Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (3) : 618-627    https://doi.org/10.1007/s11709-018-0500-8
RESEARCH ARTICLE
Experimental study on shear behavior of prestressed reactive powder concrete I-girders
Hui ZHENG1, Zhi FANG2(), Bin CHEN2
1. College of Civil Engineering, Hunan University of Technology, Zhuzhou 412007, China
2. College of Civil Engineering, Hunan University, Changsha 410082, China
 Download: PDF(1892 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As a new generation of concrete, RPC(Reactive Powder Concrete) has attracted great research attention for its ultra-high strength and high durability. In the present paper, experimental results from tests on eight prestressed RPC I-section girders failing in shear are reported herein. The beams with RPC of 120 MPa in compression were designed to assess the ability to carry shear stress in thin webbed prestressed beams with stirrups. The test variables were the level of prestressing, shear span-depth ratio (a/d) and stirrup ratio. Shear deformation, shear capacity and crack pattern were experimentally investigated in detail. With regard to the shear resistance of the test beams, the predictions from three standards (AFGC, JSCE and SIA) on the design of UHPC structures were compared with the experimental result suggesting that the experimental strength is almost always higher than predicted. RPC, as a new concrete, was different from normal concrete and fiber reinforced concrete. Further study should be needed to develop an analytical method and computation model for shear strength of RPC beams.

Keywords prestressed concrete      RPC(Reactive Powder Concrete)      concrete beams      shear strength, experimental study     
Corresponding Author(s): Zhi FANG   
Online First Date: 05 July 2018    Issue Date: 05 June 2019
 Cite this article:   
Hui ZHENG,Zhi FANG,Bin CHEN. Experimental study on shear behavior of prestressed reactive powder concrete I-girders[J]. Front. Struct. Civ. Eng., 2019, 13(3): 618-627.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-018-0500-8
https://academic.hep.com.cn/fsce/EN/Y2019/V13/I3/618
Fig.1  Prestressed RPC beams (units: mm). (a) Specimen dimensions and reinforcement details. (b) Elevation View
test
beam
bw
(mm)
a/d fcu
(MPa)
fc (MPa) fts
(MPa)
ft
(MPa)
s
(mm)
ρs v
(%)
ρs y
(%)
prestressed reinforcing steel
Ap(mm2) (%) fpc(MPa)
B-2-60-90 50 2 125 111.2 15.77 11.82 90 1.257 4.31 547.2 59.2 17.09
B-2-60-180 53 2 126 111.2 15.77 11.82 180 0.628 4.31 547.2 59.2 17.53
B-2-30-90 50 2 127 113.0 15.67 11.75 90 1.257 4.31 547.2 31.5 8.98
B-2-30-180 50 2 127 113.0 15.67 11.75 180 0.628 4.31 547.2 31.5 9.44
B-2-0-90 52 2 140 124.6 16.68 12.51 90 1.257 4.31 547.2 2.0 0.56
B-2-0-180 51 2 140 124.6 16.68 12.51 180 0.628 4.31 547.2 2.0 0.55
B-3-60-90 49 3 127 113.0 15.12 11.41 90 1.257 4.31 547.2 63.2 18.48
B-1-60-90 50 1.1 127 113.0 15.12 11.41 90 1.257 4.31 547.2 63.2 18.71
Tab.1  Characteristics of tested specimens
constituents quantity
42.5 Portland cement, kg/m3 846.9
silica fume, kg/m3 211.7
quartz sand, kg/m3 1185.7
superplasticizer, kg/m3 61.0
steel fibres, kg/m3 125.3
water-cement ratio 0.2
water/Binder(cement+silica) fume 0.16
total volume ratio of steel fiber (%) 1.6
ratio of the length to diameter of the fibres 75
expected cubic compressive strength, MPa 120
Tab.2  Mix proportions of RPC
designation cross section
area (mm2)
yield strength
(MPa)
fracture strength
(MPa)
reinforcing
bar
6 mm 28.3 586 630
12 mm 113.1 382 537
16 mm 201.1 394 543
tendon 15.2 mm 139 1420 1940
Tab.3  Mechanical properties of steel used
Fig.2  Top view of combination for stretching bed and curing pool (units: mm)
Fig.3  Test setup and instrumentation. (a) Test setup Photo (B-3-30-90); (b) Loading setup (unit:mm); (c) LVDTs and strain gauge setup
test
beam
Vcr,i
(kN)
Vcr,w
(kN)
Vu
(kN)
Vu/V cr,w Vcr,w bwdfc Vubwd fc
B-2-60-90 130 160 318.5 1.99 1.17 2.32
B-2-60-180 115 180 282 1.57 1.23 1.93
B-2-30-90 110 100 314 3.14 0.72 2.27
B-2-30-180 100 80 249 3.11 0.58 1.80
B-2-0-90 70 60 291.5 4.86 0.40 1.93
B-2-0-180 70 50 250 5.00 0.34 1.69
B-3-60-90 120 110 285.5 2.60 0.79 2.06
B-1-60-90 130 245 367.5 1.50 1.81 2.71
Tab.4  Experimental Results
Fig.4  Load-versus-deflection response. (a) evaluate the effect of shear-span to depth. (b), (c) and (d) evaluate the effect of stirrup ratio with the prestressing level σcon/f ptk=0,30,60 in percentage, respectively. (e) and (f) evaluate the effect of prestressing forces with stirrup ratio=0.62%,1.26%, respectively.
Fig.5  Failure modes of RPC beams. (a) Diagonal compression failure(B-1-60-90); (b) shear failure(B-2-60-90); (c) diagonal tension failure(B-3-60-90)
Fig.6  Shear failure cracks after attainment of ultimate load for prestressed RPC beams. (a) B-2-60-90; (b) B-2-60-180; (c) B-2-30-90; (d) B-2-30-180; (e) B-2-0-90; (f) B-2-0-180; (g) B-3-60-90; (h)B-1-60-90
test Beam the dominant web-shear
crack angle
the range of web-shear
crack angle
B-2-60-90 35° 30°~38°
B-2-60-180 44° 32°~40°
B-2-30-90 41° 36°~42°
B-2-30-180 38° 36°~44°
B-2-0-90 44° 39°~49°
B-2-0-180 46° 45°~51°
B-3-60-90 25° 27°~35°
B-1-60-90 48° 37°~53°
Tab.5  The web-shear crack angle of test beam
Fig.7  Normalized shear stress versus a/d
Fig.8  Normalized shear stress versus stirrup ratio
Fig.9  Normalized shear stress of web-cracking and failure. (a) web-cracking load. (b) failure load
test Beam test Value
Vtest (kN)
analytical Values Vcalu (kN) Vtest/ Vcalu
JSCE-2006 NFP18-710-2016 SIA- 2016 ①/② ①/③ ①/④
B-2-60-90 318.5 267.9 236.2 298.7 1.19 1.35 1.07
B-2-60-180 282 195.8 140.9 179.6 1.63 2.26 1.77
B-2-30-90 314 231.7 191.5 240.8 1.37 1.66 1.32
B-2-30-180 249 210.0 151.5 209.2 1.52 2.10 1.52
B-2-0-90 291.5 232.7 181.7 235.3 1.37 1.75 1.35
B-2-0-180 250 181.7 122.6 170.0 1.75 2.60 1.87
B-3-60-90 285.5 297.2 277.4 295.8 1.07 1.15 1.08
B-1-60-90 367.5 198.3 157.0 182.8 1.61 2.03 1.74
average 1.44 1.86 1.47
coefficient of variation 0.15 0.24 0.20
Tab.6  Comparison of the ultimate shear resistance between predictions and the test result
1 P Richard, M H Cheyrezy. Reactive powder concretes with high ductility and 200-800 MPa compressive strength. Aci Spring Conversion, 1994, 144: 507–518
2 P Richard, M Cheyrezy. Composition of reactive powder concretes. Cement and Concrete Research, 1995, 25(7): 1501–1511
https://doi.org/10.1016/0008-8846(95)00144-2
3 P Y Blais, M Couture. Precast, Prestressed Pedestrian Bridge-World’s First Reactive Powder Concrete Structure. PCI Journal, 1999, 44(5): 60–71
https://doi.org/10.15554/pcij.09011999.60.71
4 Byun YJ, Huh SB. Sun-Yu Pedestrian Arch Bridge, Seoul, Korea. Structural, Engineering Intemational, 2005, 15(1): 32–34
5 B Cavill, G Chirgwin. The worlds fisrt RPC road bridge at Shepherds Gully Creek, NSW. In: the Proceeding 21st Biennial Conference of the Concrete Institute of Australia(CIA), 2003, 7: 89–98
6 R Gao, P Stroeven, C F Hendriks. Mechanical properties of reactive powder concrete beams. International Symposium on the Utilization of High Strength/high-performance Concrete, 2005, 1&2
7 J Wen-yu, A Ming-zhe, Y Gui-ping. Study on reactive powder concrete used in the sidewalk system of the Qinghai-Tibet railway bridge. In: the International Workshop on Sustainable Development and Concrete Technology, Beijing, China. 2004: 333–338
8 T J Wipf, B M Phares, S Sritharan. Design and Evaluation of a Single-Span Bridge Using Ultra-High Performance Concrete. Iowa State University, USA, Center for Transportation Research and Education, Report, 2009
9 Y L Voo, S J Foster, R I Gilbert. Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups. Journal of Advanced Concrete Technology, 2006, 4(1): 123–132
https://doi.org/10.3151/jact.4.123
10 S J Foster, Y L Voo, K T Chong. FE analysis of steel fiber reinforced concrete beams failing in shear: variable engagement model. Finite Element Method, 2006, 237: 55–70
11 Y L Voo, W K Poon, S J Foster. Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. Journal of Structural Engineering, 2010, 136(11): 1393–1400
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
12 A G Benjamin. Characterization of the Behavior of Ultra-High Performance Concrete. Ph. D Thesis, The University of Maryland, 2005
13 JSCE. Recommendations for design and construction of ultrahigh strength fiber reinforced concrete structures. JSCE Guideline for Concrete, No. 9, 2006, Tokyo, Japan
14 NF P18-710. National addition to Eurocode2— Design of concrete structures: specific rules for Ultra-high performance Fibre-reinforced concretes (UHPFRC). AFNOR, France standard institute, 2016
15 Swiss Society of Engineers and Architects (SIA). Ultra-high performance fiber reinforced cement-based materials (UHPFRC) - materials, design and execution. Zurich, Switzerland, 2016
[1] Jordan CARTER, Aikaterini S. GENIKOMSOU. Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1520-1530.
[2] Ali Fadhil NASER, Zonglin WANG. Experimental monitoring of the strengthening construction of a segmental box girder bridge and field testing of external prestressing tendons anchorage[J]. Front Struc Civil Eng, 2012, 6(3): 308-320.
[3] Yiyi CHEN, Dazhao ZHANG, Weichen XUE, Wensheng LU. Seismic performance of prestressed concrete stand structure supporting retractable steel roof[J]. Front Arch Civil Eng Chin, 2009, 3(2): 117-124.
[4] Hock Tian CHENG, Bashar S. MOHAMMED, Kamal Nasharuddin MUSTAPHA. Finite element analysis and structural design of pretensioned inverted T-beams with web openings[J]. Front Arch Civil Eng Chin, 2009, 3(2): 148-157.
[5] XUE Weichen, LIU Zhenyong, JIANG Dongsheng. Analysis on shear capacity of prestressed concrete spatial connections[J]. Front. Struct. Civ. Eng., 2008, 2(4): 309-317.
[6] LONG Peiheng, DU Xianting, CHEN Weizhen. Spatial embedded reinforcement of 20-node block element for analysis PC bridges[J]. Front. Struct. Civ. Eng., 2008, 2(3): 274-280.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed