Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (6) : 1324-1337    https://doi.org/10.1007/s11709-019-0557-z
RESEARCH ARTICLE
Truss-arch model for shear strength of seismic-damaged SRC frame columns strengthened with CFRP sheets
Sheng PENG1(), Chengxiang XU1, Xiaoqiang LIU1,2
1. Department of Civil Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
2. School of Architectural Enginieering, Weifang University of Science and Technology, Weifang 262700, China
 Download: PDF(1292 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Carbon fiber reinforced polymer (CFRP) materials are important reinforcing substances which are widely used in the shear strengthening of seismic-damage steel reinforced concrete (SRC) frame structures. To investigate the shear strength of SRC frame columns strengthened with CFRP sheets, experimental observations on eight seismic-damaged SRC frame columns strengthened with CFRP sheets were conducted at Yangtze University and existing experimental data of 49 SRC columns are presented. Based on the existing experiments, the theories of damage degree, zoning analysis of concrete, and strengthening material of the column are adopted. To present the expression formula of the shear strength of SRC frame columns strengthened with CFRP sheets, the contributions of strengthening material and transverse reinforcement to shear strength in the truss model are considered, based on the truss-arch model. The contribution of arch action is also considered through the analysis of the whole concrete and that of the three zones of the concrete are also considered. The formula is verified, and the calculated results are found to match well with the experimental results. Results indicate that the proposed whole analysis model can improve the accuracy of shear strength predictions of shear seismic-damaged SRC frame columns reinforced with CFRP sheets.

Keywords carbon fiber reinforced polymer material      steel reinforced concrete frame column      seismic-damaged      trussed-arch model      shear strength     
Corresponding Author(s): Sheng PENG   
Just Accepted Date: 26 July 2019   Online First Date: 11 September 2019    Issue Date: 21 November 2019
 Cite this article:   
Sheng PENG,Chengxiang XU,Xiaoqiang LIU. Truss-arch model for shear strength of seismic-damaged SRC frame columns strengthened with CFRP sheets[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1324-1337.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-019-0557-z
https://academic.hep.com.cn/fsce/EN/Y2019/V13/I6/1324
specimen damage degree n l concrete strength grade CFRP layer number strengthened µ = ?u/?y Vu,t (kN)
SRC-1 undamaged 0.32 3.33 C40 no 2.87 127.07
SRCC-2 undamaged 0.20 3.33 C40 no 3.12 112.52
SRCC-3 undamaged 0.40 3.33 C40 no 2.47 130.44
SRCC-4 undamaged 0.60 3.33 C40 no 1.89 132.89
SRC-2 undamaged 0.32 3.33 C40 2 yes 3.38 151.60
SRC-3 moderate damaged 0.32 3.33 C40 2 yes 3.26 144.45
SRC-4 severe damaged 0.32 3.33 C40 2 yes 3.12 140.11
Tab.1  Specimens experimental parameters
Fig.1  Specimen dimension and strengthening (unit: mm). (a) Geometry and steel reinforcement configuration for specimens; (b) strengthening of CFRP sheets at column bottom.
Fig.2  Skeleton curves of specimens.
Fig.3  Geometric dimension and compression zone. (a) Column cross-section; (b) compression zone; (c) compression zone of inclined cracks region; (d) simplify the compression zone of inclined cracks region.
Fig.4  Comparison of effective area formula.
Fig.5  The truss model. (a) Balance of truss model force; (b) balance of isolated-body force.
Fig.6  The arch model. (a) The actual arch model; (b) the simplified arch model.
Fig.7  Arch model graph of RC part in SRC short column. (a) The outer and left sides without flange and web restraint; (b) the upper and lower zones of the flange; (c) the restricted flange inboard zone.
specimen aF l n Ve/VGB Ve/VACI Ve/VCSA proposed model
Ve/Vu1 Ve/Vu2
SRC-1 1 3.33 0.32 1.081 1.382 1.898 1.108 1.028
SRCC-2 1 3.33 0.20 1.102 1.365 1.856 1.112 1.065
SRCC-3 1 3.33 0.40 1.128 1.406 1.874 1.128 1.088
SRCC-4 1 3.33 0.60 1.043 1.412 1.928 1.119 1.009
SRC-2 1 3.33 0.32 1.312 1.965 2.056 1.312 1.165
SRC-3 0.96 3.33 0.32 1.228 1.386 2.354 1.228 1.092
SRC-4 0.89 3.33 0.32 1.143 1.292 1.678 1.143 1.086
mean 1.148 1.458 1.949 1.164 1.076
coefficient of variation 0.006 0.030 0.020 0.004 0.002
Tab.2  Comparisons of shear strength between proposed model and other models
specimen reference aF l n fc
(MPa)
b× h
(mm2)
L
(mm)
ra fa
(MPa)
rsv fyv
(MPa)
fst
(MPa)
tst
(mm)
bst
(mm)
I* Ve
(kN)
SRC-1 [21] 1 1 0.36 66.4 200 × 160 370 6.11 261.6 0.8 462.6 I14 371.6
SRC-2 1 1 0.36 67.3 200 × 160 480 6.11 261.6 1.2 354.5 I14 395.3
SRC-3 1 1 0.36 70.4 200 × 160 480 6.11 261.6 1.6 354.5 I14 424.2
SRC-4 1 1.5 0.36 66.4 200 × 160 480 6.11 261.6 0.8 462.6 I14 282.6
SRC-5 1 1.5 0.36 67.3 200 × 160 480 6.11 261.6 1.2 354.5 I14 292.8
SRC-6 1 1.5 0.36 70.4 200 × 160 480 6.11 261.6 1.6 354.5 I14 315.4
SRC-7 1 2.5 0.36 66.4 200 × 160 700 6.11 261.6 0.8 462.6 I14 189.7
SRC-8 1 2.5 0.36 65.3 200 × 160 700 6.11 261.6 1.2 354.5 I14 193.9
SRC-9 1 2.5 0.36 73.1 200 × 160 700 6.11 261.6 1.6 354.5 I14 198.1
SRC-10 1 2 0.2 81.8 200 × 160 590 6.11 261.6 0.8 462.6 I14 195.7
SRC-11 1 2 0.2 81.8 200 × 160 590 6.11 261.6 1.2 354.5 I14 205.7
SRC-12 1 2 0.2 83.1 200 × 160 590 6.11 261.6 1.6 354.5 I14 212.1
SRC-13 1 2 0.28 83.1 200 × 160 590 6.11 261.6 0.8 462.6 I14 228.8
SRC-14 1 2 0.28 81.8 200 × 160 590 6.11 261.6 1.2 354.5 I14 232.6
SRC-15 1 2 0.28 84.9 200 × 160 590 6.11 261.6 1.6 354.5 I14 241.5
SRC-16 1 2 0.36 84.9 200 × 160 590 6.11 261.6 0.8 462.6 I14 237.7
SRC-17 1 2 0.36 84.4 200 × 160 590 6.11 261.6 1.2 354.5 I14 242.7
SRC-18 1 2 0.36 84.4 200 × 160 590 6.11 261.6 1.6 354.5 I14 249.1
SRC-19 1 1 0.36 84.4 200 × 160 590 6.11 261.6 1.2 354.5 I14 473.8
SRC-20 1 1.5 0.36 84.9 200 × 160 590 6.11 261.6 1.6 354.5 −− / I14 371.6
SRC1 [28] 1 2.75 0.15 25.9 300 × 300 825 4.53 309.6 1.19 513.4 I20a 245
SRC2 1 2.75 0.3 25.9 300 × 300 825 4.53 309.6 1.19 513.4 I20a 251
SRC3 1 2.75 0.4 25.9 300 × 300 825 4.53 309.6 1.19 513.4 I20a 275
SRC4 1 2.75 0.3 29 300 × 300 825 4.53 309.6 1.19 513.4 I20a 275
SRC5 1 2.75 0.3 29 300 × 300 825 4.53 309.6 1.19 513.4 I20a 255
SRC6 1 2.75 0.45 29 300 × 300 825 4.53 309.6 1.19 513.4 I20a 296
SRC7 1 2.5 0.3 34.3 300 × 300 825 3.95 309.6 1.55 513.4 I20a 270
SRC8 1 2.5 0.3 34.3 300 × 300 825 3.95 309.6 2.42 466.1 I20a 226
SRC9 1 2.5 0.3 34.3 300 × 300 825 3.95 309.6 1.61 466.1 I20a 266
SRC10 1 2.5 0.3 34.3 300 × 300 825 3.95 309.6 2.27 466.1 I20a 287
SRC11 1 2.5 0.3 34.3 300 × 300 825 3.95 309.6 1.61 466.1 I20a 260
SRC12 1 2.5 0.3 34.3 300 × 300 825 3.95 309.6 1.61 466.1 I20a 278
SRC13 1 2.25 0.3 34.3 300 × 300 825 3.95 309.6 1.61 466.1 I20a 304
SRC14 1 2.25 0.3 34.3 300 × 300 825 3.95 309.6 1.55 466.1 I20a 312
SRC-0 [28] 1 3.33 0.32 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 136.0
XSRC-01 1 3.33 0.2 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 148.5
XSRC-02 1 3.33 0.32 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 158.8
XSRC-03 1 3.33 0.5 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 162.6
XSRC-11 0.96 3.33 0.2 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 143.1
XSRC-12 0.96 3.33 0.32 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 148.4
XSRC-13 0.96 3.33 0.5 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 155.5
XSRC-21 0.89 3.33 0.2 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 137.5
XSRC-22 0.89 3.33 0.32 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 139.9
XSRC-23 0.89 3.33 0.5 39.6 200 × 270 900 4.84 264.5 0.68 312.4 3560 0.111 500 I16 142.2
Tab.3  Parameters of 49 SRC columns
Fig.8  Variation of measured to calculated strength ratio versus shear span-to-depth ratio. (a) Method in GB 50010-2010; (b) method in ACI 318; (c) method in CSA-04; (d) proposed model of the whole analysis model; (e) proposed model of the three zones analysis model.
Fig.9  Variation of measured to calculated strength ratio versus axial-load ratio. (a) Method in GB 50010-2010; (b) method in ACI 318; (c) method in CSA-04; (d) proposed model of the whole analysis model; (e) proposed model of the three zones analysis model.
Fig.10  Variation of strength reduction factor. (a) Method in GB 50010-2010; (b) method in ACI 318; (c) method in CSA-04; (d) proposed model of the whole analysis model; (e) proposed model of the three zones analysis model.
The following symbols are used in this paper:
A: gross area of section;
A1: core zone area of section;
A2: non core zone area of section;
aCFRP: CFRP strength reduction factor;
aF: the strength reduction factor;
b: width of column;
bf: width of flange of I-beam section;
bst: width of CFRP;
D: damage index of specimen;
D1: damage index of the non core zone area of the section column (D1 = 0.5 for moderate damaged and D1 = 1 for severe damaged);
df: thickness of I-beam flange;
E: elastic modulus of CFPR;
fa: yield stress of steel;
fa`: yield stress of steel after post-earthquake damage;
fc: cylinder strength of concrete;
fck: yield stress of longitudinal bars;
fck: yield stress of longitudinal bars after post-earthquake damage;
fst: tensile stress of CFPR;
fyv: yield stress of stirrups;
fyv: yield stress of stirrups after post-earthquake damage;
h: height of column;
h1: the high cross section of I-beam;
l: column height;
sst: the CFRP spacing;
tst: the monolayer thickness of CFRP;
tw: the thickness of I-beam web;
Va: shear strength provided by steel;
Va1: the shear strength of the whole analysis of concrete with RC column section;
Va2: the shear strength of the RC column consisting of three zones;
Ve: measured shear strength of column;
Vt: shear strength provided by arch model;
α: effective coefficient of arch model;
β1: correlation coefficient;
β2: correlation coefficient;
λ: shear span ratio;
n: axial-load ratio;
ρra: steel ratio;
ρl: longitudinal bars ratio;
ρsv: stirrups ratio;
v: the softening coefficient of concrete;
vCFRP: CFRP strength effective coefficient;
us: shear coefficient of reinforced material;
σsc: the oblique compressive stress;
φ: the angle between the compression concrete and the column axis in the truss model;
µ: displacement ductility of SRC column at shear failure.
  
1 C X Xu, S Peng, J Deng, C Wan. Study on seismic behavior of encased steel jacket-strengthened earthquake-damaged composite steel-concrete columns. Journal of Building Engineering, 2018, 17: 154–166
https://doi.org/10.1016/j.jobe.2018.02.010
2 S Peng, C X Xu, M X Lu, J M Yang. Experimental research and finite element analysis on seismic behavior of CFRP-strengthened seismic-damaged composite steel-concrete frame columns. Engineering Structures, 2018, 155: 50–60
https://doi.org/10.1016/j.engstruct.2017.10.065
3 C X Xu, L Zeng, Q Zhou, X Tu, Y Wu. Cyclic performance of concrete-encased composite columns with T-shaped steel sections. International Journal of Civil Engineering, 2015, 61: 455–467
4 A Gholamhoseini, A Khanlou, G MacRae, A Scott, S Hicks, R Leon. An experimental study on strength and serviceability of reinforced and steel fiber reinforced concrete (SFRC) continuous composite slabs. Engineering Structures, 2016, 114: 171–180
https://doi.org/10.1016/j.engstruct.2016.02.010
5 A P Lampropoulos, S A Paschalis, O T Tsioulou, S E Dritsos. Strengthening of reinforced concrete beams using ultra high performance fibre reinforced concrete (UHPFRC). Engineering Structures, 2016, 106: 370–384
https://doi.org/10.1016/j.engstruct.2015.10.042
6 D Y Yoo, N Banthia, Y S Yoon. Flexural behavior of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP and steel rebars. Engineering Structures, 2016, 111: 246–262
https://doi.org/10.1016/j.engstruct.2015.12.003
7 S F Yin, K X Hu. Numerical simulation for the pseudo-static test of strengthened RC columns with earthquake-damage based on opensees. Engineering Structures, 2015, 31: 145–151
8 S H Kim, J H Choi. Repair of earthquake damaged RC columns with stainless steel wire mesh composite. Advances in Structural Engineering, 2010, 13(2): 393–401
https://doi.org/10.1260/1369-4332.13.2.393
9 T Ozbakkaloglu, M Saatcioglu. Seismic performance of square high-strength concrete columns in FRP stay-in-place formwork. Journal of Structural Engineering, 2007, 133(1): 44–56
https://doi.org/10.1061/(ASCE)0733-9445(2007)133:1(44)
10 T Ozbakkaloglu, M Saatcioglu. Seismic behavior of high-strength concrete columns confined by fiber reinforced polymer tubes. Journal of Composites for Construction, 2006, 10(6): 538–549
https://doi.org/10.1061/(ASCE)1090-0268(2006)10:6(538)
11 Y Idris, T Ozbakkaloglu. Behavior of square fiber reinforced polymer-high-strength concrete-steel double-skin tubular columns under combined axial compression and reversed-cyclic lateral loading. Engineering Structures, 2016, 118: 307–319
https://doi.org/10.1016/j.engstruct.2016.03.059
12 Y Idris, T Ozbakkaloglu. Seismic behavior of high-strength concrete-filled FRP tube columns. Journal of Composites for Construction, 2013, 17(6): 04013013
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000388
13 Y Idris, T Ozbakkaloglu. Seismic behavior of FRP-high-strength concrete-steel double skin tubular columns. Journal of Structural Engineering, 2012, 140: 1299–1328
14 T Ozbakkaloglu, J C Lim. Axial compressive behavior of FRP-confined concrete: Experimental test database and a new design-oriented model. Composites. Part B, Engineering, 2013, 55: 607–634
https://doi.org/10.1016/j.compositesb.2013.07.025
15 T Ozbakkaloglu, C L Jian. Confinement model for FRP-confined high-strength concrete. Journal of Composites for Construction, 2013, 18: 2537–2547
16 K Fukuyama, Y Higashibata, Y Miyauchi. Studies on repair and strengthening methods of damaged reinforced concrete columns. Cement and Concrete Composites, 2000, 22(1): 81–88
https://doi.org/10.1016/S0958-9465(99)00044-X
17 W D Cai. Experimental study on seismic behavior for reinforced concrete short column strengthened with carbon fiber sheet. Thesis for the Master’s Degree. Tianjin: Tianjin University, 2001 (in Chinese)
18 R D Iacobucci, S A Sheikh, O Bayrak. Retrofit of square concrete columns with carbon fiber-reinforced polymer for seismic resistance. ACI Structural Journal, 2003, 100(6): 785–794
19 H Sezen, J P Moehle. Shear strength model for lightly reinforced concrete columns. Journal of Structural Engineering, 2004, 130(11): 1692–1703
https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1692)
20 X L Wang, J W Fan, H Wang. Experimental study on the damaged RC frame structure strengthened with CFRP under low-cycle repeated load. World Earthquake Engineering, 2009, 25(3): 119–123 (in Chinese)
21 J L Wang. Experimental Research on Seismic Behaviors of Earthquake-damaged Concrete Columns Restrengthened with CFRP. Thesis for the Master’s Degree. Nanjing: Southeast University, 2009 (in Chinese)
22 S H Zhao, L P Ye. Shear strength analysis of concrete column retrofitted with CFRP sheet based on strut-arch model. Engineering Mechanics, 2001, 18(6): 134–140
23 Y Zhang, X G Cui, D Yang, X B Li. Experimental investigation on the seismic behaviors of repaired seriously damaged reinforced concrete columns. Industrial Construction, 2011, 41(7): 38–44 (in Chinese)
24 C D Zhou, T Tian, X L Lv, X B Bai, H Li. Test study on seismic performance of pre-damaged RC Cylinder piers strengthened with pre-stressed FRP belts. Journal of The China Railway Society, 2012, 34(10): 103–114 (in Chinese)
25 Z F Pan, B Li. Truss-arch model for shear strength of shear-critical reinforced concrete columns. Journal of Structural Engineering, 2013, 139(4): 548–560
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000677
26 C H Jin, Z F Pan, S P Meng, Z Qiao. Seismic behavior of shear-critical reinforced high-strength concrete columns. Journal of Structural Engineering, 2015, 141(8): 04014198
https://doi.org/10.1061/(ASCE)ST.1943-541X.0001167
27 T Ichinose. A shear design equation for ductile RC members. Earthquake Engineering & Structural Dynamics, 1992, 21(3): 197–214
https://doi.org/10.1002/eqe.4290210302
28 J M Yang. Finite element analysis on seismic performance of repaired and strengthened seismic-damaged steel reinforced concrete frame columns. Thesis for the Master’s Degree. Wuhan: Wuhan University of Science and Technology, 2017 (in Chinese)
29 J D Liu. Research on modeling of hysteretic characteristics of RC frames damaged during earthquake. Thesis for the Master’s Degree. Chongqing: Chongqing University, 2015 (in Chinese)
30 B Wang, S S Zheng, X F Guo, F Yu, H R Zhang. Seismic damage analysis for SRHSHPC frame columns. Engineering Mechanics, 2012, 29(2): 61–68
31 G T Zhao, F B Cao. Seismic behavior of reinforced concrete crack-short columns strengthened with CFRP. Earthquake Resistant Engineering and Retrofitting, 2010, 32(5): 85–90 (in Chinese)
32 M X Lu. Experimental research on seismic behavior of CFRP-strengthened seismic-damaged SRC columns. Thesis for the Master’s Degree. Jingzhou: Yangtze University, 2017 (in Chinese)
33 C Wan. Experimental study on steel reinforced concrete frame columns strengthened with steel angles and strips damaged by simulated earthquake. Thesis for the Master’s Degree. Jingzhou: Yangtze University, 2017 (in Chinese)
34 Y F Zhang. Experimental research on the seismic performance of damaged reinforced concrete columns strengthened with carbon fiber reinforced plastics. Thesis for the Master’s Degree. Baotou: Mongolia University of Science and Technology, 2009 (in Chinese)
35 GB50010-2010. Code for Design of Concrete Structures. China Architecture & Building Press, 2010 (in Chinese)
36 J P Wei, X H Zhang. Analysis on the shear bearing capacity of solid-webbed steel reinforced concrete short column based on trussed arch model. Progress in Steel Building Structures, 2011, 13(4): 52–56 (in Chinese)
37 L P Ye, S H Zhao, Q W Li, Q R Yu, K Zhang. Calculation of shear strength of concrete column strengthened with carbon fiber reinforced plastic sheet. Journal of Building Structures, 2000, 21(2): 59–67
38 ACI Committee 318. Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute, 2005
39 CSA A23.3-04. Design of concrete structures. Canadian Standards Association, 2004
[1] Luisa PANI, Flavio STOCHINO. Punching of reinforced concrete slab without shear reinforcement: Standard models and new proposal[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1196-1214.
[2] Walid Khalid MBARAK, Esma Nur CINICIOGLU, Ozer CINICIOGLU. SPT based determination of undrained shear strength: Regression models and machine learning[J]. Front. Struct. Civ. Eng., 2020, 14(1): 185-198.
[3] Jianan QI, Yuqing HU, Jingquan WANG, Wenchao LI. Behavior and strength of headed stud shear connectors in ultra-high performance concrete of composite bridges[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1138-1149.
[4] Abeer A. AL-MUSAWI. Determination of shear strength of steel fiber RC beams: application of data-intelligence models[J]. Front. Struct. Civ. Eng., 2019, 13(3): 667-673.
[5] Hui ZHENG, Zhi FANG, Bin CHEN. Experimental study on shear behavior of prestressed reactive powder concrete I-girders[J]. Front. Struct. Civ. Eng., 2019, 13(3): 618-627.
[6] Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS. Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected to point or distributed loads[J]. Front. Struct. Civ. Eng., 2014, 8(4): 337-353.
[7] Dong XU,Yu ZHAO,Chao LIU. Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement[J]. Front. Struct. Civ. Eng., 2014, 8(4): 325-336.
[8] XU Yongfu, TONG Lixin. Application of fractal theory to unsaturated soil mechanics[J]. Front. Struct. Civ. Eng., 2007, 1(4): 411-421.
[9] ZHAN Liangtong. Soil-water interaction in unsaturated expansive soil slopes[J]. Front. Struct. Civ. Eng., 2007, 1(2): 198-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed