Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2018, Vol. 12 Issue (1) : 81-91    https://doi.org/10.1007/s11709-016-0378-2
RESEARCH ARTICLE
In-plane transversal normal stresses in the concrete face of CFRD induced by the first-dam reservoir filling
Neftalí SARMIENTO-SOLANO(), Miguel P. ROMO
1Institute of Engineering, National University of Mexico, Mexico City, 04510, Mexico
 Download: PDF(3356 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

To evaluate the effects of dam height, valley narrowness and width of concrete slabs on the first-dam reservoir filling in-plane transversal normal stresses in the concrete face of CFRD´s, 3D finite difference analyses were carried out. Behavior of rockfill dams considered in this study was defined from the monitoring of a number of 3D sets of pressure cells and extensometers installed in three large dams in Mexico. The 3D analyses results show that high in-plane transversal compressive stresses develop within the concrete panels located in the central concrete face zone upon dam reservoir filling loading. Likewise, in-plane induced tensile transversal stresses in the zones near the abutments increase the potential of slabs cracking and damaging the waterstops in-between the vertical and perimetral joints. From the results of the 3D finite difference analyses, a simple method to estimate in-plane normal stresses in the concrete face is advanced and through comparisons with the results of a 3D case numerical study, its accuracy assessed.

Keywords concrete face      CFR dams      reservoir filling      slab in-plane stresses     
Corresponding Author(s): Neftalí SARMIENTO-SOLANO   
Online First Date: 20 February 2017    Issue Date: 08 March 2018
 Cite this article:   
Neftalí SARMIENTO-SOLANO,Miguel P. ROMO. In-plane transversal normal stresses in the concrete face of CFRD induced by the first-dam reservoir filling[J]. Front. Struct. Civ. Eng., 2018, 12(1): 81-91.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-016-0378-2
https://academic.hep.com.cn/fsce/EN/Y2018/V12/I1/81
Fig.1  Geometrical features CFRDs models
Fig.2  (a) Experimental model of the concrete-concrete interface and (b) numeric model of the contact
propertyslab-slab and slab-plinth jointsconcrete slab-rockfill joint
normal stiffness, kn10 MPa/m100 MPa/m
shear stiffness, ks10 MPa/m10 MPa/m
friction coefficient, m0.530.72
Tensile Strength, T0 MPa0 MPa
Tab.1  Interface elements properties
propertyrockfillslab, plinth
volumetric weight, g20 kN/m324 kN/m3
Young’s Modulus: E0, Ec45 MPa22 MPa
Poisson’s ratio, u0.330.20
Tab.2  Material properties of the CFRDs
Fig.3  (a) Location instrumentation, (b) octahedral stress-strain relationship, and (c) octahedral shear stress- shear strain relationship, obtained from in situ measurements in Aguamilpa dam (modified from Alberro et al. [22])
Fig.4  Three dimensional finite difference models of CFRDs
Fig.5  Contours of transversal stresses in the concrete face under first reservoir filling loading.
Fig.6  Maximum in-plane stresses in the concrete face at the end of reservoir filling: (a) compressive and (b) tensile stresses, a = 0.8
Fig.7  Maximum in-plane stresses in the concrete face without construction joints upon reservoir filling. (a) Compressive; (b) tensile stresses
parametera = 0.4a = 0.6a = 0.8
C 0.00528 H + 0.012530.00676 H + 0.052100.00635 H + 0.21887
D0.00101 H + 0.153070.00121 H + 0.123230.00099 H + 0.13770
Tab.3  Parameters C and D for Eq. (7)
Fig.8  Maximum in-plane stresses at the central section of the concrete face (y = 0 m) upon reservoir filling
methodcompression (kN/m2)tension (kN/m2)
proposed431.2869.0
numerical401.0859.2
Tab.4  Maximum in-plane transversal stresses in the concrete face
Fig.9  Application example 3D finite difference model, H = 140 m
Fig.10  In-plane stresses at the central section of the concrete face (y= 0 m) upon reservoir filling
1 Hacelas J E, Ramirez C A, Regalado G. Construction and performance of salvajina dam, concrete face rockfill dams-design, construction, and performance. Journal of Geotechnical Engineering, 1985, 111(3): 286–315
2 Giudici S, Herweynen R, Quinlan P. HEC experience in concrete faced rockfill dams—Past, present and future. In: Proccedings International Symposium on Concrete Face Rockfill Dams. Beijing, China, 2000, 29–46
3 Marulanda-Escobar C, Marulanda-Posada A. Recent experience on design, construction and performance of CFRD Dams. International Conference on Case Histories in Geotechnical Engineering, August, 2008, 9
4 Sobrinho J A, Xavier L V, Albertoni C, Correa C, Fernandes R. Performance and concrete repair at Campos Novos. Hydropower and dams, 2007, 2
5 Pinto N L S. A challenge to very high CFRD dams: very high concrete face compressive stresses. In: Proceedings of the 5th International Conference on Dam Engineering. LNEC, Lisbon, Portugal, February, 2007
6 Johannesson P. Lesson learned from Mohale. Water Power and Dam Construction, 2007
7 Filho P M, Pinto N L S. CFRD dam characteristics learned from experience. International Journal on Hydropower & dams, 2005, 1 (1):72–76
8 Cruz P T, Freitas M S. Cracks and flows in concrete face rock fill dams (CFRD). In: Proceedings of the 5th International Conference on Dam Engineering. LNEC, Lisbon, Portugal, February, 2007
9 Antunes J, Vieira L, Custodio S, Correa C, Fernandes R. Performance and concrete face repair at Campos Novos. Hydropower & Dam, 2007, 2: 39–42
10 Romo M P. Análisis sísmico de la cortina (enrocamiento con cara de concreto) de la presa La Parota. Informe para la Comisión Federal de Electricidad, Instituto de Ingeniería, UNAM, October, 2005 (in Spanish)
11 Romo M P, Sarmiento N, Martínez S, Merlos J, García S R, Magaña R, Hernández S.Análisis Sísmico de la Cortina Propuesta por CFE para el Proyecto Hidroeléctrico El Cajón y Diseños Geotécnicos Alternos. Informe Técnico del Instituto de Ingeniería, UNAM, elaborado para la Comisión Federal de Electricidad, noviembre, 2002 (in Spanish)
12 Romo M P, Botero E, Méndez B, Hernández S, Sarmiento N. Análisis sísmico de la cortina y el vertedor del proyecto Hidroelectrico La Yesca. Informe para la Comisión Federal de Electricidad, Instituto de Ingeniería, UNAM, July 2006 (in Spanish)
13 Itasca Consulting Group. FLAC3D: Fast Lagrangian Analysis of Continua in 3 Dimensions. Inc, Minneapolis, Minnesota, 2005
14 Goodman R E, Taylor R L, Brekke T L. A model for the mechanics of jointed rocks. Journal of Soil Mechanics and Foundation Division, 1968, 94 (SM3): 637–659
15 Ghaboussi J, Wilson E L, Isenberg J. Finite element for rock and interfaces. Journal of Soil Mechanics and Foundation Division, 1973, 99(SM10) : 833–848
16 Desai C S, Zaman M, Lightner J G, Siriwardane H J. Thin-layer element for interface and joints. International Journal for Numeric and Analytical Methods in Geomechanics, 1984, 8(1): 19–43
17 Tzamtzis A D, Asteris P G. FE analysis of complex discontinuous and jointed structural systems (Part 1: Presentation of the method- a state-of-the-art review). Electronic Journal of Structural Engineering, 2004, 1
18 Cundall P A, Hart R D. Numerical modeling of discontinua. Engr Comp, 1992, 9(2): 101–113
19 Botero E. Modelo bidimensional no lineal para el analisis del comportamiento dinamico de estructuras terreas. Tesis doctoral, Universidad Nacional Autonoma de Mexico, 2004 (in Spanish)
20 Méndez B C. Investigación experimental de la fricción dinámica en una interfaz madera sobre madera. Tesis de maestría, Universidad Nacional Autónoma de México, 2004 (in Spanish)
21 Dakoulas P. Nonlinear seismic response of tall concrete-faced rockfill dams in narrow canyons. Soil Dynamics and Earthquake Engineering, ASCE, 2012, 34(1): 11–24
22 Alberro J, Macedo G and Gonzalez F. Deformabilidad in situ de los materiales constitutivos de varias presas de tierra y enrocamiento. Informe para la Comisión Federal de Electricidad, Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, May, 1998 (in Spanish)
23 Marsal R. Mechanical propierties of rockfill. In Embankment dam engineering. Casagrande Volume, Hirschfel R C, Poulos S J, eds. New York: Jonh Wiley & Sons, 1973, 109–200
24 Marachi N, Chang C, Seed H. Evaluation of properties of rock materials. Journal of the Soil Mechanics and Foundations Division, 1972, 98(SM1): 95–114
25 Indraratna B, Wijewardena L, Balasubramaniam A. Large-scale triaxial testing of grey wacke rockfill. Geotechnique, 1993, 43(1): 37–51
26 Xiao Y, Liu H L, Zhu J G, Shi W C. Modeling and behaviors of rockfill materials in three-dimensional stress space. Science China. Technological Sciences, 2012, 55(10): 2877–2892
27 Sarmiento N, Romo M P. Efedto de la dirección de la excitatcón en la respuesta sísmica de la cara de concreto de presas de enrocamiento. Tecnología y Ciencias del Agua, 2013, IV(2): 91–111
[1] Neftalí SARMIENTO-SOLANO, Miguel P. ROMO. Dynamic in-plane transversal normal stresses in the concrete face of CFRD[J]. Front. Struct. Civ. Eng., 2019, 13(1): 135-148.
[2] Martin WIELAND, . Features of seismic hazard in large dam projects and strong motion monitoring of large dams[J]. Front. Struct. Civ. Eng., 2010, 4(1): 56-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed