Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2014, Vol. 8 Issue (3) : 237-251    https://doi.org/10.1007/s11709-014-0242-1
RESEARCH ARTICLE
Shallow foundation response variability due to soil and model parameter uncertainty
Prishati RAYCHOWDHURY(),Sumit JINDAL
Department of Civil Engineering, Indian Institute of Technology Kanpur, Kanpur UP-208016, India
 Download: PDF(1133 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Geotechnical uncertainties may play crucial role in response prediction of a structure with substantial soil-foundation-structure-interaction (SFSI) effects. Since the behavior of a soil-foundation system may significantly alter the response of the structure supported by it, and consequently several design decisions, it is extremely important to identify and characterize the relevant parameters. Moreover, the modeling approach and the parameters required for the modeling are also critically important for the response prediction. The present work intends to investigate the effect of soil and model parameter uncertainty on the response of shallow foundation-structure systems resting on dry dense sand. The SFSI is modeled using a beam-on-nonlinear-winkler-foundation (BNWF) concept, where soil beneath the foundation is assumed to be an assembly of discrete, nonlinear elements composed of springs, dashpots and gap elements. The sensitivity of both soil and model input parameters on shallow foundation responses are investigated using first-order second-moment (FOSM) analysis and Monte Carlo simulation through Latin hypercube sampling technique. It has been observed that the degree of accuracy in predicting the responses of the shallow foundation is highly sensitive soil parameters, such as friction angle, Poisson’s ratio and shear modulus, rather than model parameters, such as stiffness intensity ratio and spring spacing; indicating the importance of proper characterization of soil parameters for reliable soil-foundation response analysis.

Keywords shallow foun dation      sensitivity analysis      centrifuge data      first-order-second-moment (FOSM) method      parameter uncertainty     
Corresponding Author(s): Prishati RAYCHOWDHURY   
Issue Date: 19 August 2014
 Cite this article:   
Prishati RAYCHOWDHURY,Sumit JINDAL. Shallow foundation response variability due to soil and model parameter uncertainty[J]. Front. Struct. Civ. Eng., 2014, 8(3): 237-251.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-014-0242-1
https://academic.hep.com.cn/fsce/EN/Y2014/V8/I3/237
parameterssymbolrangemean (μ)coefficient of variation (Cv)
friction angle/ (°)?38- 42403%
Poisson’s ratioν0.3- 0.50.416%
shear modulus/MPaGs12- 201615%
end length ratio/%Re1- 17954%
stiffness intensity ratioRk1- 9548%
spring spacing /%Ss1.0- 3.0230%
Tab.1  Details of selected uncertain parameters
?νGsReRkSS
?10.10.6000
ν10.2000
Gs1000
Re10.30.1
Rk1-0.1
SS1
Tab.2  Assumed correlation coefficient between the parameters
testmass /mglength /mwidth /mheight /membedment/mFSvM/VLreference
SSG02_03282.80.650.6605.21.75Gajan et al. [18]
SSG02_05582.80.650.6602.61.72Gajan et al. [18]
SSG03_03282.80.650.660.65141.77Gajan et al. [19]
SSG04_06682.80.650.6602.31.11Gajan et al. [20]
Tab.3  Details of the experiments considered in the study
Fig.1  Shearwall resting on strip footing
Fig.2  Material models. (a) q-z element; (b) p-x element; (c) t-x element
Fig.3  Variable stiffness distribution of BNWF model and model input parameters
Fig.4  Response variation with different sample sizes
parametersrangemean absolute demands from simulation
moment /(KN-m)shear /KNrotation /radsettlement /mm
? /(°)38.0368.5687.730.055111.50
39.0391.0493.470.05593.05
40.0414.7599.490.05472.55
41.0437.22105.210.05460.67
42.0459.08110.140.05452.70
ν0.30406.4997.590.05473.64
0.35410.4898.480.05572.58
0.40414.7599.490.05472.55
0.45418.20100.240.05572.36
0.50423.27101.510.05472.22
Gs/MPa12.0399.3196.030.05574.32
14.0407.7197.920.05473.43
16.0414.7599.490.05472.55
18.0420.88101.000.05472.33
20.0428.59103.180.05560.80
Re/%1.0419.61101.060.05569.27
5.0412.6098.960.05570.22
9.0414.7599.490.05472.55
13.0416.6199.890.05475.40
17.0418.30100.310.05478.51
Rk1.00418.23100.520.05569.88
3.00418.76100.500.05570.15
5.00414.7599.490.05472.55
7.00408.5397.910.05474.72
9.00402.7996.470.05476.64
SS/%1.00412.6598.960.05573.04
1.50413.5699.180.05572.42
2.00414.7599.490.05472.55
2.50416.2699.870.05571.99
3.00410.4198.000.05565.85
experimental value477.09103.890.052140.83
Tab.4  Absolute mean demands with varying input parameters
parametersrangeabsolute error in BNWF simulation/%
|δˉM||δˉV||δˉθ||δˉS|
? /(°)38.022.0515.047.2627.33
39.017.6010.167.2938.11
40.012.886.647.2346.91
41.08.377.417.2249.85
42.04.828.097.1650.16
ν0.3014.627.617.2546.83
0.3513.787.117.2647.10
0.4012.886.647.2346.91
0.4512.126.477.2646.95
0.5011.086.527.2246.82
Gs/MPa12.016.138.537.3347.00
14.014.367.467.2546.88
16.012.886.647.2346.91
18.011.596.547.2346.92
20.010.067.227.2550.57
Re/%1.011.927.207.4049.08
5.013.346.767.2748.89
9.012.886.647.2346.91
13.012.436.587.2543.81
17.012.056.767.2540.78
Rk1.0012.237.177.2648.85
3.0012.066.827.2847.90
5.0012.886.647.2346.91
7.0014.136.887.2146.26
9.0015.287.627.2445.48
SS/%1.0013.306.757.2946.86
1.5013.126.717.3047.04
2.0012.886.647.2346.91
2.5012.586.667.2747.15
3.0013.645.967.2849.59
Tab.5  Absolute mean error in demands with varying input parameters
Fig.5  Footing response comparison for test SSG02 05 with varying friction angle. (a) Moment-rotation; (b) settlement-rotation; (c) shear-rotation
Fig.6  Variability of response prediction due to parameter uncertainty. (a) Friction angle; (b) Poisson’s ratio; (c) shear modulus; (d) end length ratio; (e) stiffness intensity ratio; (f) spring spacing
testmomentshearrotationsettlement
M|V|θ|S|
SSG02_03μ9.595.130.3865.73
σ28.9618.990.00475.07
Cv56.1384.9615.8013.18
SSG02_05μ16.9915.1612.6542.07
σ68.9871.4653.69314.19
Cv48.8955.7757.9042.14
SSG03_03μ15.5610.444.7035.52
σ42.3642.33204.4213338.63
Cv41.8362.34304.30325.15
SSG04_06μ16.0614.1919.1053.63
σ119.36144.26224.951104.83
Cv68.0384.6478.5461.98
MEANμ14.5511.239.2149.24
σ64.9269.26120.773708.18
Cv53.7271.93114.13110.61
Tab.6  Variability in absolute errors of response prediction using Latin hypercube method/%
Fig.7  Sensitivity analysis using FOSM method. (a) Moment; (b) shear; (c) rotation; (d) settlement
1 Lacasse S, Nadim F. Uncertainties in characterizing soil properties. In: Uncertainty in the Geologic Environment: From Theory to Practic, Proceedings of Uncertainty 96. Madison, Wisconsin, July 31-August 3, 1996, New York, USA, ASCE Geotechnical Special Publication.1996, 58: 49–75
2 Chakraborty S, Dey S S. Stochastic finite-element simulation of random structure on uncertain foundation under random loading. International Journal of Mechanical Sciences, 1996, 38(11): 1209–1218
3 Foye K C, Salgado R, Scott B. Assessment of variable uncertainties for reliability based design of foundations. Journal of Geotechnical and Geoenviornmental Engineering. 2006, 132(9): 1197-1207
4 Jones A L, Kramer S L, Arduino P. Estimation of uncertainty in geotechnical properties for performance-based earthquake engineering. Tech. Rep. 2002/16, Pacific Earthquake Engineering Research Center, PEER, 2002
5 Lumb P. The variability of natural soils. Engineering Structures, 1966, 3: 74-97
6 Lutes L D, Sarkani S, Jin S. Response variability of an SSI system with uncertain structural and soil properties. Canadian Geotechnical Journal, 2000, 22(6): 605-620
7 Na U J, Chaudhuri S R, Shinozuka M. Probabilistic assessment for seismic performance of port structures. Soil Dynamics and Earthquake Engineering, 2008, 28(2): 147-158
8 Chaudhuri S R, Gupta V K. Variability in seismic response of secondary systems due to uncertain soil properties. Engineering Structures, 2002, 24(12): 1601-1613
9 Raychowdhury P. Effect of soil parameter uncertainty on seismic demand of low rise steel buildings on dense sand. Soil Dynamics and Earthquake Engineering, 2009, 29(10): 1367-1378
doi: 10.1016/j.soildyn.2009.03.004
10 Raychowdhury P, Hutchinson T C. Sensitivity of shallow foundation response to model input parameters. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(3): 538-541
11 Ronold K O, Bjerager P. Model uncertainty representation in geotechnical reliability analysis. Journal of Geotechnical Engineering, 1992, 118(3): 363-376
12 Boulanger R W, Curras C J, Kutter B L, Wilson D W, Abghari A. Seismic soil-pile-structure interaction experiments and analyses. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750-759
13 Raychowdhury P, Hutchinson T C. (2008) Nonlinear material models for Winkler-based shallow foundation response evaluation. In: GeoCongress 2008, Characterization, Monitoring,and Modeling of GeoSystems, March 9-12, 2008, New Orleans, LA, ASCE Geotechnical Special Publication No. 179, pp 686-693
14 Raychowdhury P, Hutchinson T C. Performance evaluation of a nonlinear Winkler-based shallow foundation model using centrifuge test results. Earthquake Engineering & Structural Dynamics, 2009, 38(5): 679-698
doi: 10.1002/eqe.902
15 Terzaghi K. Theoretical Soil Mechanics. New York: J Wiley, 1943
16 Meyerhof G G. Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, 1963, 1(1): 16-26
17 Gazetas G. Foundation Engineering Handbook. Fang H Y ed. Van NostrandRienhold, 1991
18 Gajan, 2003a;
19 Gajan, 2003b;
20 Gajan, 2006
21 EPRI. Manual on Estimating Soil Properties for Foundation Design. Electric Power Research Institute, Palo Alto, California, 1990
22 Gajan S, Hutchinson T C, Kutter B, Raychowdhury P, Ugalde J A, Stewart J P. Numerical models for the analysis and performance-based design of shallow foundations subjected to seismic loading. PEER Data Report, Pacific Earthquake Engineering Research Center (PEER), 2008
23 Raychowdhury P. Nonlinear Winkler-based shallow foundation model for performance assessment of seismically loaded structures. Dissertation for the Doctoral Degree. San Diego: University of California, 2008
24 ATC-40. Seismic Evaluation and Retrofit of Concrete Buildings. Applied Technology Council (ATC), Redwood City, California, 1996
25 Harden C W, Hutchinson T C, Martin G R, Kutter B L. Numerical modeling of the nonlinear cyclic response of shallow foundations. Tech. Rep. 2005/04, Pacific Earthquake Engineering Research Center, PEER, 2005
26 OpenSees. Open System for Earthquake Engineering Simulation: OpenSees. Pacific Earthquake Engineering Research Center (PEER), University of California, Berkeley, 2008 (http://opensees.berkeley.edu)
27 McKay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 1979, 21(2): 239-245
28 Iman R L, Conover W J. A distribution-free approach to including rank correlation among input variables. Bulletin of the Seismic Society of America, 1982, 11(3): 311-334
29 Stein M. Large sample properties of simulations using Latin hypercube sampling. Technometrics, 1987, 29(2): 143-151
30 Jindal S. Shallow foundation response analysis: a parametric study. Master’s thesis. Kanpur: Indian Institute of Technology Kanpur, 2011
[1] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[2] Reza KHADEMI-ZAHEDI, Pouyan ALIMOURI. Finite element model updating of a large structure using multi-setup stochastic subspace identification method and bees optimization algorithm[J]. Front. Struct. Civ. Eng., 2019, 13(4): 965-980.
[3] Mohammad Reza GHASEMI, Charles V. CAMP, Babak DIZANGIAN. Novel decoupled framework for reliability-based design optimization of structures using a robust shifting technique[J]. Front. Struct. Civ. Eng., 2019, 13(4): 800-820.
[4] M. Houshmand KHANEGHAHI, M. ALEMBAGHERI, N. SOLTANI. Reliability and variance-based sensitivity analysis of arch dams during construction and reservoir impoundment[J]. Front. Struct. Civ. Eng., 2019, 13(3): 526-541.
[5] Babak DIZANGIAN, Mohammad Reza GHASEMI. Border-search and jump reduction method for size optimization of spatial truss structures[J]. Front. Struct. Civ. Eng., 2019, 13(1): 123-134.
[6] Lingyun YOU, Zhanping YOU, Kezhen YAN. Effect of anisotropic characteristics on the mechanical behavior of asphalt concrete overlay[J]. Front. Struct. Civ. Eng., 2019, 13(1): 110-122.
[7] Faezehossadat KHADEMI,Mahmoud AKBARI,Sayed Mohammadmehdi JAMAL,Mehdi NIKOO. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete[J]. Front. Struct. Civ. Eng., 2017, 11(1): 90-99.
[8] Jiu-jiang WU,Yan LI,Qian-gong CHENG,Hua WEN,Xin LIANG. A simplified method for the determination of vertically loaded pile-soil interface parameters in layered soil based on FLAC3D[J]. Front. Struct. Civ. Eng., 2016, 10(1): 103-111.
[9] Xi CHEN, Wei XU. Parametric sensitivity analysis of cellular diaphragm wall[J]. Front Struc Civil Eng, 2012, 6(4): 358-364.
[10] Hossein ASADI KALAMEH, Arash KARAMALI, Cosmin ANITESCU, Timon RABCZUK. High velocity impact of metal sphere on thin metallic plate using smooth particle hydrodynamics (SPH) method[J]. Front Struc Civil Eng, 2012, 6(2): 101-110.
[11] HUANG Minshui, ZHU Hongping, LI Lin, GUO Wenzeng. Dynamic test and finite element model updating of bridge structures based on ambient vibration[J]. Front. Struct. Civ. Eng., 2008, 2(2): 139-144.
[12] JI Xiaodong, QIAN Jiaru, XU Longhe. Experimental study of modal parameter identification in a simulated ambient-excited structure[J]. Front. Struct. Civ. Eng., 2007, 1(3): 281-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed