Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (3) : 674-685    https://doi.org/10.1007/s11709-018-0505-3
RESEARCH ARTICLE
Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regression and M5 model tree
Tanvi SINGH(), Mahesh PAL, V. K. ARORA
Department of Civil Engineering, National Institute of Technology, Kurukshetra, Haryana 136119, India
 Download: PDF(703 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

M5 model tree, random forest regression (RF) and neural network (NN) based modelling approaches were used to predict oblique load carrying capacity of batter pile groups using 247 laboratory experiments with smooth and rough pile groups. Pile length (L), angle of oblique load (α), sand density (ρ), number of batter piles (B), and number of vertical piles (V) as input and oblique load (Q) as output was used. Results suggest improved performance by RF regression for both pile groups. M5 model tree provides simple linear relation which can be used for the prediction of oblique load for field data also. Model developed using RF regression approach with smooth pile group data was found to be in good agreement for rough piles data. NN based approach was found performing equally well with both smooth and rough piles. Sensitivity analysis using all three modelling approaches suggest angle of oblique load (α) and number of batter pile (B) affect the oblique load capacity for both smooth and rough pile groups.

Keywords batter piles      oblique load test      neural network      M5 model tree      random forest regression      ANOVA     
Corresponding Author(s): Tanvi SINGH   
Just Accepted Date: 09 July 2018   Online First Date: 23 August 2018    Issue Date: 05 June 2019
 Cite this article:   
Tanvi SINGH,Mahesh PAL,V. K. ARORA. Modeling oblique load carrying capacity of batter pile groups using neural network, random forest regression and M5 model tree[J]. Front. Struct. Civ. Eng., 2019, 13(3): 674-685.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-018-0505-3
https://academic.hep.com.cn/fsce/EN/Y2019/V13/I3/674
Fig.1  Model setup
Fig.2  Particle size distribution curve for sand
parameters values
soil type poorly graded sand
effective size, D10 (mm) 0.175
uniformity coefficient, Cu 2
coefficient of curvature, Cc 3.84
specific gravity, G 2.63
minimum dry density, gdmin (kN/m3) 14.3
maximum dry density, gdmax (kN/m3) 17.3
maximum void ratio, emax 0.84
minimum void ratio, emin 0.52
Tab.1  Properties of sand
Fig.3  Two pile surfaces
Fig.4  Plan of pile caps. (-ve): Negative batter pile
r (kN/m3) constant parameter variable parameter
a (° ) L (m) pile surface pile groups
16.28 0 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 0 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 0 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 10 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 10 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 10 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 20 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 20 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 20 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 30 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 30 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 30 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 45 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 45 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 45 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 0 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 0 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 0 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 10 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 10 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 10 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 20 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 20 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 20 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 30 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 30 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 30 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 45 0.40 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 45 0.60 smooth 1B, 1V1B, 2B, 2V2B, 4B
15.79 45 0.90 smooth 1B, 1V1B, 2B, 2V2B, 4B
16.28 0 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
16.28 0 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
16.28 10 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
16.28 10 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
16.28 20 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
16.28 20 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
16.28 30 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
16.28 30 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
16.28 45 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
16.28 45 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 0 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 0 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 10 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 10 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 20 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 20 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 30 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 30 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 45 0.40 rough 1B, 1V1B, 2B, 2V2B, 4B
15.79 45 0.60 rough 1B, 1V1B, 2B, 2V2B, 4B
Tab.2  Summary of test performed
data set a (° ) L (mm) V B r (kN/m3)
training data set
min 0.000 0.400 0.000 1.000 15.790
max 45.000 0.900 2.000 4.000 16.280
mean 20.905 0.638 0.600 2.019 16.032
std. dev. 15.793 0.207 0.804 1.118 0.246
testing data set
min 0.000 0.400 0.000 1.000 15.790
max 45.000 0.900 2.000 4.000 16.280
mean 22.024 0.638 0.643 2.024 16.058
std. dev. 15.659 0.205 0.821 1.070 0.246
Tab.3  Summary of training and testing data set for smooth piles
data set a (° ) L (mm) V B r (kN/m3)
training data set
min 0.000 0.400 0.000 1.000 15.790
max 45.000 0.600 2.000 4.000 16.280
mean 20.571 0.497 0.657 1.943 16.042
std. dev. 15.892 10.070 0.814 1.048 0.246
testing data set
min 0.000 0.400 0.000 1.000 15.790
max 45.000 0.600 2.000 4.000 16.280
mean 22.000 0.507 0.467 2.133 16.018
std. dev. 15.460 0.101 0.776 1.224 0.248
Tab.4  Summary of training and testing data set for rough piles
classifier used user-defined parameters pile group
M5 model tree number of training examples allowed at a terminal node=4 smooth rough
RF k= 1, m= 1, where kis number of trees an mmeans number of input parameters smooth rough
NN learning rate=0.3, momentum=0.2, hidden nodes=8, number of iterations=200 smooth rough
Tab.5  Optimal values of user defined parameter
Fig.5  Plot between actual vs. predicted load using modelling approaches using smooth piles (Set 1). (a) M5; (b) RF; (c) NN
testing set regression approach CC RMSE (N)
Set 1 M5 0.8466 87.8963
RF 0.8667 92.6711
NN 0.8369 112.0335
Set 2 M5 0.8580 120.7983
RF 0.8910 109.6845
NN 0.8730 117.2033
Set 3 M5 0.8329 141.9502
RF 0.9128 117.6547
NN 0.8839 121.6179
Tab.6  Detail of performance evaluation parameters using M5, RF, and NN for testing data on all three set of results
testing set modeling approach F-value F-critical p-value
Set 1 NN 2.807150 3.957388 0.097654
M5 0.054662 3.957388 0.815724
RF 0.804006 3.957388 0.372523
Set 2 NN 0.184121 4.006873 0.669445
M5 0.071353 4.006873 0.790325
RF 0.001861 4.006873 0.965740
Set 3 NN 0.367833 4.006873 0.546555
M5 1.049788 4.006873 0.309810
RF 0.480682 4.006873 0.490881
Tab.7  Results of ANOVA: Single factor test
Fig.6  Plot between actual vs. predicted load using modelling approaches using rough piles (Set 1). (a) M5; (b) RF; (c) NN
Fig.7  Plot between actual vs. predicted load using modelling approaches (Set 3). (a) M5; (b) RF; (c) NN
type of pile group parameter removed RF NN M5
CC RMSE(N) CC RMSE(N) CC RMSE(N)
Smooth none 0.9873 37.9796 0.892 119.180 0.821 109.993
α 0.8501 101.4785 0.795 120.110 0.756 126.010
L 0.8380 105.284 0.768 123.594 0.732 131.319
V 0.9550 59.961 0.892 87.453 0.789 118.475
B 0.7450 128.769 0.617 165.234 0.539 162.269
r 0.8950 86.603 0.829 121.195 0.779 120.716
Rough none 0.9860 41.740 0.982 54.653 0.857 99.710
α 0.8270 108.651 0.809 164.403 0.777 121.550
L 0.8890 89.736 0.809 137.502 0.747 128.485
V 0.8660 98.006 0.818 190.967 0.673 142.800
B 0.8850 92.031 0.840 110.098 0.738 130.449
r 0.9290 74.430 0.860 134.501 0.806 114.275
Tab.8  Sensitivity analysis using RF, NN and M5 modelling approach
1 G P Tschebotarioff. The resistance to lateral loading of single piles and pile groups. Special Publication, 1953 , 154: 38–48
2 V N Murthy. Behaviour of battered piles embedded in sand subjected to lateral loads. In: Proceedings of the Symposium on Bearing Capacity of Piles. Roorkee, 1964,142–153
3 S Prakash, G Subramanyam. Behaviour of battered piles under lateral loads. Journal Indian National Society of Soil Mechanics and Foundation Engineering, 1965, 4(2): 177–196
4 G Ranjan, G Ramasamy, R P Tyagi. Lateral response of batter piles and pile bents in clay. Indian Geotechnical Journal, 1980, 10(2): 135–142
5 S S Lu. Design load of bored pile laterally loaded. In: Proceedings of the l0th International Conference on Soil Mechanics and Foundation Engineering. 1981, 767–777
6 C Veeresh. Behaviour of batter anchor piles in marine clay subjected to vertical pull out. In: Proceedings of the Sixth International Offshore and Polar Engineering Conference. 1996
7 G G Meyerhof. The uplift capacity of foundations under oblique loads. Canadian Geotechnical Journal, 1973, 10(1): 64–70
https://doi.org/10.1139/t73-005
8 A Awad, A Ayoub. Ultimate uplift capacity of vertical and inclined piles in cohesionless soil. In: Proceedings of the 5th International Conference on Soil Mechanics and Foundation Engineering. Budapest, 1976, 221–227
9 G G Meyerhof. Uplift resistance of inclined anchors and piles. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, 1975, 12(7): 97
10 B C Chattopadhyay, P J Pise. Axial uplift capacity of inclined piles. Indian Geotechnical Journal, 1986, 16(3): 197–214.
https://doi.org/10.1061/(ASCE)0733-9410(1986)112
11 K K Bose, A Krishnan. Pullout capacity of model piles in sand . Indian Geotechnical Society Chennai Chapter, 2009, 49–54
12 A Nazir, A Nasr. Pullout capacity of batter pile in sand. Journal of Advanced Research, 2013, 4(2): 147–154
https://doi.org/10.1016/j.jare.2012.04.001
13 B Sharma, S Zaheer, Z Hussain. Experimental model for studying the performance of vertical and batter micropiles. In: Proceedings of Geo-Congress. Atlanta, 2014, 4252–4264
https://doi.org/10.1061/9780784413272.412
14 W C Teng, R L Flucker, J S Graham. Design of steel pile foundations for transmission owers. IEEE Transactions on Power Apparatus and Systems, 1970, PAS-89(3): 399–411
https://doi.org/10.1109/TPAS.1970.292716
15 Y J Al-Shakarchi, M Y Fattah, I K Kashat. The behaviour of batter piles under uplift loads. In: Proceedings of International Conference on Geotechnical Engineering. 2004, 105–114
16 H Mroueh, I Shahrour. Numerical analysis of the response of battered piles to inclined pullout loads. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(10): 1277–1288
https://doi.org/10.1002/nag.765
17 S Bhardwaj, S K Singh. Ultimate capacity of battered micropiles under oblique pullout loads. International Journal of Geotechnical Engineering, 2015, 9(2): 190–200
https://doi.org/10.1179/1939787914Y.0000000054
18 S S Rajashree. Nonlinear cyclic analysis of laterally loaded pile in clay. Dissertation for the Doctoral Degree. Madras: Indian Institute of Technology, 1997
19 M Sabry. Shaft resistance of a single vertical or batter pile in sand subjected to axial compression or uplift loading. Thesis for the Master’s Degree. Montreal: Concordia University, 2011
20 A Hanna, M Sabry. Trends in pullout behavior of batter piles in sand. In: Proceedings of the 82nd Annual Meeting of the Transportation Research Board. 2003
21 A Giannakou, N Gerolymos, G Gazetas, T Tazoh, I Anastasopoulos. Seismic behavior of batter piles: Elastic response. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(9): 1187–1199
https://doi.org/10.1061/(ASCE)GT.1943-5606.0000337
22 K Johnson. Load-deformation behaviour of foundations under vertical and oblique loads. Dissertation for the Doctoral Degree. Townsville: James Cook University, 2005
23 M I Ramadan, S D Butt, R Popescu. Finite element modeling of offshore anchor piles under mooring forces. In: Proceedings of 62nd Canadian Geotechnical Society Conference. Geo Halifax, 2009, (9): 785–792
24 M Achmus, K Thieken. On the behavior of piles in non-cohesive soil under combined horizontal and vertical loading. Acta Geotechnica, 2010, 5(3): 199–210
https://doi.org/10.1007/s11440-010-0124-1
25 A M Trochanis, J Bielak, P Christiano. Three-dimensional nonlinear study of piles. Journal of Geotechnical Engineering, 1991, 117(3): 429–447
https://doi.org/10.1061/(ASCE)0733-9410(1991)117:3(429)
26 S S Rajashree, R Sundaravadivelu. Degradation model for one-way cyclic lateral load on piles in soft clay. Computers and Geotechnics, 1996, 19(4): 289–300
https://doi.org/10.1016/S0266-352X(96)00008-0
27 S S Rajashree, T G Sitharam. Nonlinear cyclic load analysis for lateral response of batter piles in soft clay with a rigorous degradation model. In: Proceedings of International Conference on Offshore and Nearshore Geotechnical Engineering. New Delhi, 2000
28 W T Chan, Y K Chow, L F Liu. Neural network: An alternative to pile driving formulas. Computers and Geotechnics, 1995, 17(2): 135–156
https://doi.org/10.1016/0266-352X(95)93866-H
29 Y K Chow, W T Chan, L F Liu, S L Lee. Prediction of pile capacity from stress-wave measurements: A neural network approach. International Journal for Numerical and Analytical Methods in Geomechanics, 1995, 19(2): 107–126
https://doi.org/10.1002/nag.1610190204
30 A T Goh. Pile driving records reanalyzed using neural networks. Journal of Geotechnical Engineering, 1996, 122(6): 492–495
https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(492)
31 C I Teh, K S Wong, A T Goh, S Jaritngam. Prediction of pile capacity using neural networks. Journal of Computing in Civil Engineering, 1997, 11(2): 129–138
https://doi.org/10.1061/(ASCE)0887-3801(1997)11:2(129)
32 T M H Lok, W F Che. Axial capacity prediction for driven piles using ANN: Model comparison. In: Proceedings of Geotechnical Engineering for Transportation Projects. Los Angeles, 2004, 697–704
https://doi.org/10.1061/40744(154)56
33 A Etemad-Shahidi, N Ghaemi. Model tree approach for prediction of pile groups scour due to waves. Ocean Engineering, 2011, 38(13): 1522–1527
https://doi.org/10.1016/j.oceaneng.2011.07.012
34 M Pal, N K Singh, N K Tiwari. Pier scour modelling using random forest regression. ISH Journal of Hydraulic Engineering, 2013, 19(2): 69–75
35 G Singh, S N Sachdeva, M Pal. M5 model tree based predictive modeling of road accidents on non-urban sections of highways in India. Accident Analysis and Prevention, 2016, 96: 108–117
https://doi.org/10.1016/j.aap.2016.08.004
36 B Bhattacharya, D P Solomatine. Neural networks and M5 model trees in modelling water level-discharge relationship. Neurocomputing, 2005, 63: 381–396
https://doi.org/10.1016/j.neucom.2004.04.016
37 D P Solomatine, Y Xue. M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. Journal of Hydrologic Engineering, 2004, 9(6): 491–501
https://doi.org/10.1061/(ASCE)1084-0699(2004)9:6(491)
38 G Leshem, Y Ritov. Traffic flow prediction using AdaBoost algorithm with random forests as a weak learner. International Journal of Intelligent Technology, 2007, 19: 193–198
39 K M Hamdia, M A Msekh, M Silani, N Vu-Bac, X Zhuang, T Nguyen-Thoi, T Rabczuk. Uncertainty quantification of the fracture properties of polymeric nanocomposites based on phase field modeling. Composite Structures, 2015, 133: 1177–1190
https://doi.org/10.1016/j.compstruct.2015.08.051
40 M F Badawy, M A Msekh, K M Hamdia, M K Steiner, T Lahmer, T Rabczuk. Hybrid nonlinear surrogate models for fracture behavior of polymeric nanocomposites. Probabilistic Engineering Mechanics, 2017, 50: 64–75
https://doi.org/10.1016/j.probengmech.2017.10.003
41 K M Hamdia, M Silani, X Zhuang, P He, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
42 N Vu-Bac, T Lahmer, H Keitel, J Zhao, X Zhuang, T Rabczuk. Stochastic predictions of bulk properties of amorphous polyethylene based on molecular dynamics simulations. Mechanics of Materials, 2014, 68: 70–84
https://doi.org/10.1016/j.mechmat.2013.07.021
43 N Vu-Bac, T Lahmer, Y Zhang, X Zhuang, T Rabczuk. Stochastic predictions of interfacial characteristic of polymeric nanocomposites (PNCs). Composites. Part B, Engineering, 2014, 59: 80–95
https://doi.org/10.1016/j.compositesb.2013.11.014
44 N Vu-Bac, T Lahmer, X Zhuang, T Nguyen-Thoi, T Rabczuk. A software framework for probabilistic sensitivity analysis for computationally expensive models. Advances in Engineering Software, 2016, 100: 19–31
https://doi.org/10.1016/j.advengsoft.2016.06.005
45 N Vu-Bac, M Silani, T Lahmer, X Zhuang, T Rabczuk. A unified framework for stochastic predictions of mechanical properties of polymeric nanocomposites. Computational Materials Science, 2015, 96: 520–535
https://doi.org/10.1016/j.commatsci.2014.04.066
46 N Vu-Bac, R Rafiee, X Zhuang, T Lahmer, T Rabczuk. Uncertainty quantification for multiscale modeling of polymer nanocomposites with correlated parameters. Composites. Part B, Engineering, 2015, 68: 446–464
https://doi.org/10.1016/j.compositesb.2014.09.008
47 J R Quinlan. Learning with continuous classes. In: Proceedings of the 5th Australian Joint Conference on Artificial Intelligence. 1992, 92: 343–348
48 L Breiman. Bagging predictors. Machine Learning, 1996, 24(2): 123–140
https://doi.org/10.1007/BF00058655
49 L Breiman, J H Friedman, R A Olshen, C J Stone. Classification and Regression Trees. Monterey: Wadsworth & Brooks/Cole Advanced Books & Software, 1984
50 A Ismail, D S Jeng, L L Zhang. An optimised product-unit neural network with a novel PSO-BP hybrid training algorithm: Applications to load-deformation analysis of axially loaded piles. Engineering Applications of Artificial Intelligence, 2013, 26(10): 2305–2314
https://doi.org/10.1016/j.engappai.2013.04.007
51 M A Shahin. Load-settlement modeling of axially loaded steel driven piles using CPT-based recurrent neural networks. Soil and Foundation, 2014, 54(3): 515–522
https://doi.org/10.1016/j.sandf.2014.04.015
52 A T Goh, W G Zhang. An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines. Engineering Geology, 2014, 170: 1–10 doi:10.1016/j.enggeo.2013.12.003
53 S Haykin. Neural Networks: A Comprehensive Foundation. 2nd ed. Upper Saddle River: Prentice-Hall, 1999
54 W G Zikmund, B J Babin, J C Carr, M Griffin. Business Research Methods. Boston: Cengage Learning , 2013
[1] Fangyu LIU, Wenqi DING, Yafei QIAO, Linbing WANG. An artificial neural network model on tensile behavior of hybrid steel-PVA fiber reinforced concrete containing fly ash and slag power[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1299-1315.
[2] Bin LI, Xiaoying ZHUANG. Multiscale computation on feedforward neural network and recurrent neural network[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1285-1298.
[3] Yifan ZHANG, Rui WANG, Jian-Min ZHANG, Jianhong ZHANG. A constrained neural network model for soil liquefaction assessment with global applicability[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1066-1082.
[4] Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE. The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry[J]. Front. Struct. Civ. Eng., 2020, 14(3): 609-622.
[5] Reza ASHEGHI, Seyed Abbas HOSSEINI. Prediction of bed load sediments using different artificial neural network models[J]. Front. Struct. Civ. Eng., 2020, 14(2): 374-386.
[6] Lingyun YOU, Kezhen YAN, Nengyuan LIU. Assessing artificial neural network performance for predicting interlayer conditions and layer modulus of multi-layered flexible pavement[J]. Front. Struct. Civ. Eng., 2020, 14(2): 487-500.
[7] Meisam RABIEI, Asskar Janalizadeh CHOOBBASTI. Innovative piled raft foundations design using artificial neural network[J]. Front. Struct. Civ. Eng., 2020, 14(1): 138-146.
[8] Mosbeh R. KALOOP, Alaa R. GABR, Sherif M. EL-BADAWY, Ali ARISHA, Sayed SHWALLY, Jong Wan HU. Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1379-1392.
[9] Khaled ZIZOUNI, Leyla FALI, Younes SADEK, Ismail Khalil BOUSSERHANE. Neural network control for earthquake structural vibration reduction using MRD[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1171-1182.
[10] Abdussamad ISMAIL. Estimating moment capacity of ferrocement members using self-evolving network[J]. Front. Struct. Civ. Eng., 2019, 13(4): 926-936.
[11] Tugrul TALASLIOGLU. Optimal design of steel skeletal structures using the enhanced genetic algorithm methodology[J]. Front. Struct. Civ. Eng., 2019, 13(4): 863-889.
[12] Ali Reza GHANIZADEH, Hakime ABBASLOU, Amir Tavana AMLASHI, Pourya ALIDOUST. Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine[J]. Front. Struct. Civ. Eng., 2019, 13(1): 215-239.
[13] Gholamreza ABDOLLAHZADEH, Seyed Mostafa SHABANIAN. Experimental and numerical analysis of beam to column joints in steel structures[J]. Front. Struct. Civ. Eng., 2018, 12(4): 642-661.
[14] Abdussamad ISMAIL. ANN-based empirical modelling of pile behaviour under static compressive loading[J]. Front. Struct. Civ. Eng., 2018, 12(4): 594-608.
[15] T. Chandra Sekhara REDDY. Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network[J]. Front. Struct. Civ. Eng., 2018, 12(4): 490-503.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed