|
|
A brief review of thermal transport in mesoscopic systems from nonequilibrium Green’s function approach |
Zhi-Zhou Yu, Guo-Huan Xiong, Li-Fa Zhang( ) |
NNU-SULI Thermal Energy Research Center (NSTER) & Center for Quantum Transport and Thermal Energy Science (CQTES), School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China |
|
|
Abstract With the rapidly increasing integration density and power density in nanoscale electronic devices, the thermal management concerning heat generation and energy harvesting becomes quite crucial. Since phonon is the major heat carrier in semiconductors, thermal transport due to phonons in mesoscopic systems has attracted much attention. In quantum transport studies, the nonequilibrium Green’s function (NEGF) method is a versatile and powerful tool that has been developed for several decades. In this review, we will discuss theoretical investigations of thermal transport using the NEGF approach from two aspects. For the aspect of phonon transport, the phonon NEGF method is briefly introduced and its applications on thermal transport in mesoscopic systems including one-dimensional atomic chains, multi-terminal systems, and transient phonon transport are discussed. For the aspect of thermoelectric transport, the caloritronic effects in which the charge, spin, and valley degrees of freedom are manipulated by the temperature gradient are discussed. The time-dependent thermoelectric behavior is also presented in the transient regime within the partitioned scheme based on the NEGF method.
|
Keywords
thermal transport
nonequilibrium Green’s function
|
Corresponding Author(s):
Li-Fa Zhang
|
Just Accepted Date: 20 January 2021
Issue Date: 12 April 2021
|
|
1 |
E. Pop, S. Sinha, and K. E. Goodson, Heat generation and transport in nanometer-scale transistors, Proc. IEEE 94(8), 1587 (2006)
https://doi.org/10.1109/JPROC.2006.879794
|
2 |
N. Li, J. Ren, L. Wang, G. Zhang, P. Hänggi, and B. Li, Phononics: Manipulating heat flow with electronic analogs and beyond, Rev. Mod. Phys. 84(3), 1045 (2012)
https://doi.org/10.1103/RevModPhys.84.1045
|
3 |
G. Zhang and Y. W. Zhang, Thermal properties of two-dimensional materials, Chin. Phys. B 26(3), 034401 (2017)
https://doi.org/10.1088/1674-1056/26/3/034401
|
4 |
X. Chen, Y. Liu, and W. Duan, Thermal engineering in low-dimensional quantum devices: A tutorial review of nonequilibrium Green’s function methods, Small Methods 2(6), 1700343 (2018)
https://doi.org/10.1002/smtd.201700343
|
5 |
D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, Nanoscale thermal transport (II): 2003–2012, Appl. Phys. Rev. 1(1), 011305 (2014)
https://doi.org/10.1063/1.4832615
|
6 |
B. Li, L. Wang, and G. Casati, Thermal diode: Rectification of heat flux, Phys. Rev. Lett. 93(18), 184301 (2004)
https://doi.org/10.1103/PhysRevLett.93.184301
|
7 |
B. Li, L. Wang, and G. Casati, Negative differential thermal resistance and thermal transistor, Appl. Phys. Lett. 88(14), 143501 (2006)
https://doi.org/10.1063/1.2191730
|
8 |
W. Chung Lo, L. Wang, and B. Li, Thermal Transistor: Heat Flux Switching and Modulating, J. Phys. Soc. Jpn. 77(5), 054402 (2008)
https://doi.org/10.1143/JPSJ.77.054402
|
9 |
L. Wang and B. Li, Thermal logic gates: Computation with phonons, Phys. Rev. Lett. 99(17), 177208 (2007)
https://doi.org/10.1103/PhysRevLett.99.177208
|
10 |
L. Wang and B. Li, Thermal memory: A storage of phononic information, Phys. Rev. Lett. 101(26), 267203 (2008)
https://doi.org/10.1103/PhysRevLett.101.267203
|
11 |
H. Zhu, J. Yi, M. Y. Li, J. Xiao, L. Zhang, C. W. Yang, R. A. Kaindl, L. J. Li, Y. Wang, and X. Zhang, Observation of chiral phonons, Science 359(6375), 579 (2018)
https://doi.org/10.1126/science.aar2711
|
12 |
J. Lu, C. Qiu, M. Ke, and Z. Liu, Valley vortex states in sonic crystals, Phys. Rev. Lett. 116(9), 093901 (2016)
https://doi.org/10.1103/PhysRevLett.116.093901
|
13 |
J. Lu, C. Qiu, L. Ye, X. Fan, M. Ke, F. Zhang, and Z. Liu, Observation of topological valley transport of sound in sonic crystals, Nat. Phys. 13(4), 369 (2017)
https://doi.org/10.1038/nphys3999
|
14 |
Y. Liu, Y. Xu, S. C. Zhang, and W. Duan, Model for topological phononics and phonon diode, Phys. Rev. B 96(6), 064106 (2017)
https://doi.org/10.1103/PhysRevB.96.064106
|
15 |
S. Twaha, J. Zhu, Y. Yan, and B. Li, A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement, Renew. Sustain. Energy Rev. 65, 698 (2016)
https://doi.org/10.1016/j.rser.2016.07.034
|
16 |
D. Li, Y. Gong, Y. Chen, J. Lin, Q. Khan, Y. Zhang, Y. Li, H. Zhang, and H. Xie, Recent progress of twodimensional thermoelectric materials, Nano-Micro Lett. 12(1), 36 (2020)
https://doi.org/10.1007/s40820-020-0374-x
|
17 |
L. D. Zhao, S. H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature 508(7496), 373 (2014)
https://doi.org/10.1038/nature13184
|
18 |
M. J. Lee, J. H. Ahn, J. H. Sung, H. Heo, S. G. Jeon, W. Lee, J. Y. Song, K. H. Hong, B. Choi, S. H. Lee, and M. H. Jo, Thermoelectric materials by using two-dimensional materials with negative correlation between electrical and thermal conductivity, Nat. Commun. 7(1), 12011 (2016)
https://doi.org/10.1038/ncomms12011
|
19 |
C. Chang, M. Wu, D. He, Y. Pei, C. F. Wu, X. Wu, H. Yu, F. Zhu, K. Wang, Y. Chen, L. Huang, J. F. Li, J. He, and L. D. Zhao, 3D charge and 2D phonon transports leading to high out-of-plane ZTin n-type SnSe crystals, Science 360(6390), 778 (2018)
https://doi.org/10.1126/science.aaq1479
|
20 |
H. Babaei, J. M. Khodadadi, and S. Sinha, Large theoretical thermoelectric power factor of suspended single-layer MoS2, Appl. Phys. Lett. 105(19), 193901 (2014)
https://doi.org/10.1063/1.4901342
|
21 |
C. Caroli, R. Combescot, P. Nozieres, and D. Saint-James, Direct calculation of the tunneling current, J. Phys. C 4(8), 916 (1971)
https://doi.org/10.1088/0022-3719/4/8/018
|
22 |
Y. Meir, and N. S. Wingreen, Landauer formula for the current through an interacting electron region, Phys. Rev. Lett. 68(16), 2512 (1992)
https://doi.org/10.1103/PhysRevLett.68.2512
|
23 |
A. P. Jauho, N. S. Wingreen, and Y. Meir, Timedependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B 50(8), 5528 (1994)
https://doi.org/10.1103/PhysRevB.50.5528
|
24 |
J. S. Wang, J. Wang, and N. Zeng, Nonequilibrium Green’s function approach to mesoscopic thermal transport, Phys. Rev. B 74(3), 033408 (2006)
https://doi.org/10.1103/PhysRevB.74.033408
|
25 |
J. S. Wang, N. Zeng, J. Wang, and C. K. Gan, Nonequilibrium Green’s function method for thermal transport in junctions, Phys. Rev. E 75(6), 061128 (2007)
https://doi.org/10.1103/PhysRevE.75.061128
|
26 |
N. Sergueev, D. Roubtsov, and H. Guo, Ab initioanalysis of electron–phonon coupling in molecular devices, Phys. Rev. Lett. 95(14), 146803 (2005)
https://doi.org/10.1103/PhysRevLett.95.146803
|
27 |
T. Shimazaki and Y. Asai, Bias voltage dependence on the vibronic electric current, Phys. Rev. B 77(7), 075110 (2008)
https://doi.org/10.1103/PhysRevB.77.075110
|
28 |
M. Paulsson, T. Frederiksen, and M. Brandbyge, Modeling inelastic phonon scattering in atomic- and molecularwire junctions, Phys. Rev. B 72(20), 201101 (2005)
https://doi.org/10.1103/PhysRevB.72.201101
|
29 |
A. Ferretti, A. Calzolari, R. Di Felice, F. Manghi, M. J. Caldas, M. B. Nardelli, and E. Molinari, First-principles theory of correlated transport through nanojunctions, Phys. Rev. Lett. 94(11), 116802 (2005)
https://doi.org/10.1103/PhysRevLett.94.116802
|
30 |
K. S. Thygesen and A. Rubio, Conserving GW scheme for nonequilibrium quantum transport in molecular contacts, Phys. Rev. B 77(11), 115333 (2008)
https://doi.org/10.1103/PhysRevB.77.115333
|
31 |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B 63(24), 245407 (2001)
https://doi.org/10.1103/PhysRevB.63.245407
|
32 |
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B 65(16), 165401 (2002)
https://doi.org/10.1103/PhysRevB.65.165401
|
33 |
Z. Y. Ong and E. Pop, Effect of substrate modes on thermal transport in supported graphene, Phys. Rev. B 84(7), 075471 (2011)
https://doi.org/10.1103/PhysRevB.84.075471
|
34 |
G. Zhang and B. Li, Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature, J. Chem. Phys. 123(11), 114714 (2005)
https://doi.org/10.1063/1.2036967
|
35 |
G. Zhang and H. Zhang, Thermal conduction and rectification in few-layer graphene Y junctions, Nanoscale 3(11), 4604 (2011)
https://doi.org/10.1039/c1nr10945f
|
36 |
R. Yang and G. Chen, Thermal conductivity modeling of periodic two-dimensional nanocomposites, Phys. Rev. B 69(19), 195316 (2004)
https://doi.org/10.1103/PhysRevB.69.195316
|
37 |
W. Li, N. Mingo, L. Lindsay, D. A. Broido, D. A. Stewart, and N. A. Katcho, Thermal conductivity of diamond nanowires from first principles, Phys. Rev. B 85(19), 195436 (2012)
https://doi.org/10.1103/PhysRevB.85.195436
|
38 |
W. Li, J. Carrete, N. A. Katcho, and N. Mingo, Sheng-BTE: A solver of the Boltzmann transport equation for phonons, Comput. Phys. Commun. 185(6), 1747 (2014)
https://doi.org/10.1016/j.cpc.2014.02.015
|
39 |
J. S. Wang, J. Wang, and J. T. Lü, Quantum thermal transport in nanostructures, Eur. Phys. J. B 62(4), 381 (2008)
https://doi.org/10.1140/epjb/e2008-00195-8
|
40 |
J.-S. Wang, B. K. Agarwalla, H. Li, and J. Thingna, Nonequilibrium Green’s function method for quantum thermal transport, Front. Phys. 9(6), 673 (2014)
https://doi.org/10.1007/s11467-013-0340-x
|
41 |
H. Haug and A. P. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer-Verlag, Berlin, 1998
|
42 |
N. Mingo and L. Yang, Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach, Phys. Rev. B 68(24), 245406 (2003)
https://doi.org/10.1103/PhysRevB.68.245406
|
43 |
T. Yamamoto and K. Watanabe, Nonequilibrium Green’s function approach to phonon transport in defective carbon nanotubes, Phys. Rev. Lett. 96(25), 255503 (2006)
https://doi.org/10.1103/PhysRevLett.96.255503
|
44 |
L. Zhang, J. Thingna, D. He, J. S. Wang, and B. Li, Nonlinearity enhanced interfacial thermal conductance and rectification, EPL (Europhys. Lett.) 103(6), 64002 (2013)
https://doi.org/10.1209/0295-5075/103/64002
|
45 |
J. T. Lü and J. S. Wang, Coupled electron and phonon transport in one-dimensional atomic junctions, Phys. Rev. B 76(16), 165418 (2007)
https://doi.org/10.1103/PhysRevB.76.165418
|
46 |
L. Zhang, J. T. Lü, J. S. Wang, and B. Li, Thermal transport across metal–insulator interface via electron–phonon interaction, J. Phys.: Condens. Matter 25(44), 445801 (2013)
https://doi.org/10.1088/0953-8984/25/44/445801
|
47 |
K. Gordiz and A. Henry, Examining the effects of stiffness and mass difference on the thermal interface conductance between Lennard–Jones solids, Sci. Rep. 5(1), 18361 (2015)
https://doi.org/10.1038/srep18361
|
48 |
J. Chen, J. H. Walther, and P. Koumoutsakos, Covalently bonded graphene–carbon nanotube hybrid for high-performance thermal interfaces, Adv. Funct. Mater. 25(48), 7539 (2015)
https://doi.org/10.1002/adfm.201501593
|
49 |
W. A. Little, The transport of heat between dissimilar solids at low temperatures, Can. J. Phys. 37(3), 334 (1959)
https://doi.org/10.1139/p59-037
|
50 |
E. T. Swartz and R. O. Pohl, Thermal boundary resistance, Rev. Mod. Phys. 61(3), 605 (1989)
https://doi.org/10.1103/RevModPhys.61.605
|
51 |
L. Zhang, P. Keblinski, J. S. Wang, and B. Li, Interfacial thermal transport in atomic junctions, Phys. Rev. B Condens. Matter Mater. Phys. 83(6), 064303 (2011)
https://doi.org/10.1103/PhysRevB.83.064303
|
52 |
C. B. Saltonstall, C. A. Polanco, J. C. Duda, A. W. Ghosh, P. M. Norris, and P. E. Hopkins, Effect of interface adhesion and impurity mass on phonon transport at atomic junctions, J. Appl. Phys. 113(1), 013516 (2013)
https://doi.org/10.1063/1.4773331
|
53 |
G. Xiong, J. S. Wang, D. Ma, and L. Zhang, Dramatic enhancement of interfacial thermal transport by massgraded and coupling-graded materials, EPL (Europhys. Lett.) 128(5), 54007 (2020)
https://doi.org/10.1209/0295-5075/128/54007
|
54 |
B. Chen and L. Zhang, Optimized couplers for interfacial thermal transport, J. Phys.: Condens. Matter 27(12), 125401 (2015)
https://doi.org/10.1088/0953-8984/27/12/125401
|
55 |
D. He, J. Thingna, J. S. Wang, and B. Li, Quantum thermal transport through anharmonic systems: A selfconsistent approach, Phys. Rev. B 94(15), 155411 (2016)
https://doi.org/10.1103/PhysRevB.94.155411
|
56 |
J. Fang, X. Qian, C. Y. Zhao, B. Li, and X. Gu, Monitoring anharmonic phonon transport across interfaces in one-dimensional lattice chains, Phys. Rev. E 101(2), 022133 (2020)
https://doi.org/10.1103/PhysRevE.101.022133
|
57 |
J. C. Klöckner, M. Bürkle, J. C. Cuevas, and F. Pauly, Length dependence of the thermal conductance of alkanebased single-molecule junctions: An ab initio study, Phys. Rev. B 94(20), 205425 (2016)
https://doi.org/10.1103/PhysRevB.94.205425
|
58 |
J. C. Klöckner, R. Siebler, J. C. Cuevas, and F. Pauly, Thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions: Electrons, phonons, and photons, Phys. Rev. B 95(24), 245404 (2017)
https://doi.org/10.1103/PhysRevB.95.245404
|
59 |
L. Cui, R. Miao, C. Jiang, E. Meyhofer, and P. Reddy, Perspective: Thermal and thermoelectric transport in molecular junctions, J. Chem. Phys. 146(9), 092201 (2017)
https://doi.org/10.1063/1.4976982
|
60 |
L. Hu, L. Zhang, M. Hu, J. S. Wang, B. Li, and P. Keblinski, Phonon interference at self-assembled monolayer interfaces: Molecular dynamics simulations, Phys. Rev. B 81(23), 235427 (2010)
https://doi.org/10.1103/PhysRevB.81.235427
|
61 |
J. Lu, K. Yuan, F. Sun, K. Zheng, Z. Zhang, J. Zhu, X. Wang, X. Zhang, Y. Zhuang, Y. Ma, X. Cao, J. Zhang, and D. Tang, Self-assembled monolayers for the polymer/semiconductor interface with improved interfacial thermal management, ACS Appl. Mater. Interfaces 11(45), 42708 (2019)
https://doi.org/10.1021/acsami.9b12006
|
62 |
H. Fan, M. Wang, D. Han, J. Zhang, J. Zhang, and X. Wang, Enhancement of interfacial thermal transport between metal and organic semiconductor using selfassembled monolayers with different terminal groups, J. Phys. Chem. C 124(31), 16748 (2020)
https://doi.org/10.1021/acs.jpcc.0c02753
|
63 |
X. Chen, Y. Xu, X. Zou, B. L. Gu, and W. Duan, Interfacial thermal conductance of partially unzipped carbon nanotubes: Linear scaling and exponential decay, Phys. Rev. B 87(15), 155438 (2013)
https://doi.org/10.1103/PhysRevB.87.155438
|
64 |
W. Zhang, N. Mingo, and T. S. Fisher, Simulation of phonon transport across a non-polar nanowire junction using an atomistic Green’s function method, Phys. Rev. B 76(19), 195429 (2007)
https://doi.org/10.1103/PhysRevB.76.195429
|
65 |
Y. Xu, X. Chen, B. L. Gu, and W. Duan, Intrinsic anisotropy of thermal conductance in graphene nanoribbons, Appl. Phys. Lett. 95(23), 233116 (2009)
https://doi.org/10.1063/1.3272678
|
66 |
Y. Xu, X. Chen, J. S. Wang, B. L. Gu, and W. Duan, Thermal transport in graphene junctions and quantum dots, Phys. Rev. B 81(19), 195425 (2010)
https://doi.org/10.1103/PhysRevB.81.195425
|
67 |
Z. Ding, Q. X. Pei, J. W. Jiang, W. Huang, and Y. W. Zhang, Interfacial thermal conductance in graphene/MoS2 heterostructures, Carbon 96, 888 (2016)
https://doi.org/10.1016/j.carbon.2015.10.046
|
68 |
S. Sadasivam, N. Ye, J. P. Feser, J. Charles, K. Miao, T. Kubis, and T. S. Fisher, Thermal transport across metal silicide-silicon interfaces: First-principles calculations and Green’s function transport simulations, Phys. Rev. B 95(8), 085310 (2017)
https://doi.org/10.1103/PhysRevB.95.085310
|
69 |
Z. Zhang, Y. Xie, Q. Peng, and Y. Chen, Phonon transport in single-layer boron nanoribbons, Nanotechnology 27(44), 445703 (2016)
https://doi.org/10.1088/0957-4484/27/44/445703
|
70 |
Y. Blanter and M. Büttiker, Shot noise in mesoscopic conductors, Phys. Rep. 336(1–2), 1 (2000)
https://doi.org/10.1016/S0370-1573(99)00123-4
|
71 |
M. Büttiker, Four-terminal phase-coherent conductance, Phys. Rev. Lett. 57(14), 1761 (1986)
https://doi.org/10.1103/PhysRevLett.57.1761
|
72 |
M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Phys. Rev. B 38(14), 9375 (1988)
https://doi.org/10.1103/PhysRevB.38.9375
|
73 |
L. Zhang, J. S. Wang, and B. Li, Ballistic thermal rectification in nanoscale three-terminal junctions, Phys. Rev. B 81(10), 100301 (2010)
https://doi.org/10.1103/PhysRevB.81.100301
|
74 |
Y. Ming, Z. X. Wang, Z. J. Ding, and H. M. Li, Ballistic thermal rectification in asymmetric three-terminal mesoscopic dielectric systems, New J. Phys. 12(10), 103041 (2010)
https://doi.org/10.1088/1367-2630/12/10/103041
|
75 |
T. Ouyang, Y. Chen, Y. Xie, X. L. Wei, K. Yang, P. Yang, and J. Zhong, Ballistic thermal rectification in asymmetric three-terminal graphene nanojunctions, Phys. Rev. B 82(24), 245403 (2010)
https://doi.org/10.1103/PhysRevB.82.245403
|
76 |
Z. X. Xie, K. M. Li, L. M. Tang, C. N. Pan, and K. Q. Chen, Nonlinear phonon transport and ballistic thermal rectification in asymmetric graphene-based three terminal junctions, Appl. Phys. Lett. 100(18), 183110 (2012)
https://doi.org/10.1063/1.4711204
|
77 |
Y. Gu, Mode-dependent phonon transmission in a Tshaped three-terminal graphene nanojunction, Carbon 158, 818 (2020)
https://doi.org/10.1016/j.carbon.2019.11.059
|
78 |
L. Zhang, J. S. Wang, and B. Li, Phonon Hall effect in four-terminal nano-junctions, New J. Phys. 11(11), 113038 (2009)
https://doi.org/10.1088/1367-2630/11/11/113038
|
79 |
Y. Xing, Q. F. Sun, and J. Wang, Nature of spin Hall effect in a finite ballistic two-dimensional system with Rashba and Dresselhaus spin–orbit interaction, Phys. Rev. B 73(20), 205339 (2006)
https://doi.org/10.1103/PhysRevB.73.205339
|
80 |
Y. Xing, Q. F. Sun, and J. Wang, Symmetry and transport property of spin current induced spin-Hall effect, Phys. Rev. B 75(7), 075324 (2007)
https://doi.org/10.1103/PhysRevB.75.075324
|
81 |
M. Wei, M. Zhou, B. Wang, and Y. Xing, Thermoelectric transport properties of ferromagnetic graphene with CTinvariant quantum spin Hall effect, Phys. Rev. B 102(7), 075432 (2020)
https://doi.org/10.1103/PhysRevB.102.075432
|
82 |
C. Strohm, G. L. J. A. Rikken, and P. Wyder, Phenomenological evidence for the phonon Hall effect, Phys. Rev. Lett. 95(15), 155901 (2005)
https://doi.org/10.1103/PhysRevLett.95.155901
|
83 |
E. C. Cuansing and J. S. Wang, Transient behavior of heat transport in a thermal switch, Phys. Rev. B 81(5), 052302 (2010)
https://doi.org/10.1103/PhysRevB.81.052302
|
84 |
R. Tuovinen, N. Säkkinen, D. Karlsson, G. Stefanucci, and R. van Leeuwen, Phononic heat transport in the transient regime: An analytic solution, Phys. Rev. B 93(21), 214301 (2016)
https://doi.org/10.1103/PhysRevB.93.214301
|
85 |
E. C. Cuansing and J. S. Wang, Erratum: Transient behavior of heat transport in a thermal switch [Phys. Rev. B 81, 052302 (2010)], Phys. Rev. B 83(1), 019902 (2011)
https://doi.org/10.1103/PhysRevB.83.019902
|
86 |
J. S. Wang, B. K. Agarwalla, and H. Li, Transient behavior of full counting statistics in thermal transport, Phys. Rev. B 84(15), 153412 (2011)
https://doi.org/10.1103/PhysRevB.84.153412
|
87 |
B. K. Agarwalla, B. Li, and J. S. Wang, Full-counting statistics of heat transport in harmonic junctions: Transient, steady states, and fluctuation theorems, Phys. Rev. E. 85(5), 051142 (2012)
https://doi.org/10.1103/PhysRevE.85.051142
|
88 |
B. K. Agarwalla, J. H. Jiang, and D. Segal, Full counting statistics of vibrationally assisted electronic conduction: Transport and fluctuations of thermoelectric efficiency, Phys. Rev. B 92(24), 245418 (2015)
https://doi.org/10.1103/PhysRevB.92.245418
|
89 |
K. Saito and A. Dhar, Fluctuation theorem in quantum heat conduction, Phys. Rev. Lett. 99(18), 180601 (2007)
https://doi.org/10.1103/PhysRevLett.99.180601
|
90 |
K. Saito and A. Dhar, Generating function formula of heat transfer in harmonic networks, Phys. Rev. E 83(4), 041121 (2011)
https://doi.org/10.1103/PhysRevE.83.041121
|
91 |
Y. Dubi and M. Di Ventra, Heat flow and thermoelectricity in atomic and molecular junctions, Rev. Mod. Phys. 83(1), 131 (2011)
https://doi.org/10.1103/RevModPhys.83.131
|
92 |
A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451(7175), 163 (2008)
https://doi.org/10.1038/nature06381
|
93 |
P. Reddy, S. Y. Jang, R. A. Segalman, and A. Majumdar, Thermoelectricity in molecular junctions, Science 315(5818), 1568 (2007)
https://doi.org/10.1126/science.1137149
|
94 |
T. Gunst, T. Markussen, A. P. Jauho, and M. Brandbyge, Thermoelectric properties of finite graphene antidot lattices, Phys. Rev. B 84(15), 155449 (2011)
https://doi.org/10.1103/PhysRevB.84.155449
|
95 |
Y. Chen, T. Jayasekera, A. Calzolari, K. W. Kim, and M. B. Nardelli, Thermoelectric properties of graphene nanoribbons, junctions and superlattices, J. Phys.: Condens. Matter 22(37), 372202 (2010)
https://doi.org/10.1088/0953-8984/22/37/372202
|
96 |
K. Yang, Y. Chen, R. D’Agosta, Y. Xie, J. Zhong, and A. Rubio, Enhanced thermoelectric properties in hybrid graphene/boron nitride nanoribbons, Phys. Rev. B 86(4), 045425 (2012)
https://doi.org/10.1103/PhysRevB.86.045425
|
97 |
Y. Xing, Q. F. Sun, and J. Wang, Nernst and Seebeck effects in a graphene nanoribbon, Phys. Rev. B 80(23), 235411 (2009)
https://doi.org/10.1103/PhysRevB.80.235411
|
98 |
M. M. Wei, Y. T. Zhang, A. M. Guo, J. J. Liu, Y. Xing, and Q. F. Sun, Magnetothermoelectric transport properties of multiterminal graphene nanoribbons, Phys. Rev. B 93(24), 245432 (2016)
https://doi.org/10.1103/PhysRevB.93.245432
|
99 |
B. Wang, J. Zhou, R. Yang, and B. Li, Ballistic thermoelectric transport in structured nanowires, New J. Phys. 16(6), 065018 (2014)
https://doi.org/10.1088/1367-2630/16/6/065018
|
100 |
J. Li, B. Wang, F. Xu, Y. Wei, and J. Wang, Spindependent Seebeck effects in graphene-based molecular junctions, Phys. Rev. B 93(19), 195426 (2016)
https://doi.org/10.1103/PhysRevB.93.195426
|
101 |
B. Zhou, B. Zhou, Y. Yao, G. Zhou, and M. Hu, Spindependent Seebeck effects in a graphene superlattice p–n junction with different shapes, J. Phys.: Condens. Matter 29(40), 405303 (2017)
https://doi.org/10.1088/1361-648X/aa80cc
|
102 |
P. N. Butcher, Thermal and electrical transport formalism for electronic microstructures with many terminals, J. Phys.: Condens. Matter 2(22), 4869 (1990)
https://doi.org/10.1088/0953-8984/2/22/008
|
103 |
U. Sivan and Y. Imry, Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge, Phys. Rev. B 33(1), 551 (1986)
https://doi.org/10.1103/PhysRevB.33.551
|
104 |
G. D. Mahan, Many-Particle Physics, Springer, New York, 2000
https://doi.org/10.1007/978-1-4757-5714-9
|
105 |
J. Ren, J. X. Zhu, J. E. Gubernatis, C. Wang, and B. Li, Thermoelectric transport with electron–phonon coupling and electron–electron interaction in molecular junctions, Phys. Rev. B85(15), 155443 (2012)
https://doi.org/10.1103/PhysRevB.85.155443
|
106 |
K. Uchida, S. Takahashi, K. Harii, J. Ieda, W. Koshibae, K. Ando, S. Maekawa, and E. Saitoh, Observation of the spin Seebeck effect, Nature 455(7214), 778 (2008)
https://doi.org/10.1038/nature07321
|
107 |
G. E. Bauer, A. H. MacDonald, and S. Maekawa, Spin caloritronics, Solid State Commun. 150(11–12), 459 (2010)
https://doi.org/10.1016/j.ssc.2010.01.022
|
108 |
G. E. W. Bauer, E. Saitoh, and B. J. van Wees, Spin caloritronics, Nat. Mater. 11(5), 391 (2012)
https://doi.org/10.1038/nmat3301
|
109 |
M. Hatami, G. E. W. Bauer, Q. Zhang, and P. J. Kelly, Thermal spin-transfer torque in magnetoelectronic devices, Phys. Rev. Lett. 99(6), 066603 (2007)
https://doi.org/10.1103/PhysRevLett.99.066603
|
110 |
Z. Zhang, L. Bai, X. Chen, H. Guo, X. L. Fan, D. S. Xue, D. Houssameddine, and C. M. Hu, Observation of thermal spin-transfer torque via ferromagnetic resonance in magnetic tunnel junctions, Phys. Rev. B 94(6), 064414 (2016)
https://doi.org/10.1103/PhysRevB.94.064414
|
111 |
M. Zeng, Y. Feng, and G. Liang, Graphene-based spin caloritronics, Nano Lett. 11(3), 1369 (2011)
https://doi.org/10.1021/nl2000049
|
112 |
X. Q. Yu, Z. G. Zhu, G. Su, and A. P. Jauho, Thermally driven pure spin and valley currents via the anomalous nernst effect in monolayer Group-VI dichalcogenides, Phys. Rev. Lett. 115(24), 246601 (2015)
https://doi.org/10.1103/PhysRevLett.115.246601
|
113 |
S. G. Cheng, Y. Xing, Q. F. Sun, and X. C. Xie, Spin Nernst effect and Nernst effect in two-dimensional electron systems, Phys. Rev. B78(4), 045302 (2008)
https://doi.org/10.1103/PhysRevB.78.045302
|
114 |
Q. Wang, J. Li, Y. Nie, F. Xu, Y. Yu, and B. Wang, Pure spin current and phonon thermoelectric transport in a triangulene-based molecular junction, Phys. Chem. Chem. Phys. 20(23), 15736 (2018)
https://doi.org/10.1039/C8CP02322K
|
115 |
D. Xiao, W. Yao, and Q. Niu, Valley-contrasting physics in graphene: Magnetic moment and topological transport, Phys. Rev. Lett. 99(23), 236809 (2007)
https://doi.org/10.1103/PhysRevLett.99.236809
|
116 |
C. E. Nebel, Electrons dance in diamond, Nat. Mater. 12(8), 690 (2013)
https://doi.org/10.1038/nmat3724
|
117 |
A. Rycerz, J. Tworzydlo, and C. W. J. Beenakker, Valley filter and valley valve in graphene, Nat. Phys. 3(3), 172 (2007)
https://doi.org/10.1038/nphys547
|
118 |
D. Gunlycke and C. T. White, Graphene valley filter using a line defect, Phys. Rev. Lett. 106(13), 136806 (2011)
https://doi.org/10.1103/PhysRevLett.106.136806
|
119 |
Y. Jiang, T. Low, K. Chang, M. I. Katsnelson, and F. Guinea, Generation of pure bulk valley current in graphene, Phys. Rev. Lett. 110(4), 046601 (2013)
https://doi.org/10.1103/PhysRevLett.110.046601
|
120 |
Z. Yu, F. Xu, and J. Wang, Valley Seebeck effect in gate tunable zigzag graphene nanoribbons, Carbon 99, 451 (2016)
https://doi.org/10.1016/j.carbon.2015.12.033
|
121 |
L. Zhang, Z. Yu, F. Xu, and J. Wang, Influence of dephasing and B/N doping on valley Seebeck effect in zigzag graphene nanoribbons, Carbon 126, 183 (2018)
https://doi.org/10.1016/j.carbon.2017.10.017
|
122 |
X. Chen, L. Zhang, and H. Guo, Valley caloritronics and its realization by graphene nanoribbons, Phys. Rev. B 92(15), 155427 (2015)
https://doi.org/10.1103/PhysRevB.92.155427
|
123 |
X. Zhai, W. Gao, X. Cai, D. Fan, Z. Yang, and L. Meng, Spin-valley caloritronics in silicene near room temperature, Phys. Rev. B 94(24), 245405 (2016)
https://doi.org/10.1103/PhysRevB.94.245405
|
124 |
Z. P. Niu and S. Dong, Valley and spin thermoelectric transport in ferromagnetic silicene junctions, Appl. Phys. Lett. 104(20), 202401 (2014)
https://doi.org/10.1063/1.4876927
|
125 |
X. Zhai, S. Wang, and Y. Zhang, Valley–spin Seebeck effect in heavy group-IV monolayers, New J. Phys. 19(6), 063007 (2017)
https://doi.org/10.1088/1367-2630/aa6d37
|
126 |
G. Stefanucci and C. O. Almbladh, Time-dependent partition-free approach in resonant tunneling systems, Phys. Rev. B 69(19), 195318 (2004)
https://doi.org/10.1103/PhysRevB.69.195318
|
127 |
M. Cini, Time-dependent approach to electron transport through junctions: General theory and simple applications, Phys. Rev. B 22(12), 5887 (1980)
https://doi.org/10.1103/PhysRevB.22.5887
|
128 |
C. Caroli, R. Combescot, D. Lederer, P. Nozieres, and D. Saint-James, A direct calculation of the tunnelling current (II): Free electron description, J. Phys. C 4(16), 2598 (1971)
https://doi.org/10.1088/0022-3719/4/16/025
|
129 |
Z. Yu, J. Yuan, and J. Wang, Time-dependent thermoelectric transport in mesoscopic systems under a quantum quench, Phys. Rev. B 101(23), 235433 (2020)
https://doi.org/10.1103/PhysRevB.101.235433
|
130 |
B. Wang, J. Wang, and H. Guo, Current partition: A nonequilibrium Green’s function approach, Phys. Rev. Lett. 82(2), 398 (1999)
https://doi.org/10.1103/PhysRevLett.82.398
|
131 |
J. Chen, M. ShangGuan, and J. Wang, A gauge invariant theory for time dependent heat current, New J. Phys. 17(5), 053034 (2015)
https://doi.org/10.1088/1367-2630/17/5/053034
|
132 |
X. Chen, J. Yuan, G. Tang, J. Wang, Z. Zhang, C. M. Hu, and H. Guo, Transient spin current under a thermal switch, J. Phys. D 51(27), 274004 (2018)
https://doi.org/10.1088/1361-6463/aac7ca
|
133 |
F. G. Eich, A. Principi, M. Di Ventra, and G. Vignale, Luttinger-field approach to thermoelectric transport in nanoscale conductors, Phys. Rev. B 90(11), 115116 (2014)
https://doi.org/10.1103/PhysRevB.90.115116
|
134 |
F. G. Eich, M. Di Ventra, and G. Vignale, Temperaturedriven transient charge and heat currents in nanoscale conductors, Phys. Rev. B 93(13), 134309 (2016)
https://doi.org/10.1103/PhysRevB.93.134309
|
135 |
Č. Lozej and T. Rejec, Time-dependent thermoelectric transport in nanosystems: Reflectionless Luttinger field approach, Phys. Rev. B 98(7), 075427 (2018)
https://doi.org/10.1103/PhysRevB.98.075427
|
136 |
A. Crépieux, F. Šimkovic, B. Cambon, and F. Michelini, Enhanced thermopower under a time-dependent gate voltage, Phys. Rev. B 83(15), 153417 (2011)
https://doi.org/10.1103/PhysRevB.83.153417
|
137 |
A. Kara Slimane, P. Reck, and G. Fleury, Simulating time-dependent thermoelectric transport in quantum systems, Phys. Rev. B 101(23), 235413 (2020)
https://doi.org/10.1103/PhysRevB.101.235413
|
138 |
M. M. Odashima and C. H. Lewenkopf, Time-dependent resonant tunneling transport: Keldysh and Kadanoff-Baym nonequilibrium Green’s functions in an analytically soluble problem, Phys. Rev. B 95(10), 104301 (2017)
https://doi.org/10.1103/PhysRevB.95.104301
|
139 |
M. Ridley, and R. Tuovinen, Formal equivalence between partitioned and partition-free quenches in quantum transport, J. Low Temp. Phys. 191(5–6), 380 (2018)
https://doi.org/10.1007/s10909-018-1880-9
|
140 |
A. M. Daré and P. Lombardo, Time-dependent thermoelectric transport for nanoscale thermal machines, Phys. Rev. B 93(3), 035303 (2016)
https://doi.org/10.1103/PhysRevB.93.035303
|
141 |
Z. Yu, L. Zhang, Y. Xing, and J. Wang, Investigation of transient heat current from first principles using complex absorbing potential, Phys. Rev. B 90(11), 115428 (2014)
https://doi.org/10.1103/PhysRevB.90.115428
|
142 |
Z. Yu, G. M. Tang, and J. Wang, Full-counting statistics of transient energy current in mesoscopic systems, Phys. Rev. B 93(19), 195419 (2016)
https://doi.org/10.1103/PhysRevB.93.195419
|
143 |
H. Li, B. K. Agarwalla, and J. S. Wang, Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling, Phys. Rev. B 86(16), 165425 (2012)
https://doi.org/10.1103/PhysRevB.86.165425
|
144 |
M. Ridley, M. Galperin, E. Gull, and G. Cohen, Numerically exact full counting statistics of the energy current in the Kondo regime, Phys. Rev. B 100(16), 165127 (2019)
https://doi.org/10.1103/PhysRevB.100.165127
|
145 |
G. Tang, J. Thingna, and J. Wang, Thermodynamics of energy, charge, and spin currents in a thermoelectric quantum-dot spin valve, Phys. Rev. B 97(15), 155430 (2018)
https://doi.org/10.1103/PhysRevB.97.155430
|
146 |
G. Tang, X. Chen, J. Ren, and J. Wang, Rectifying fullcounting statistics in a spin Seebeck engine, Phys. Rev. B 97(8), 081407 (2018)
https://doi.org/10.1103/PhysRevB.97.081407
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|