Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Struc Civil Eng    2012, Vol. 6 Issue (4) : 348-357    https://doi.org/10.1007/s11709-012-0176-4
RESEARCH ARTICLE
Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames
Xiaoqun LUO1, Hanbin GE2(), Tsutomu USAMI2
1. Department of Building Engineering, Tongji University, Shanghai 200092, China; 2. Department of Civil Engineering, Meijo University, Nagoya 468-8502, Japan
 Download: PDF(600 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The objective of the present study is to analytically investigate temperature effects of an axial-type seismic damper made of shape memory alloys (SMAs) equipped in steel frames. Based on a modified multilinear one dimensional constitutive model of SMAs, two types of SMAs are employed, which have different stress plateau and different stress growth rate with temperature increase. Temperature effects of SMA dampers on seismic performance upgrading are discussed in three aspects: different environment temperatures; rapid loading rate induced heat generation and different SMA fractions. The analysis indicates that the effect of environment temperature should be considered for the SMA damper in steel frames. However, the rapid loading rate induced heat generation has little adverse effect.

Keywords damage control design      shape memory alloy      temperature effect     
Corresponding Author(s): GE Hanbin,Email:gehanbin@meijo-u.ac.jp   
Issue Date: 05 December 2012
 Cite this article:   
Xiaoqun LUO,Hanbin GE,Tsutomu USAMI. Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames[J]. Front Struc Civil Eng, 2012, 6(4): 348-357.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-012-0176-4
https://academic.hep.com.cn/fsce/EN/Y2012/V6/I4/348
SMAT/°CσMS/MPaσMF/MPaσAS/MPaσAF/MPa
CuAlBe4036048012080
203204408040
0280400400
NiTi40640600440400
20520480320280
0400360200160
Tab.1  Transformation critical stresses of two types of SMAs under investigated temperatures
Fig.1  Stress-temperature relationship for SMAs []
Fig.2  Constitutive law of SMA damping device. (a) Constitutive law of SMAs in austenite and matensite phases; (b) constitutive law of the SMA damper
Fig.3  Schematic plan of SMA damping device
bare frameframe sectionsgirder sections
steelSM490width/mm2000width/mm2000
height/m12depth/mm2000depth/mm1000
width/m12thickness/mm32thickness/mm32
mass/t2042stiffener width/mm140
δy, f/m0.078stiffener thickness/mm32
Vy/kN6758
Tab.2  Dimensions and structural properties of the steel frame
Fig.4  Frame pier with SMA damping device and its analytical model
Fig.5  Schematic diagram for SMA damping device
Fig.6  Time history and response spectra of strong earthquake inputs. (a) Earthquake record JRT-EW-M; (b) earthquake record JRT-NS-M; (c) earthquake record FUKIAI-M
SMAαFαKA/mm2L/mmESMA/GPaσy,SMA/MPa?y,SMA
CuAlBe0.93256803797703200.00457
NiTi0.93171201859705200.00743
Tab.3  SMA structural parameters
damperSMA A/mm2LYS A/mm2LYS E/GPaLYS σy/MPa
NiTi-LYS85608560206215
CuAlBe-LYS1284012840206215
Tab.4  Structural parameters of seismic damper with SMA and LYS
temperatures/°Cabsolute value of the maximum top displacement/mm
NiTiCuAlBe
JRT-EW-MJRT-NS-MFUKIAI-MJRT-EW-MJRT-NS-MFUKIAI-M
0206293268161230206
20141264223122213181
40158172124144195159
Tab.5  Absolute value of the maximum top displacements under three strong earthquake records
Fig.7  Top displacement responses. (a) 0°C; (b) 20°C; (c) 40°C
Fig.8  Compressive strain responses at bases. (a) 0°C; (b) 20°C; (c) 40°C
Fig.9  Stress-strain relationships of SMAs. (a) 0°C; (b) 20°C; (c) 40°C
Fig.10  Seismic performance comparison between isothermal and adiabatic processes. (a) Maximum top displacements; (b) residual displacements; (c) maximum average compressive strains; (d) maximum strain response in SMAs; (e) maximum stress response in SMAs
Fig.11  Comparison of SMA models under various strong earthquake motions. (a) Normalized max top displacement; (b) normalized residual top displacement; (c) normalized maximum shear force; (d) normalized average strain at bases
Fig.12  Comparison of stress-strain relationship among different SMA dampers. (a) NiTi damper and NiTi-LYS damper; (b) CuAlBe damper and CuAlBe-LYS damper
1 Dolce M, Cardone D. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi wires subjected to tension. International Journal of Mechanical Sciences , 2001, 43(11): 2657-2677
doi: 10.1016/S0020-7403(01)00050-9
2 Wayman C M, Duerig T W. Engineering Aspects of Shape Memory Alloys. In: Duerig T W, Melton K N, Stockel D, Wayman C M, eds. London: Butterworth-Heinemann Ltd, 1990, 3-20
3 Attanasi G, Auricchio F, Fenves G L. Feasibility assessment of an innovative isolation bearing system with shape memory alloys. Journal of Earthquake Engineering , 2009, 13(S1): 18-39
doi: 10.1080/13632460902813216
4 Cardone D, Dolce M. SMA-based tension control block for metallic tendons. International Journal of Mechanical Sciences , 2009, 51(2): 159-165
doi: 10.1016/j.ijmecsci.2008.12.002
5 Zhang Y F, Hu X B, Zhu S Y. Seismic performance of benchmark base-isolated bridges with superelastic Cu-Al-Be restraining damping devices. Structural Control and Health Monitoring , 2009, 16(6): 668-685
doi: 10.1002/stc.327
6 JRA. Design Specification of Highway Bridges. Part V: Seismic Design , Japan Road Association, Tokyo, Japan, 2002 (in Japanese)
7 Usami T, Ge H B. Performance-based seismic design methodology for steel bridge systems. Journal of Earthquake and Tsunami , 2009, 3(3): 175-193
doi: 10.1142/S179343110900055X
8 Araya R, Marivil M, Mir C, Moroni O, Sepúlveda A. Temperature and grain size effects on the behavior of CuAlBe SMA wires under cyclic loading. Materials Science and Engineering A , 2008, 496(1-2): 209-213
doi: 10.1016/j.msea.2008.05.030
9 Motahari S A, Ghassemieh M. Multilinear one-dimensional shape memory material model for use in structural engineering applications. Engineering Structures , 2007, 29(6): 904-913
doi: 10.1016/j.engstruct.2006.06.007
10 Luo X Q, Ge H B, Usami T. Dynamic numerical simulation of steel frame-typed piers installed with SMA damping devices based on multi-linear one dimensional constitutive model. Advanced Steel Construction , 2010, 6(2): 722-741
11 Chen Z Y, Ge H B, Usami T. Study on seismic performance upgrading for steel bridge structures by introducing energy-dissipation members. Journal of Structural Engineering , 2007, 53A: 540-549
12 ABAQUS. ABAQUS Analysis User’s Manual, Dassault Systèmes, 2006
13 Luo X Q, Ge H B, Usami T. Parametric study on damage control design of SMA dampers in frame-typed steel piers. Frontiers of Architecture and Civil Engineering in China , 2009, 3(4): 384-394
doi: 10.1007/s11709-009-0065-7
14 Usami T. Guidelines for Seismic and Damage Control Design of Steel Bridges. Japanese Society of Steel Construction , Tokyo: Gihodo Syuppan Press, Japan, 2006 (in Japanese)
[1] Jiping GE, M. Saiid SAIIDI, Sebastian VARELA. Computational studies on the seismic response of the State Route 99 bridge in Seattle with SMA/ECC plastic hinges[J]. Front. Struct. Civ. Eng., 2019, 13(1): 149-164.
[2] Roberto T. LEON,Yu GAO. Resiliency of steel and composite structures[J]. Front. Struct. Civ. Eng., 2016, 10(3): 239-253.
[3] S. HASHEMI,H. AHMADIAN,S. MOHAMMADI. An extended thermo-mechanically coupled algorithm for simulation of superelasticity and shape memory effect in shape memory alloys[J]. Front. Struct. Civ. Eng., 2015, 9(4): 466-477.
[4] Adeel ZAFAR, Bassem ANDRAWES. Experimental flexural behavior of SMA-FRP reinforced concrete beam[J]. Front Struc Civil Eng, 2013, 7(4): 341-355.
[5] Youliang DING, Aiqun LI. Assessment of bridge expansion joints using long-term displacement measurement under changing environmental conditions[J]. Front Arch Civil Eng Chin, 2011, 5(3): 374-380.
[6] Xiaoqun LUO, Hanbin GE, Tsutomu USAMI, . Parametric study on damage control design of SMA dampers in frame-typed steel piers[J]. Front. Struct. Civ. Eng., 2009, 3(4): 384-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed