|
|
Tunable nano Peltier cooling device from geometric effects using a single graphene nanoribbon |
Wan-Ju Li1,Dao-Xin Yao2( ),E. W. Carlson1,*( ) |
1. Department of Physics, Purdue University, West Lafayette, IN 47907, USA
2. State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510275, China |
|
|
Abstract Based on the phenomenon of curvature-induced doping in graphene we propose a class of Peltier cooling devices, produced by geometrical effects, without gating. We show how a graphene nanoribbon laid on an array of curved nano cylinders can be used to create a targeted and tunable cooling device. Using two different approaches, the Nonequilibrium Green’s Function (NEGF) method and experimental inputs, we predict that the cooling power of such a device can approach the order of kW/cm2, on par with the best known techniques using standard superlattice structures. The structure proposed here helps pave the way toward designing graphene electronics which use geometry rather than gating to control devices.
|
Keywords
Peltier cooling device
graphene nanoribbon
superlattice structure
graphene electronics
cooling power
Nonequilibrium Green’s Function (NEGF)
|
Corresponding Author(s):
Dao-Xin Yao and E. W. Carlson
|
Issue Date: 26 August 2014
|
|
1 |
G. H. Zeng, X. F. Fan, C. LaBounty, E. Croke, Y. Zhang, J. Christofferson, D. Vashaee, A. Shakouri, and J. E. Bowers, Cooling power density of SiGe/Si superlattice micro refrigerators, Volume 793 of Materials Research Society Symposium Proceedings, Materials Research Society, 2004
|
2 |
I. Chowdhury, R. Prasher, K. Lofgreen, G. Chrysler, S. Narasimhan, R. Mahajan, D. Koester, R. Alley, and R. Venkatasubramanian, On-chip cooling by superlattice-based thin-film thermoelectrics, Nat. Nanotechnol., 2009, 4(4): 235 doi: 10.1038/nnano.2008.417
|
3 |
X. Fan, G. Zeng, E. Croke, C. LaBounty, C. C. Ahn, D. Vashaee, A. Shakouri, and J. E. Bowers, High cooling power density SiGe/Si micro-coolers, Electron. Lett., 2001, 37(2): 126 doi: 10.1049/el:20010096
|
4 |
A. Shakouri and Yan Zhang, On-chip solid-state cooling for integrated circuits using thin-film microrefrigerators, IEEE Trans. Compon. Packag. Tech., 2005, 28(1): 65 doi: 10.1109/TCAPT.2005.843219
|
5 |
J. Zhang, N. G. Anderson, and K. M. Lau, AlGaAs superlattice microcoolers, Appl. Phys. Lett., 2003, 83(2): 374 doi: 10.1063/1.1591242
|
6 |
H. Y. Chiu, V. Perebeinos, Y. M. Lin, and P. Avouris, Controllable p-n junction formation in monolayer graphene using electrostatic substrate engineering, Nano Lett., 2010, 10(11): 4634 doi: 10.1021/nl102756r
|
7 |
G. Liu, J. Velasco, and W. Bao, and C. N. Lau, Fabrication of graphene p-n-p junctions with contactless top gates., Appl. Phys. Lett., 2008, 92(20): 203103 doi: 10.1063/1.2928234
|
8 |
S. G. Nam, D. K. Ki, J. W. Park, Y. Kim, J. S. Kim, and H. J. Lee, Ballistic transport of graphene p-n-p junctions with embedded local gates, Nanotechnology, 2011, 22(41): 415203 doi: 10.1088/0957-4484/22/41/415203
|
9 |
B. ?yilmaz, P. Jarillo-Herrero, D. Efetov, D. Abanin, L. Levitov, and P. Kim, Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions, Phys. Rev. Lett., 2007, 99(16): 166804 doi: 10.1103/PhysRevLett.99.166804
|
10 |
G. Rao, M. Freitag, H. Y. Chiu, R. S. Sundaram, and P. Avouris, Raman and photocurrent imaging of electrical stress-induced p-n junctions in graphene, ACS Nano, 2011, 5(7): 5848 doi: 10.1021/nn201611r
|
11 |
J. R. Williams, L. DiCarlo, and C. M. Marcus, Quantum Hall effect in a gate-controlled p-n junction of graphene, Science, 2007, 317(5838): 638 doi: 10.1126/science.1144657
|
12 |
T. Yu, C. W. Liang, C. Kim, and B. Yu, Local electrical stress-induced doping and formation of monolayer graphene P-N junction, Appl. Phys. Lett., 2011, 98(24): 243105 doi: 10.1063/1.3593131
|
13 |
H. C. Cheng, R. J. Shiue, C. C. Tsai, W. H. Wang, and Y. T. Chen, High-quality graphene p-n junctions via resistfree fabrication and solution-based noncovalent functionalization, ACS Nano, 2011, 5(3): 2051 doi: 10.1021/nn103221v
|
14 |
T. Lohmann, K. von Klitzing, and J. H. Smet, Four-terminal magneto-transport in graphene p-n junctions created by spatially selective doping, Nano Lett., 2009, 9(5): 1973 doi: 10.1021/nl900203n
|
15 |
E. A. Kim and A. H. Castro Neto, Graphene as an electronic membrane, Europhys. Lett., 2008, 84(5): 57007 doi: 10.1209/0295-5075/84/57007
|
16 |
D. Rowe, Thermoelectrics Handbook: Macro to Nano, Boca Raton: CRC/Taylor and Francis, 2006
|
17 |
P. Wei, W. Z. Bao, Y. Pu, C. N. Lau, and J. Shi, Anomalous thermoelectric transport of Dirac particles in graphene, Phys. Rev. Lett., 2009, 102(16): 166808 doi: 10.1103/PhysRevLett.102.166808
|
18 |
S. Datta, Quantum Transport: Atom to transistor, Cambridge: Cambridge University Press, 2005
|
19 |
Y. Ouyang and J. Guo, A theoretical study on thermoelectric properties of graphene nanoribbons, Appl. Phys. Lett., 2009, 94(26): 263107 doi: 10.1063/1.3171933
|
20 |
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 2004, 306(5696): 666 doi: 10.1126/science.1102896
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|