Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front Struc Civil Eng    2013, Vol. 7 Issue (1) : 24-31    https://doi.org/10.1007/s11709-013-0190-1
RESEARCH ARTICLE
Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model
Yaoru LIU1(), Zhu HE1, Bo LI2, Qiang YANG1
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China; 2. Changjiang Institute of Survey, Planning, Design and Research, Wuhan 430010, China
 Download: PDF(308 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The rigid-body limit equilibrium method cannot reflect the actual stress distribution in a rock mass, and the finite-element-based strength reduction method also has some problems with respect to convergence. To address these problems, a multi-grid method was adopted in this study to establish a structural grid for finite element computation and a slip surface grid for computing slope stability safety factors. This method can be used to determine the stability safety factor for any slip surface or slide block through a combination of nonlinear finite element analysis and limit equilibrium analysis. An ideal elastic–plastic incremental analysis method based on the Drucker–Prager yield criterion was adopted in the nonlinear finite element computation. Elasto-plastic computation achieves good convergence for both small load steps and large load steps and can increase computation precision to a certain extent. To increase the scale and accuracy of the computation, TFINE, a finite element parallel computation program, was used to analyze the influence of grid density on the accuracy of the computation results and was then applied to analysis of the stability of the Jinping high slope. A comparison of the results with results obtained using the rigid-body limit equilibrium method showed that the slope stability safety factors determined using finite element analysis were greater than those obtained using the rigid-body limit equilibrium method and were in better agreement with actual values because nonlinear stress adjustment was considered in the calculation.

Keywords slope      stability      multi-grid method      nonlinear      finite element method     
Corresponding Author(s): LIU Yaoru,Email:liuyaoru@tsinghua.edu.cn   
Issue Date: 05 March 2013
 Cite this article:   
Yaoru LIU,Zhu HE,Bo LI, et al. Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model[J]. Front Struc Civil Eng, 2013, 7(1): 24-31.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-013-0190-1
https://academic.hep.com.cn/fsce/EN/Y2013/V7/I1/24
Fig.1  Typical block of slope
Fig.2  Deflection angle from intersecting line to surface shear force
Fig.3  Slip surface and structural mesh design
Fig.4  Area vector design
Fig.5  Diagram of elastic-plastic stress adjustment
Fig.6  High slope of Jinping arch dam
Fig.7  Calculation mesh
Fig.8  Key sliding block
block borderareac/MPaf
NNW fracture sets (NW18 SE65)A30.550.68
A20.170.36
fault f42-9 (NE800 SE48)B30.310.5
B20.020.3
IV rock mass (NE10 SE15)A1 and B10.60.7
Lamprophyre vein-0.40.6
fault f5-0.020.3
Tab.1  Material parameters of left slope
excavation processunexcavatedUnexcavated+ earthquakeexcavated to dam rest elevationfully excavatedfully excavated+ earthquake
sliding block 1composite slip forces(× 104 N)1577841017373251140037911247664613691487
composite slip resistance(× 104 N)2134124420845583194530291701663816681903
block safety factor1.352561.1998671.3891261.3638791.218414
sliding block 2composite slip forces(× 104 N)56353276083809402752324892462658163
composite slip resistance(× 104 N)80828537878520674216843284284207735
block safety factor1.4343181.2949981.6740241.7388511.582949
Tab.2  Data and safety factor of block
1 Bishop A W. The use of the slip circle in the stability analysis of slopes. Geotechnique , 1955, 5(1): 7-17
doi: 10.1680/geot.1955.5.1.7
2 Duncan J M, 0. State of the art: limit equilibrium and finite-element analysis of slopes. Journal of Geotechnical Engineering , 1996, 122(7): 577-596
doi: 10.1061/(ASCE)0733-9410(1996)122:7(577)
3 Zuyu C, Xiaogang W, Jian Y, Zhixin J, Yujie W. Rock slope stability analysis: Theory methods and programs. Beijing: China Water Power Press, 2005 (in Chinese)
4 Griffiths D V, Lane P A. Slope stability analysis by finite elements. Geotechnique , 1999, 49(3): 387-403
doi: 10.1680/geot.1999.49.3.387
5 Lenchman J B, Griffiths D V. Analysis of the progression of failure of the earth slopes by finite elements. In: Proceedings of Sessions of Geo-Denver 2000-Slope Stability 2000. GSP 101 , 289: 250-265
6 Liu Y R. Yang Q, Zhu L. Abutment stability analysis of arch dam based on 3D nonlinear finite element method. Chinese Journal of Rock Mechanics and Engineering , 2008, 27(1): 3222-3228 (in Chinese)
7 Jiang G L, Magnan J P. Stability analysis of embankments: Comparison of limit analysis with methods of slices. Geotechnique , 1997, 47(4): 857-872
doi: 10.1680/geot.1997.47.4.857
8 Dawson E M, Roth W H, Drescher A. Slope stability analysis by strength reduction. Geotechnique , 1999, 49(6): 835-840
doi: 10.1680/geot.1999.49.6.835
9 Zhao S Y, Zheng Y R, Shi W M, Wang J L. Analysis on safety factor of slope by strength reduction FEM. Chinese Journal of Geotechnical Engineering , 2002, 24(3): 343-346 (in Chinese)
10 Yang Q, Zhu L, Xue L J. Application of limit equilibrium method to stability analysis of Jinping high slope based on 3D multi-grid method. Chinese Journal of Rock Mechanics and Engineering , 2005, 24(Supp.2): 5313-5318 (in Chinese)
11 Liu Y R, Yang Q, Xue L J, Zhou W Y. Rock Slop Stability Analysis with Nonlinear Finite Element Method. In: Cai M F, Wang J, eds. Boundaries of Rock Mechanics . London: Taylor & Francis Group, 2008, 503-507
12 Hjiaj M, Fortin J, de Saxce G. A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex. International Journal of Engineering Science , 2003, 41(10): 1109-1143
doi: 10.1016/S0020-7225(02)00376-2
13 Yang Q, Yang X J, Chen X. On integration algorithms for perfect plasticity based on Drucker-Prager criterion. Engineering Mechanics , 2005, 22(4): 15-19 , 47 (in Chinese)
14 Yang Q, Chen X, Zhou W Y. A practical 3D elastic-plastic incremental method in FEM based on D-P yield criteria. Chinese Journal of Geotechnical Engineering , 2002, 24(1): 16-20 (in Chinese)
15 Chen X. Yang Q, Huang Y S. Sub-incremental method for perfect elasto-plastic material based on D-P yield criteria. Chinese Journal of Rock Mechanics and Engineering , 2002, Suppl 2: 2465-2469 (in Chinese)
16 Yang Q. Chen X, Zhou W Y. Elastic-plastic basis of geotechnical engineering reinforcement analysis. Rock and Soil Mechanics , 2005, 26(4): 553-557 (in Chinese)
17 Schreyer H L, Kulak R F, Kramer J M. Accurate numerical solutions for elastoplastic models. Journals of Pressure Vessel Technology , 1979, 101(2): 226-234
18 Ortiz M, Popov E P. Accuracy and stability of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering , 1985, 21(9): 1561-1576
19 Liu Y R, Zhou W Y, Yang Q. A distributed memory parallel element-by-element scheme based on Jacobi-conditioned conjugate gradient for 3-D finite element analysis. Finite Elements in Analysis and Design , 2007, 43(6-7): 494-503
doi: 10.1016/j.finel.2006.12.007
[1] Hamid M. SEDIGHI, Hassen M. OUAKAD. Velocity gradient elasticity for nonlinear vibration of carbon nanotube resonators[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1520-1530.
[2] Nabarun DEY, Aniruddha SENGUPTA. Effect of a less permeable stronger soil layer on the stability of non-homogeneous unsaturated slopes[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1462-1475.
[3] Norly BELANDRIA, Roberto ÚCAR, Francisco M. LEÓN, Ferri HASSANI. Stability analysis of slopes with planar failure using variational calculus and numerical methods[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1262-1273.
[4] Wengang ZHANG, Libin TANG, Hongrui LI, Lin WANG, Longfei CHENG, Tingqiang ZHOU, Xiang CHEN. Probabilistic stability analysis of Bazimen landslide with monitored rainfall data and water level fluctuations in Three Gorges Reservoir, China[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1247-1261.
[5] Aydin SHISHEGARAN, Behnam KARAMI, Timon RABCZUK, Arshia SHISHEGARAN, Mohammad Ali NAGHSH, Mohammreza MOHAMMAD KHANI. Performance of fixed beam without interacting bars[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1180-1195.
[6] Zhongwei ZHAO, Miao LIU, Haiqing LIU, Bing LIANG, Yongjing LI, Yuzhuo ZHANG. Pull-through capacity of bolted thin steel plate[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1166-1179.
[7] Mohammad Abubakar NAVEED, Zulfiqar ALI, Abdul QADIR, Umar Naveed LATIF, Saad HAMID, Umar SARWAR. Geotechnical forensic investigation of a slope failure on silty clay soil—A case study[J]. Front. Struct. Civ. Eng., 2020, 14(2): 501-517.
[8] Farhoud KALATEH, Farideh HOSSEINEJAD. Uncertainty assessment in hydro-mechanical-coupled analysis of saturated porous medium applying fuzzy finite element method[J]. Front. Struct. Civ. Eng., 2020, 14(2): 387-410.
[9] Lingyun YOU, Kezhen YAN, Nengyuan LIU. Assessing artificial neural network performance for predicting interlayer conditions and layer modulus of multi-layered flexible pavement[J]. Front. Struct. Civ. Eng., 2020, 14(2): 487-500.
[10] Jeng-Wen LIN, Meng-Hsun HSIEH, Yu-Jen LI. Factor analysis for the statistical modeling of earthquake-induced landslides[J]. Front. Struct. Civ. Eng., 2020, 14(1): 123-126.
[11] Weihua FANG, Jiangfei WU, Tiantang YU, Thanh-Tung NGUYEN, Tinh Quoc BUI. Simulation of cohesive crack growth by a variable-node XFEM[J]. Front. Struct. Civ. Eng., 2020, 14(1): 215-228.
[12] Xiao YAN, Zizheng SUN, Shucai LI, Rentai LIU, Qingsong ZHANG, Yiming ZHANG. Quantitatively assessing the pre-grouting effect on the stability of tunnels excavated in fault zones with discontinuity layout optimization: A case study[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1393-1404.
[13] Vahid ALIZADEH. Finite element analysis of controlled low strength materials[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1243-1250.
[14] Tugrul TALASLIOGLU. Optimal dome design considering member-related design constraints[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1150-1170.
[15] Mingjie ZHANG, Fuyou XU. Variational mode decomposition based modal parameter identification in civil engineering[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1082-1094.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed