurement of neutrino−proton and anti-neutrinos−proton elastic scattering. Phys. Rev. D, 1982, 25(11): 2743
https://doi.org/10.1103/PhysRevD.25.2743
35 T. Janka H.. Explosion mechanisms of core-collapse supernovae. Annu. Rev. Nucl. Part. Sci., 2012, 62(1): 407
https://doi.org/10.1146/annurev-nucl-102711-094901
36 Juszczak C., A. Nowak J., T. Sobczyk J.. Simulations from a new neutrino event generator. Nucl. Phys. B Proc. Suppl., 2006, 159: 211
https://doi.org/10.1016/j.nuclphysbps.2006.08.069
37 L. Korpa C.F. M. Lutz M.Y. Guo X.Heo Y.. Coupled-channel system with anomalous thresholds and unitarity, Phys. Rev. D 107(3), L031505 (2023)
38 Liang J., B. Yang Y., Draper T., Gong M., F. Liu K.. Quark spins and anomalous ward identity. Phys. Rev. D, 2018, 98(7): 074505
https://doi.org/10.1103/PhysRevD.98.074505
39 R. Liang Z., C. Qiu P., L. Yao D.. One-loop analysis of the interactions between doubly charmed baryons and Nambu−Goldstone bosons. J. High Energy Phys., 2023, 07(7): 124
https://doi.org/10.1007/JHEP07(2023)124
40 H. Llewellyn Smith C.. Neutrino reactions at accelerator energies. Phys. Rep., 1972, 3(5): 261
https://doi.org/10.1016/0370-1573(72)90010-5
41 Passarino G., J. G. Veltman M.. One loop corrections for e+e− annihilation into μ+μ− in the Weinberg Model. Nucl. Phys. B, 1979, 160(1): 151
https://doi.org/10.1016/0550-3213(79)90234-7
42 F. Pate S.Papavassiliou V.P. Schaub J.P. Trujillo D.V. Ivanov M.B. Barbaro M.Giusti C., Global fit of electron and neutrino elastic scattering data to determine the strange quark contribution to the vector and axial form factors of the nucleon, arXiv: 2402.10854 [hep-ph] (2024)
43 Patrignani C.. et al.. Review of particle physics. Chin. Phys. C, 2016, 40(10): 100001
https://doi.org/10.1088/1674-1137/40/10/100001
44 Perevalov D., Neutrino−nucleus neutral current elastic interactions measurement in Mini-BooNE, PhD thesis, Alabama University, 2009
45 Ren L.. Studies of neutral current neutrino-nucleon scattering with the MicroBooNE Detector. JPS Conf. Proc., 2022, 37: 020309
https://doi.org/10.7566/JPSCP.37.020309
46 S. Athar M., W. Barwick S., Brunner T., Cao J., Danilov M.. et al.. Status and perspectives of neutrino physics. Prog. Part. Nucl. Phys., 2022, 124: 103947
https://doi.org/10.1016/j.ppnp.2022.103947
47 Scherer S.. Introduction to chiral perturbation theory. Adv. Nucl. Phys., 2003, 27: 277
https://doi.org/10.1007/0-306-47916-8_2
48 R. Schindler M., Fuchs T., Gegelia J., Scherer S.. Axial, induced pseudoscalar, and pion−nucleon form-factors in manifestly Lorentz-invariant chiral perturbation theory. Phys. Rev. C, 2007, 75(2): 025202
https://doi.org/10.1103/PhysRevC.75.025202
49 A. Smith R., J. Moniz E.. Neutrino reactions on nuclear targets. Nucl. Phys. B, 1972, 43: 605
https://doi.org/10.1016/0550-3213(72)90040-5
50 S. Sufian R., F. Liu K., G. Richards D.. Weak neutral current axial form factor using (ν)ν−nucleon scattering and lattice QCD inputs. J. High Energy Phys., 2020, 2020(1): 136
https://doi.org/10.1007/JHEP01(2020)136
51 Weinberg S.. Phenomenological Lagrangians. Physica A, 1979, 96(1−2): 327
https://doi.org/10.1016/0378-4371(79)90223-1
52 L. Workman R.. et al.. Review of particle physics. Prog. Theor. Exp. Phys., 2022, 2022(8): 083C01
https://doi.org/10.1093/ptep/ptac097
53 L. Yao D., Alvarez-Ruso L., J. Vicente-Vacas M.. Extraction of nucleon axial charge and radius from lattice QCD results using baryon chiral perturbation theory. Phys. Rev. D, 2017, 96(11): 116022
https://doi.org/10.1103/PhysRevD.96.116022
54 L. Yao D., Alvarez-Ruso L., N. H. Blin A., J. V. Vacas M.. Weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Rev. D, 2018, 98(7): 076004
https://doi.org/10.1103/PhysRevD.98.076004
55 L. Yao D., Alvarez-Ruso L., J. Vicente Vacas M.. Neutral-current weak pion production off the nucleon in covariant chiral perturbation theory. Phys. Lett. B, 2019, 794: 109
https://doi.org/10.1016/j.physletb.2019.05.036
56 L. Yao D.Y. Dai L.Q. Zheng H.Y. Zhou Z., A review on partial-wave dynamics with chiral effective field theory and dispersion relation, Rep. Prog. Phys. 84(7), 076201 (2021)
[1] O. V. Teryaev. Gravitational form factors and nucleon spin structure[J]. Front. Phys. , 2016, 11(5): 111207-.
[2] P. Souder, K. D. Paschke. Parity violation in electron scattering[J]. Front. Phys. , 2016, 11(1): 111301-.
[3] Li-Sheng Geng. Recent development in SU(3) covariant baryon chiral perturbation theory[J]. Front. Phys. , 2013, 8(3): 328-348.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed