Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2015, Vol. 10 Issue (5) : 100401    https://doi.org/10.1007/s11467-015-0497-6
RESEARCH ARTICLE
Hawking radiation from a five-dimensional Lovelock black hole
Mahamat Saleh1,2(),Bouetou Thomas Bouetou1,3,*(),Timoleon Crepin Kofane4,*()
1. Department of Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
2. Department of Physics, Higher Teachers’ Training College, University of Maroua, P.O. Box 55, Maroua, Cameroon
3. National Advanced School of Engineering, University of Yaoundé I, P.O. Box 8390, Yaoundé, Cameroon
4. The Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
 Download: PDF(187 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We investigate Hawking radiation from a five-dimensional Lovelock black hole using the Hamilton–Jacobi method. The behavior of the rate of radiation is plotted for various values of the ultraviolet correction parameter and the cosmological constant. The results show that, owing to the ultraviolet correction and the presence of dark energy represented by the cosmological constant, the black hole radiates at a slower rate in comparison to the case without ultraviolet correction or cosmological constant. Moreover, the presence of the cosmological constant makes the effect of the ultraviolet correction on the black hole radiation negligible.

Keywords Hawking radiation      Lovelock black hole      Hamilton–Jacobi method     
Corresponding Author(s): Bouetou Thomas Bouetou,Timoleon Crepin Kofane   
Issue Date: 26 October 2015
 Cite this article:   
Mahamat Saleh,Bouetou Thomas Bouetou,Timoleon Crepin Kofane. Hawking radiation from a five-dimensional Lovelock black hole[J]. Front. Phys. , 2015, 10(5): 100401.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-015-0497-6
https://academic.hep.com.cn/fop/EN/Y2015/V10/I5/100401
1 Q. Q. Jiang and S. Q. Wu, Hawking radiation of charged particles as tunneling from Reissner−Nordström−de Sitter black holes with a global monopole, Phys. Lett. B 635(2−3), 151 (2006)
https://doi.org/10.1016/j.physletb.2006.01.035
2 Yu. P. Goncharov, and N. E. Firsova, Hawking radiation for twisted complex scalar fields on the Reissner−Nordstr¨om black holes and Dirac monopoles, Nucl. Phys. B 486(1−2), 371 (1997)
https://doi.org/10.1016/S0550-3213(96)00665-7
3 Z. Zhai and W. Liu, A new method to study the Hawking radiation of the charged black hole with a global monopole, Astrophys. Space Sci. 325(1), 63 (2010)
https://doi.org/10.1007/s10509-009-0152-1
4 R. Zhao, L. C. Zhang, and H. F. Li, Hawking radiation of charged particles in Reissner−Nordström black hole, Commum. Theor. Phys. 53(3), 499 (2010)
https://doi.org/10.1088/0253-6102/53/3/19
5 K. X. Jiang, S. M. Ke, and D. T. Peng, Hawking radiation as tunneling and the unified first law of thermodynamics for a class of dynamical black holes, Int. J. Mod. Phys. D 18(11), 1707 (2009)
https://doi.org/10.1142/S0218271809015254
6 H. Pasaoglu and I. Sakalli, Hawking radiation of linear Dilaton black holes in various theories, Int. J. Theor. Phys. 48(12), 3517 (2009)
https://doi.org/10.1007/s10773-009-0156-1
7 S. W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43(3), 199 (1975)
https://doi.org/10.1007/BF02345020
8 S. W. Hawking, Black hole explosions, Nature 30, 248 (1974)
https://doi.org/10.1038/248030a0
9 P. Kraus and F. Wilczek, Self-interaction correction to black hole radiance, Nucl. Phys. B 433(2), 403 (1995)
https://doi.org/10.1016/0550-3213(94)00411-7
10 P. Kraus and F. Wilczek, Effect of self-interaction on charged black hole radiance, Nucl. Phys. B 437(1), 231 (1995)
https://doi.org/10.1016/0550-3213(94)00588-6
11 M. K. Parikh, and F. Wilczek, Hawking radiation as tunneling, Phys. Rev. Lett. 85(24), 5042 (2000)
https://doi.org/10.1103/PhysRevLett.85.5042
12 T.-M. He and J.-Y. Zhang, Tunneling radiation from a static spherically symmetric black hole surrounded by quintessence, Commum. Theor. Phys. 52(4), 619 (2009)
https://doi.org/10.1088/0253-6102/52/4/13
13 D. Chen and X. Zu, Massive particle tunnels from the Taub-NUT black hole, Acta Phys. Pol. B 39, 1329 (2008)
14 R. Zhao, L. C. Zhang, and H. F. Li, Hawking radiation of charged particles in Reissner−Nordström black hole, Commum. Theor. Phys. 53(3), 499 (2010)
https://doi.org/10.1088/0253-6102/53/3/19
15 Q. Q. Jiang and S. Q. Wu, Hawking radiation of charged particles as tunneling from Reissner−Nordström−de Sitter black holes with a global monopole, Phys. Lett. B 635(2−3), 151 (2006)
https://doi.org/10.1016/j.physletb.2006.01.035
16 Q. Q. Jiang, Fermions tunnelling from GHS and nonextremal D1−D5 black holes, Phys. Lett. B 666(5), 517 (2008)
https://doi.org/10.1016/j.physletb.2008.08.005
17 D. Y. Chen, Q. Q. Jiang, and X. T. Zu, Hawking radiation of Dirac particles via tunnelling from rotating black holes in de Sitter spaces, Phys. Lett. B 665(2−3), 106 (2008)
https://doi.org/10.1016/j.physletb.2008.05.064
18 D. J. Qi and H. Q. Ru, Quantum tunneling of dirac particles from the generalized spherical symmetric evaporating charged black hole, Int. J. Theor. Phys. 50(1), 269 (2011)
https://doi.org/10.1007/s10773-010-0519-7
19 D. J. Qi, Dirac particles’ tunneling radiation from dilaton space-time with squashed horizons, Commum. Theor. Phys. 56(6), 1171 (2011)
https://doi.org/10.1088/0253-6102/56/6/35
20 Q. Q. Jiang and Y. Han, On black hole spectroscopy via adiabatic invariance, Phys. Lett. B 718(2), 584 (2012)
https://doi.org/10.1016/j.physletb.2012.10.031
21 C. Z. Liu and G. X. Yu, Entropy spectrum and area spectrum of a modified Schwarzschild black hole via an action invariance, JETP Lett. 100(10), 615 (2015)
https://doi.org/10.1134/S0021364014220093
22 W. Y. Wen, Nonthermal correction to black hole spectroscopy, Eur. Phys. J. C 75(2), 78 (2015)
https://doi.org/10.1140/epjc/s10052-015-3302-3
23 S. W. Zhou, G. R. Chen, and Y. C. Huang, Entropy spectrum of a KS black hole in IR modified Hořava−Lifshitz gravity, Adv. High Energy Phys. 2014, 396453 (2014)
https://doi.org/10.1155/2014/396453
24 Q. Q. Jiang, D. Y. Chen and D. Wen, Remark on massive particle’s de Sitter tunneling, J. Cosmol. Astropart. Phys. 11(2013) 027
https://doi.org/10.1088/1475-7516/2013/11/027
25 H. L. Li and R. Lin, Spectroscopy from the d-dimensional Reissner−Nordström black hole via adiabatic covariant action, Eur. Phys. J. C 73(2), 2316 (2013)
https://doi.org/10.1140/epjc/s10052-013-2316-y
26 L. Vanzo, G. Acquaviva, and R. D. Criscienzo, Tunnelling methods and Hawking’s radiation: Achievements and prospects, Class. Quantum Gravity 28(18), 183001 (2011)
https://doi.org/10.1088/0264-9381/28/18/183001
27 H. Ding and W. Liu, Hawking radiation from a Vaidya black hole by Hamilton−Jacobi method, Front. Phys. 6(1), 106 (2011)
https://doi.org/10.1007/s11467-010-0114-7
28 K. Lin and S.-Z. Yang, Fermions tunneling from nonstationary Dilaton−Maxwell black hole via general tortoise coordinate transformation, Chin. Phys. Lett. 26(10), 100401 (2009)
https://doi.org/10.1088/0256-307X/26/10/100401
29 Y. X. Chen and K. N. Shao, Invariance of the Hamilton-Jacobi tunneling method for black holes and FRW model, arXiv: 1007.4367v2
30 J. J. Liu, D. Y. Chen, and S. Z. Yang, A new method to study the Hawking radiation of the charged black hole with a gloabal monopole, Rom. J. Physiol. 53, 659 (2008)
31 M. Saleh, B. T. Bouetou, and T. C. Kofane, Quasinormal modes and Hawking radiation of a Reissner−Nordström black hole surrounded by quintessence, Astrophys. Space Sci. 333(2), 449 (2011)
https://doi.org/10.1007/s10509-011-0643-8
32 R. G. Cai, L. M. Cao, and Y. P. Hu, Hawking radiation of an apparent horizon in a FRW universe, Class. Quantum Gravity 26(15), 155018 (2009)
https://doi.org/10.1088/0264-9381/26/15/155018
33 H. Gohar and K. Saifullah, Scalar field radiation from dilatonic black holes, Gen. Relativ. Gravit. 44(12), 3163 (2012)
https://doi.org/10.1007/s10714-012-1449-x
34 M. Aiello, R. Ferraro, and G. Giribet, Exact solutions of Lovelock−Born−Infeld black holes, Phys. Rev. D 70(10), 104014 (2004)
https://doi.org/10.1103/PhysRevD.70.104014
35 J. H. Chen and Y. J. Wang, Quasinormal modes of the scalar field in five-dimensional Lovelock black hole spacetime, Chin. Phys. B 19(6), 060401 (2010)
https://doi.org/10.1088/1674-1056/19/6/060401
36 M. Agheben, M. Nadalini, L. Vanzo, and S. Zerbini, Hawking radiation as tunneling for extremal and rotating black holes, J. High Energy Phys. 0505, 014 (2005)
37 K. Srinivasan and T. Padmanabhan, Particle production and complex path analysis, Phys. Rev. D 60(2), 24007 (1999)
https://doi.org/10.1103/PhysRevD.60.024007
38 S. Shankaranarayanan, K. Srinivasan, and T. Padmanabhan, Method of complex paths and general covariance of Hawking radiation, Mod. Phys. Lett. A 16(09), 571 (2001)
https://doi.org/10.1142/S0217732301003632
39 S. Shankaranarayanan, T. Padmanabhan, and K. Srinivasan, Hawking radiation in different coordinate settings: Complex paths approach, Class. Quantum Gravity 19(10), 2671 (2002)
https://doi.org/10.1088/0264-9381/19/10/310
40 J. D. Barrow and D. J. Shaw, The value of the cosmological constant, Gen. Relativ. Gravit. 43(10), 2555 (2011)
https://doi.org/10.1007/s10714-011-1199-1
[1] Han DING (丁翰), Wen-biao LIU (刘文彪). Hawking radiation from a Vaidya black hole by Hamilton–Jacobi method[J]. Front. Phys. , 2011, 6(1): 106-108.
[2] Ji-li HUANG(黄基利), Wen-biao LIU(刘文彪), . Fluctuation around horizon on a Schwarzschild black hole using the null geodesic method[J]. Front. Phys. , 2009, 4(4): 530-533.
[3] Bo LIU (刘博), Wen-biao LIU(刘文彪). The thermodynamics in a dynamical black hole[J]. Front Phys Chin, 2009, 4(1): 94-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed