Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2014, Vol. 9 Issue (6) : 673-697    https://doi.org/10.1007/s11467-013-0340-x
REVIEW ARTICLE
Nonequilibrium Green’s function method for quantum thermal transport
Jian-Sheng Wang(), Bijay Kumar Agarwalla, Huanan Li, Juzar Thingna
Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Singapore 117542, Republic of Singapore
 Download: PDF(537 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This review deals with the nonequilibrium Green’s function (NEGF) method applied to the problems of energy transport due to atomic vibrations (phonons), primarily for small junction systems. We present a pedagogical introduction to the subject, deriving some of the well-known results such as the Laudauer-like formula for heat current in ballistic systems. The main aim of the review is to build the machinery of the method so that it can be applied to other situations, which are not directly treated here. In addition to the above, we consider a number of applications of NEGF, not in routine model system calculations, but in a few new aspects showing the power and usefulness of the formalism. In particular, we discuss the problems of multiple leads, coupled left-right-lead system, and system without a center. We also apply the method to the problem of full counting statistics. In the case of nonlinear systems, we make general comments on the thermal expansion effect, phonon relaxation time, and a certain class of mean-field approximations. Lastly, we examine the relationship between NEGF, reduced density matrix, and master equation approaches to thermal transport.

Keywords nonequilibrium Green’s function (NEGF)      contour ordered Green’s function      thermal transport     
Corresponding Author(s): Jian-Sheng Wang   
Issue Date: 24 December 2014
 Cite this article:   
Jian-Sheng Wang,Bijay Kumar Agarwalla,Huanan Li, et al. Nonequilibrium Green’s function method for quantum thermal transport[J]. Front. Phys. , 2014, 9(6): 673-697.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-013-0340-x
https://academic.hep.com.cn/fop/EN/Y2014/V9/I6/673
1 J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys., 1961, 2(3): 407
https://doi.org/10.1063/1.1703727
2 L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin/Cummings, 1962
3 L. V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys. JETP, 1965, 20: 1018
4 K. C. Chou, Z. B. Su, B. L. Hao, and L. Yu, Equilibrium and nonequilibrium formalisms made unified, Phys. Rep., 1985, 118(1−2): 1
https://doi.org/10.1016/0370-1573(85)90136-X
5 P. Danielewicz, Quantum theory of nonequilibrium processes (I), Ann. Phys., 1984, 152(2): 239
https://doi.org/10.1016/0003-4916(84)90092-7
6 J. Rammer and H. Smith, Quantum field-theoretical methods in transport theory of metals, Rev. Mod. Phys., 1986, 58(2): 323
https://doi.org/10.1103/RevModPhys.58.323
7 M. Bonitz (Ed.), Progress in Nonequilibrium Green’s Functions, Singapore: World Scientific, 2000
8 M. Bonitz and D. Semkat (Eds.), Progress in Nonequilibrium Green’s Functions (II), Singapore: World Scientific, 2003
9 C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Direct calculation of the tunneling current, J. Phys. C, 1971, 4(8): 916
10 Y. Meir and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett., 1992, 68(16): 2512
https://doi.org/10.1103/PhysRevLett.68.2512
11 A. Prociuk, H. Phillips, and B. D. Dunietz, Modeling transient aspects of coherence-driven electron transport, J. Phys.: Conf. Ser., 2010, 220: 012008
12 U. Aeberhard, Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism, J. Comput. Electron., 2011, 10(4): 394
https://doi.org/10.1007/s10825-011-0375-6
13 N. A. Zimbovskaya and M. R. Pederson, Electron transport through molecular junctions, Phys. Rep., 2011, 509(1): 1
https://doi.org/10.1016/j.physrep.2011.08.002
14 B. K. Nikolić, K. K. Saha, T. Markussen, and K. S. Thygesen, First-principles quantum transport modeling of thermoelectricity in single-molecule nanojunctions with graphene nanoribbon electrodes, J. Comput. Electron., 2012, 11(1): 78
https://doi.org/10.1007/s10825-012-0386-y
15 J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B, 2008, 62(4): 381
https://doi.org/10.1140/epjb/e2008-00195-8
16 J. Lan, J. S. Wang, C. K. Gan, and S. K. Chin, Edge effects on quantum thermal transport in graphene nanoribbons: Tight-binding calculations, Phys. Rev. B, 2009, 79(11): 115401
https://doi.org/10.1103/PhysRevB.79.115401
17 P. E. Hopkins, P. M. Norris, M. S. Tsegaye, and A. W. Ghosh, Extracting phonon thermal conductance across atomic junctions: Nonequilibrium Green’s function approach compared to semiclassical methods, J. Appl. Phys., 2009, 106(6): 063503
https://doi.org/10.1063/1.3212974
18 Z. X. Xie, K. Q. Chen, and W. Duan, Thermal transport by phonons in zigzag graphene nanoribbons with structural defects, J. Phys.: Condens. Matter, 2011, 23(31): 315302
https://doi.org/10.1088/0953-8984/23/31/315302
19 Z. Tian, K. Esfarjani, and G. Chen, Enhancing phonon transmission across a Si/Ge interface by atomic roughness: First-principles study with the Green’s function method, Phys. Rev. B, 2012, 86(23): 235304
https://doi.org/10.1103/PhysRevB.86.235304
20 M. Bachmann, M. Czerner, S. Edalati-Boostan, and C. Heiliger, Ab initio calculations of phonon transport in ZnO and ZnS, Eur. Phys. J. B, 2012, 85(5): 146
https://doi.org/10.1140/epjb/e2012-20503-y
21 P. S. E. Yeo, K. P. Loh, and C. K. Gan, Strain dependence of the heat transport properties of graphene nanoribbons, Nanotechnology, 2012, 23(49): 495702
https://doi.org/10.1088/0957-4484/23/49/495702
22 P. Brouwer, 2005,
23 H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 5th Ed., Singapore: World Scientific, 2009
24 J. W. Jiang, J. S. Wang, and B. Li, Thermal expansion in single-walled carbon nanotubes and graphene: Nonequilibrium Green’s function approach, Phys. Rev. B, 2009, 80(20): 205429
https://doi.org/10.1103/PhysRevB.80.205429
25 B. K. Agarwalla, B. Li, and J. S. Wang, Full-counting statistics of heat transport in harmonic junctions: transient, steady states, and fluctuation theorems, Phys. Rev. E, 2012, 85(5 Pt 1): 051142
https://doi.org/10.1103/PhysRevE.85.051142
26 A. Böhm, Quantum Mechanics, Heidelberg: Springer-Verlag, 1979
27 K. Huang, Statistical Mechanics, 2nd Ed., New York: John Wiley & Sons, 1987
28 R. Kubo, Statistical-mechanical theory of irreversible processes (I): General theory and simple applications to magnetic and Conduction Problems, J. Phys. Soc. Jpn., 1957, 12(6): 570
https://doi.org/10.1143/JPSJ.12.570
29 P. C. Martin and J. Schwinger, Theory of many-particle systems (I), Phys. Rev., 1959, 115(6): 1342
https://doi.org/10.1103/PhysRev.115.1342
30 A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill, 1971
31 R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics II, Nonequilibrium Statistical Mechanics, Springer, 1992
32 A. Altland and B. Simons, Condsensed Matter Field Theory, 2nd Ed., Cambridge: Cambridge University Press, 2010
33 H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, 1996
34 A. M. Zagoskin, Quantum Theory of Many-Body Systems, Springer, 1998
https://doi.org/10.1007/978-1-4612-0595-1
35 J. Rammer, Quantum Field Theory of Non-Equilibrium States, Cambridge: Cambridge University Press, 2007
https://doi.org/10.1017/CBO9780511618956
36 M. Di Ventra, Electrical Transport in Nanoscale Systems, Cambridge: Cambridge University Press, 2008
https://doi.org/10.1017/CBO9780511755606
37 A. Kamenev, Field Theory of Non-Equilibrium Systems, Cambridge: Cambridge University Press, 2011
38 D. C. Langreth, in: Linear and Nonlinear Electron Transport in Solids, edited by J. T. Devreese and E. van Doren, Plenum, 1976: 3−32
https://doi.org/10.1007/978-1-4757-0875-2_1
39 C. Niu, D. L. Lin, and T. H. Lin, Equation of motion for nonequilibrium Green functions, J. Phys.: Condens. Matter, 1999, 11(6): 1511
https://doi.org/10.1088/0953-8984/11/6/015
40 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Dover Publ., 1963
41 S. Doniach and E. H. Sondheimer, Green’s Functions for Solid State Physicists, W. A. Benjamin, 1974
42 G. D. Mahan, Many-Particle Physics, 3rd Ed., Kluwer Academic, 2000
https://doi.org/10.1007/978-1-4757-5714-9
43 H. Bruus and K. Flensberg, Many-Body Quantum Theory in Condensed Matter Physics: An introduction, Oxford: Oxford University Press, 2004
44 H. L. Friedman, A Course in Statistical Mechanics, Prentice- Hall, 1985
45 B. K. Agarwalla, Study of full-counting statistics in heat transport in transient and steady state and quantum fuctuation theorems, Ph.D. thesis, National University Singapore, 2013
46 P. C. K. Kwok, Green’s function method in lattice dynamics, Solid State Phys., 1968, 20: 213
https://doi.org/10.1016/S0081-1947(08)60219-2
47 M. L. Leek, Mathematical details in the application of nonequilibrium Green’s functions (NEGF) and quantum kinetic equations (QKE) to thermal transport, arXiv: 1207.6204, 2012
48 H. Kleinert, A. Pelster, B. Kastening, and M. Bachmann, Recursive graphical construction of Feynman diagrams and their multiplicities in φ4 and φ2A theory, Phys. Rev. E, 2000, 62(2): 1537
https://doi.org/10.1103/PhysRevE.62.1537
49 S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
https://doi.org/10.1017/CBO9780511805776
50 R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM J. Res. Develop., 1957, 1(3): 223
https://doi.org/10.1147/rd.13.0223
51 R. Landauer, Electrical resistance of disordered onedimensional lattices, Philos. Mag., 1970, 21(172): 863
https://doi.org/10.1080/14786437008238472
52 A. Ozpineci and S. Ciraci, Quantum effects of thermal conductance through atomic chains, Phys. Rev. B, 2001, 63(12): 125415
https://doi.org/10.1103/PhysRevB.63.125415
53 D. Segal, A. Nitzan, and P. Hänggi, Thermal conductance through molecular wires, J. Chem. Phys., 2003, 119(13): 6840
https://doi.org/10.1063/1.1603211
54 N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach, Phys. Rev. B, 2003, 68(24): 245406
https://doi.org/10.1103/PhysRevB.68.245406
55 A. Dhar and D. Roy, Heat transport in harmonic lattices, J. Stat. Phys., 2006, 125(4): 805
56 A. Dhar and D. Sen, Nonequilibrium Green’s function formalism and the problem of bound states, Phys. Rev. B, 2006, 73(8): 085119
https://doi.org/10.1103/PhysRevB.73.085119
57 J. S. Wang, J. Wang, and N. Zeng, Nonequilibrium Green’s function approach to mesoscopic thermal transport, Phys. Rev. B, 2006, 74(3): 033408
https://doi.org/10.1103/PhysRevB.74.033408
58 T. Yamamoto and K. Watanabe, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes, Phys. Rev. Lett., 2006, 96(25): 255503
https://doi.org/10.1103/PhysRevLett.96.255503
59 W. Zhang, T. S. Fisher, and N. Mingo, The atomistic Green’s function method: An efficient simulation approach for nanoscale phonon transport, Numer. Heat Transf. B, 2007, 51(4): 333
https://doi.org/10.1080/10407790601144755
60 S. G. Das and A. Dhar, Landauer formula for phonon heat conduction: Relation between energy transmittance and transmission coefficient, Eur. Phys. J. B, 2012, 85(11): 372
https://doi.org/10.1140/epjb/e2012-30640-x
61 M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Quick iterative scheme for the calculation of transfer matrices: Application to Mo(100), J. Phys. F, 1984, 14(5): 1205
https://doi.org/10.1088/0305-4608/14/5/016
62 M. P. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, 1985, 15(4): 851
https://doi.org/10.1088/0305-4608/15/4/009
63 A. P. Arya, Introduction to Classical Mechanics, Allyn and Bacon, 1990, Chap. 15.5
64 E. C. Cuansing, H. Li, and J. S. Wang, Role of the on-site pinning potential in establishing quasi-steady-state conditions of heat transport in finite quantum systems, Phys. Rev. E, 2012, 86(3): 031132
https://doi.org/10.1103/PhysRevE.86.031132
65 J. S. Wang, N. Zeng, J. Wang, and C. K. Gan, Nonequilibrium Green’s function method for thermal transport in junctions, Phys. Rev. E, 2007, 75(6): 061128
https://doi.org/10.1103/PhysRevE.75.061128
66 J. Wang and J. S. Wang, Mode-dependent energy transmission across nanotube junctions calculated with a lattice dynamics approach, Phys. Rev. B, 2006, 74(5): 054303
https://doi.org/10.1103/PhysRevB.74.054303
67 L. Zhang, P. Keblinski, J. S. Wang, and B. Li, Interfacial thermal transport in atomic junctions, Phys. Rev. B, 2011, 83(6): 064303
https://doi.org/10.1103/PhysRevB.83.064303
68 M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett., 1986, 57(14): 1761
https://doi.org/10.1103/PhysRevLett.57.1761
69 M. Büttiker, Symmetry of electrical conduction, IBM J. Res. Develop., 1988, 32(3): 317
https://doi.org/10.1147/rd.323.0317
70 M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B, 1988, 38(14): 9375
https://doi.org/10.1103/PhysRevB.38.9375
71 Y. M. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Phys. Rep., 2000, 336(1−2): 1
https://doi.org/10.1016/S0370-1573(99)00123-4
72 L. Zhang, J.-S. Wang, and B. Li, Ballistic thermal rectification in nanoscale three-terminal junctions, Phys. Rev. B, 2010, 81(10): 100301(R)
https://doi.org/10.1103/PhysRevB.81.100301
73 Z. X. Xie, K. M. Li, L. M. Tang, C. N. Pan, and K. Q. Chen, Nonlinear phonon transport and ballistic thermal rectification in asymmetric graphene-based three terminal junctions, Appl. Phys. Lett., 2012, 100(18): 183110
https://doi.org/10.1063/1.4711204
74 A. Dhar and D. Roy, Heat transport in harmonic lattices, J. Stat. Phys., 2006, 125(4): 801
https://doi.org/10.1007/s10955-006-9235-3
75 D. Roy, Crossover from ballistic to diffusive thermal transport in quantum Langevin dynamics study of a harmonic chain connected to self-consistent reservoirs, Phys. Rev. E, 2008, 77(6): 062102
https://doi.org/10.1103/PhysRevE.77.062102
76 M. Bandyopadhyay and D. Segal, Quantum heat transfer in harmonic chains with self-consistent reservoirs: exact numerical simulations, Phys. Rev. E, 2011, 84(1): 011151
https://doi.org/10.1103/PhysRevE.84.011151
77 L. Zhang, J. S. Wang, and B. Li, Phonon Hall effect in fourterminal nano-junctions, New J. Phys., 2009, 11(11): 113038
https://doi.org/10.1088/1367-2630/11/11/113038
78 H. Li, B. K. Agarwalla, and J. S. Wang, Generalized Caroli formula for the transmission coefficient with lead-lead coupling, Phys. Rev. E, 2012, 86(1): 011141
https://doi.org/10.1103/PhysRevE.86.011141
79 M. Esposito, U. Harbola, and S. Mukamel, Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems, Rev. Mod. Phys., 2009, 81(4): 1665
https://doi.org/10.1103/RevModPhys.81.1665
80 M. Campisi, P. Hänggi, and P. Talkner, Quantum fluctuation relations: Foundations and applications, Rev. Mod. Phys., 2011, 83(3): 771
https://doi.org/10.1103/RevModPhys.83.771
81 U. Seifert, Stochastic thermodynamics, fluctuation theorems and molecular machines, Rep. Prog. Phys., 2012, 75(12): 126001
https://doi.org/10.1088/0034-4885/75/12/126001
82 M. L. Roukes, Yoctocalorimetry: Phonon counting in nanostructures, Physica B, 1999, 263: 1
https://doi.org/10.1016/S0921-4526(98)01482-3
83 H. Touchette, The large deviation approach to statistical mechanics, Phys. Rep., 2009, 478(1−3): 1
https://doi.org/10.1016/j.physrep.2009.05.002
84 H. Li, B. K. Agarwalla, and J. S. Wang, Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling, Phys. Rev. B, 2012, 86(16): 165425
https://doi.org/10.1103/PhysRevB.86.165425
85 J. S. Wang, B. K. Agarwalla, and H. Li, Transient behavior of full counting statistics in thermal transport, Phys. Rev. B, 2011, 84(15): 153412
https://doi.org/10.1103/PhysRevB.84.153412
86 A. O. Gogolin and A. Komnik, Towards full counting statistics for the Anderson impurity model, Phys. Rev. B, 2006, 73(19): 195301
https://doi.org/10.1103/PhysRevB.73.195301
87 H. Li, B. K. Agarwalla, B. Li, and J. S. Wang, Cumulants of heat transfer in nonlinear quantum systems, arXiv: 1210.2798, 2012
88 L. S. Levitov and G. B. Lesovik, Charge distribution in quantum shot noise, JETP Lett., 1993, 58: 230
89 L. S. Levitov, H. Lee, and G. B. Lesovik, Electron counting statistics and coherent states of electric current, J. Math. Phys., 1996, 37(10): 4845
https://doi.org/10.1063/1.531672
90 K. Saito and A. Dhar, Fluctuation theorem in quantum heat conduction, Phys. Rev. Lett., 2007, 99(18): 180601
https://doi.org/10.1103/PhysRevLett.99.180601
91 G. Gallavotti and E. G. D. Cohen, Dynamical ensembles in nonequilibrium statistical mechanics, Phys. Rev. Lett., 1995, 74(14): 2694
https://doi.org/10.1103/PhysRevLett.74.2694
92 A. Kundu, S. Sabhapandit, and A. Dhar, Large deviations of heat flow in harmonic chains, J. Stat. Mech., 2011, 2011(03): P03007
https://doi.org/10.1088/1742-5468/2011/03/P03007
93 K. Saito and A. Dhar, Generating function formula of heat transfer in harmonic networks, Phys. Rev. E, 2011, 83(4 Pt 1): 041121
https://doi.org/10.1103/PhysRevE.83.041121
94 E. C. Cuansing and J. S. Wang, Transient behavior of heat transport in a thermal switch, Phys. Rev. B, 2010, 81(5): 052302
https://doi.org/10.1103/PhysRevB.81.052302
95 N. W. Ashcroft and N. D. Mermin, Solid State Physics, Saunders College, 1976
96 J. W. Jiang, J. S. Wang, and B. Li, Thermal contraction in silicon nanowires at low temperatures, Nanoscale, 2010, 2(12): 2864
https://doi.org/10.1039/c0nr00437e
97 J. W. Jiang and J. S. Wang, Thermal expansion in multiple layers of graphene, arXiv: 1108.5820, 2011
98 A. A. Maradudin and A. E. Fein, Scattering of neutrons by an anharmonic crystal, Phys. Rev., 1962, 128(6): 2589
https://doi.org/10.1103/PhysRev.128.2589
99 Y. Xu, J. S. Wang, W. Duan, B. L. Gu, and B. Li, Nonequilibrium Green’s function method for phonon-phonon interactions and ballistic-diffusive thermal transport, Phys. Rev. B, 2008, 78(22): 224303
https://doi.org/10.1103/PhysRevB.78.224303
100 N. Mingo, Anharmonic phonon flow through molecular-sized junctions, Phys. Rev. B, 2006, 74(12): 125402
https://doi.org/10.1103/PhysRevB.74.125402
101 M. Luisier, Atomistic modeling of anharmonic phononphonon scattering in nanowires, Phys. Rev. B, 2012, 86(24): 245407
https://doi.org/10.1103/PhysRevB.86.245407
102 J. T. Lü and J. S. Wang, Coupled electron and phonon transport in one-dimensional atomic junctions, Phys. Rev. B, 2007, 76(16): 165418
https://doi.org/10.1103/PhysRevB.76.165418
103 P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff-Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B, 2009, 80(11): 115107
https://doi.org/10.1103/PhysRevB.80.115107
104 L. A. Wu and D. Segal, Quantum heat transfer: A Born-Oppenheimer method, Phys. Rev. E, 2011, 83(5): 051114
https://doi.org/10.1103/PhysRevE.83.051114
105 L. Lindsay, D. A. Broido, and N. Mingo, Lattice thermal conductivity of single-walled carbon nanotubes: Beyond the relaxation time approximation and phonon-phonon scattering selection rules, Phys. Rev. B, 2009, 80(12): 125407
https://doi.org/10.1103/PhysRevB.80.125407
106 L. Zhang, J. Thingna, D. He, J.-S. Wang, and B. Li, Nonlinearity enchanced interfacial thermal conducntance and rectification, 2013 (in preparation)
107 D. He, S. Buyukdagli, and B. Hu, Thermal conductivity of anharmonic lattices: effective phonons and quantum corrections, Phys. Rev. E, 2008, 78(6): 061103
https://doi.org/10.1103/PhysRevE.78.061103
108 J. Thingna, Steady-state transport properties of anharmonic systems, Ph.D. thesis, National University Singapore, 2013
109 A. Dhar, K. Saito, and P. Hänggi, Nonequilibrium densitymatrix description of steady-state quantum transport, Phys. Rev. E, 2012, 85(1): 011126
https://doi.org/10.1103/PhysRevE.85.011126
110 H.P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, Oxford: Oxford University Press, 2002
111 K. Saito, Strong evidence of normal heat conduction in a one-dimensional quantum system, Europhys. Lett., 2003, 61(1): 34
https://doi.org/10.1209/epl/i2003-00241-3
112 D. Segal and A. Nitzan, Spin-boson thermal rectifier, Phys. Rev. Lett., 2005, 94(3): 034301
https://doi.org/10.1103/PhysRevLett.94.034301
113 D. Segal, Heat flow in nonlinear molecular junctions: Master equation analysis, Phys. Rev. B, 2006, 73(20): 205415
https://doi.org/10.1103/PhysRevB.73.205415
114 W. Pauli, in: Festschrift zum 60. Geburtstage A. Sommerfeld, Hirzel, Leipzig, 1928
115 A. O. Caldeira and A. J. Leggett, Path integral approach to quantum Brownian motion, Physica A, 1983, 121(3): 587
https://doi.org/10.1016/0378-4371(83)90013-4
116 A. G. Redfield, On the theory of relaxation processes, IBM J. Res. Develop., 1957, 1(1): 19
https://doi.org/10.1147/rd.11.0019
117 G. Lindblad, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 1976, 48(2): 119
https://doi.org/10.1007/BF01608499
118 T. Mori and S. Miyashita, Dynamics of the density matrix in contact with a thermal bath and the quantum master equation, J. Phys. Soc. Jpn., 2008, 77(12): 124005
https://doi.org/10.1143/JPSJ.77.124005
119 C. H. Fleming and N. I. Cummings, Accuracy of perturbative master equations, Phys. Rev. E, 2011, 83(3): 031117
https://doi.org/10.1103/PhysRevE.83.031117
120 J. Thingna, J. S. Wang, and P. Hänggi, Generalized Gibbs state with modified Redfield solution: exact agreement up to second order, J. Chem. Phys., 2012, 136(19): 194110
https://doi.org/10.1063/1.4718706
121 B. B. Laird, J. Budimir, and J. L. Skinner, Quantummechanical derivation of the Bloch equations: Beyond the weak-coupling limit, J. Chem. Phys., 1991, 94(6): 4391
https://doi.org/10.1063/1.460626
122 S. Jang, J. Cao, and R. J. Silbey, Fourth-order quantum master equation and its Markovian bath limit, J. Chem. Phys., 2002, 116(7): 2705
https://doi.org/10.1063/1.1445105
123 S. Nakajima, On quantum theory of transport phenomena, Prog. Theor. Phys., 1958, 20(6): 948
https://doi.org/10.1143/PTP.20.948
124 R. Zwanzig, Ensemble method in the theory of irreversibility, J. Chem. Phys., 1960, 33(5): 1338
https://doi.org/10.1063/1.1731409
125 F. Shibata, Y. Takahashi, and N. Hashitsume, A generalized stochastic Liouville equation, non-Markovian versus memoryless master equations, J. Stat. Phys., 1977, 17(4): 171
https://doi.org/10.1007/BF01040100
126 G. Nan, Q. Shi, and Z. Shuai, Nonperturbative timeconvolutionless quantum master equation from the path integral approach, J. Chem. Phys., 2009, 130(13): 134106
https://doi.org/10.1063/1.3108521
127 J. Thingna, J. L. García-Palacios, and J. S. Wang, Steadystate thermal transport in anharmonic systems: Application to molecular junctions, Phys. Rev. B, 2012, 85(19): 195452
https://doi.org/10.1103/PhysRevB.85.195452
128 L. A. Wu, C. X. Yu, and D. Segal, Nonlinear quantum heat transfer in hybrid structures: Sufficient conditions for thermal rectification, Phys. Rev. E, 2009, 80(4): 041103
https://doi.org/10.1103/PhysRevE.80.041103
129 J. Thingna and J.-S. Wang, 2013 (in preparation)
[1] Changqing Xiang, Cheng-Wei Wu, Wu-Xing Zhou, Guofeng Xie, Gang Zhang. Thermal transport in lithium-ion battery: A micro perspective for thermal management[J]. Front. Phys. , 2022, 17(1): 13202-.
[2] Yulou Ouyang, Cuiqian Yu, Gang Yan, Jie Chen. Machine learning approach for the prediction and optimization of thermal transport properties[J]. Front. Phys. , 2021, 16(4): 43200-.
[3] Zhi-Zhou Yu, Guo-Huan Xiong, Li-Fa Zhang. A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach[J]. Front. Phys. , 2021, 16(4): 43201-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed