Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2020, Vol. 14 Issue (4) : 888-906    https://doi.org/10.1007/s11709-020-0637-0
RESEARCH ARTICLE
Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete beam
Zhao-Hui LU1,2, Hong-Jun WANG2, Fulin QU3, Yan-Gang ZHAO1, Peiran LI3, Wengui LI3()
1. Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education, Beijing University of Technology, Beijing 100124, China
2. School of Civil Engineering, Central South University, Changsha 410075, China
3. School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
 Download: PDF(2218 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, a total of 177 flexural experimental tests of corroded reinforced concrete (CRC) beams were collected from the published literature. The database of flexural capacity of CRC beam was established by using unified and standardized experimental data. Through this database, the effects of various parameters on the flexural capacity of CRC beams were discussed, including beam width, the effective height of beam section, ratio of strength between longitudinal reinforcement and concrete, concrete compressive strength, and longitudinal reinforcement corrosion ratio. The results indicate that the corrosion of longitudinal reinforcement has the greatest effect on the residual flexural capacity of CRC beams, while other parameters have much less effect. In addition, six available empirical models for calculating the residual flexural strength of CRC beams were also collected and compared with each other based on the established database. It indicates that though five of six existing empirical models underestimate the flexural capacity of CRC beams, there is one model overestimating the flexural capacity. Finally, a newly developed empirical model is proposed to provide accurate and effective predictions in a large range of corrosion ratio for safety assessment of flexural failure of CRC beams confirmed by the comparisons.

Keywords CRC beams      flexural capacity      steel corrosion      database      empirical models     
Corresponding Author(s): Wengui LI   
Just Accepted Date: 29 May 2020   Online First Date: 13 July 2020    Issue Date: 27 August 2020
 Cite this article:   
Zhao-Hui LU,Hong-Jun WANG,Fulin QU, et al. Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete beam[J]. Front. Struct. Civ. Eng., 2020, 14(4): 888-906.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-020-0637-0
https://academic.hep.com.cn/fsce/EN/Y2020/V14/I4/888
literature specimen concrete strength (MPa) b (mm) h (mm) rl (%) fy (MPa) l hwt (%) hsn (%) Mfx,exp
(kN·m)
Pfx,exp (kN)
Jin and Zhao [18]
(17 tests)
BD1 22.13 150 150 1.33 427 2.65 0.47 1.76 10.27 34.23
BD2 22.13 150 150 1.33 427 2.65 0.54 1.83 9.53 31.77
BD3 22.13 150 150 1.33 427 2.65 1.21 2.49 9.92 33.07
BD4 22.13 150 150 1.33 427 2.65 1.24 2.52 9.32 31.07
BD5 22.13 150 150 1.33 427 2.65 1.24 2.52 10.27 34.23
BD6 22.13 150 150 1.33 427 2.65 1.27 2.55 9.53 31.77
BD7 22.13 150 150 1.33 427 2.65 2.15 3.42 9.53 31.77
BD8 22.13 150 150 1.33 427 2.65 2.82 4.08 9.07 30.23
BD9 22.13 150 150 1.33 427 2.65 2.83 4.09 9.53 31.77
BD10 22.13 150 150 1.33 427 2.65 2.88 4.14 8.69 28.97
BD11 22.13 150 150 1.33 427 2.65 3.45 4.71 9.53 31.77
BD12 22.13 150 150 1.33 427 2.65 4.14 5.39 8.20 27.33
BD13 22.13 150 150 1.33 427 2.65 5.20 6.43 8.69 28.97
BD14 22.13 150 150 1.33 427 2.65 6.05 7.27 7.89 26.30
BDU1 22.13 150 150 1.33 427 2.65 0.47 1.76 9.91 33.03
BDU2 22.13 150 150 1.33 427 2.65 4.85 6.09 8.56 28.53
BDU3 22.13(fcu,150) 150 150 1.33 427 2.65 5.58 6.81 8.32 27.73
Hui et al. [6]
(24 tests)
A01 39.4 151 252 0.90 397 3.1 0.00 0.00 26.14 37.34
A02 39.4 158 251 0.89 397 3.2 0.00 0.00 26.49 37.84
A21 39.6 154 255 0.92 383 3.2 7.11 8.32 21.84 31.20
A22 39.6 158 257 0.87 378 3.1 10.17 15.65 22.19 31.70
A31 38.1 176 250 0.79 381 3.2 4.60 5.84 22.40 32.00
A32 38.1 176 253 0.80 382 3.2 8.49 9.68 24.21 34.59
B01 39.4 153 251 1.19 402 3.2 0.00 0.00 33.70 48.14
B02 39.4 156 253 1.15 402 3.1 0.00 0.00 33.74 48.20
B11 35.0 160 254 1.14 495 3.2 3.60 4.85 30.20 43.14
B12 35.0 156 252 1.20 410 3.3 2.20 3.47 30.90 44.14
B21 36.6 173 250 1.10 395 3.3 4.49 5.73 28.45 40.64
B22 36.6 154 254 1.20 396 3.2 3.99 5.24 29.78 42.54
B31 31.4 166 253 1.12 396 3.2 5.40 6.63 30.55 43.64
B32 31.4 158 251 1.18 393 3.2 4.20 5.45 29.50 42.14
C01 39.4 168 252 1.40 381 3.3 0.00 0.00 38.95 55.64
C02 34.6 159 254 1.45 381 3.2 2.33 3.60 36.85 52.64
C21 34.4 156 253 1.52 376 3.3 3.33 4.59 31.95 45.64
C22 34.4 166 256 1.40 380 3.2 4.65 5.89 35.45 50.64
D01 39.4 163 251 0.85 297 3.2 0.00 0.00 23.20 33.14
D02 39.4 164 250 0.83 297 3.1 0.00 0.00 23.20 33.14
D21 34.4 172 252 0.80 293 3.1 10.99 16.42 17.74 25.34
D22 34.4 158 252 0.90 303 3.2 9.68 10.85 17.95 25.64
E01 35.6 155 249 0.63 494 3.0 0.00 0.00 26.00 37.14
E02 34.4(fcu,150) 172 255 0.58 494 3.1 8.82 10.01 21.45 30.64
Cao et al. [34]
(12 tests)
RCBD12(1) 34.4 120 200 1.08 470 2.78 0.00 0.00 20.53 41.06
RCBD12(2) 34.4 120 200 1.08 470 2.78 2.16 3.43 18.50 37.00
RCBD12(3) 34.4 120 200 1.08 470 2.78 4.19 5.44 17.34 34.68
RCBD12(4) 34.4 120 200 1.08 470 2.78 6.72 7.93 15.18 30.36
RCBD12(5) 34.4 120 200 1.08 470 2.78 9.31 10.49 14.50 29.00
RCBD12(6) 34.4 120 200 1.08 470 2.78 13.05 18.35 12.90 25.80
RCBD14(1) 34.4 120 200 1.48 500 2.78 0.00 0.00 26.73 53.46
RCBD14(2) 34.4 120 200 1.48 500 2.78 2.36 3.63 24.60 49.20
RCBD14(3) 34.4 120 200 1.48 500 2.78 4.47 5.71 22.40 44.80
RCBD14(4) 34.4 120 200 1.48 500 2.78 6.29 7.51 20.70 41.40
RCBD14(5) 34.4 120 200 1.48 500 2.78 9.58 10.76 19.50 39.00
RCBD14(6) 34.4 (fcu,150) 120 200 1.48 500 2.78 12.34 17.69 18.10 36.20
Xia et al. [35]
(20 tests)
BAI-0 25.9 150 200 1.49 425 2.06 0.00 0.00 22.68 64.80
BAI-1 25.9 150 200 1.49 425 2.06 1.80 3.25 22.24 63.54
BAI-2 25.9 150 200 1.49 425 2.06 3.09 4.5 21.63 61.80
BAI-3 25.9 150 200 1.49 425 2.06 3.80 5.19 20.65 59.00
BAI-4 25.9 150 200 1.49 425 2.06 5.64 6.97 20.84 59.54
BAI-5 25.9 150 200 1.49 425 2.06 6.07 7.39 21.37 61.06
BAI-6 25.9 150 200 1.49 425 2.06 7.08 8.37 20.00 57.14
BAI-7 25.9 150 200 1.49 425 2.06 8.67 9.91 20.84 59.54
BAI-8 25.9 150 200 1.49 425 2.06 8.85 10.08 19.22 54.91
BAI-9 25.9 150 200 1.49 425 2.06 10.36 11.55 18.34 52.40
BBII-0 35.6 150 200 1.72 575 2.06 0.00 0.00 38.50 110.00
BBII-1 35.6 150 200 1.72 575 2.06 1.45 2.91 36.75 105.00
BBII-2 35.6 150 200 1.72 575 2.06 1.84 3.28 35.00 100.00
BBII-3 35.6 150 200 1.72 575 2.06 2.64 4.06 34.48 98.51
BBII-4 35.6 150 200 1.72 575 2.06 3.75 5.14 35.04 100.11
BBII-5 35.6 150 200 1.72 575 2.06 5.26 6.6 35.88 102.51
BBII-6 35.6 150 200 1.72 575 2.06 5.84 7.16 33.08 94.51
BBII-7 35.6 150 200 1.72 575 2.06 7.37 8.65 34.39 98.26
BBII-8 35.6 150 200 1.72 575 2.06 7.76 9.03 34.48 98.51
BBII-9 35.6 (fcu,150) 150 200 1.72 575 2.06 8.98 10.21 32.13 91.80
Azad et al. [26]
(36 tests)
B1-1 28 200 215 1.26 593 2.2 3.50 4.75 31.50 90.00
B1-2 28 200 215 1.26 593 2.2 6.00 7.22 28.18 80.51
B1-3 28 200 215 1.26 593 2.2 4.13 5.38 18.38 52.51
B1-4 28 200 215 1.26 593 2.2 15.85 20.98 22.40 64.00
B1-5 28 200 215 1.26 593 2.2 2.95 4.21 30.98 88.51
B1-6 28 200 215 1.26 593 2.2 15.83 20.96 17.33 49.51
B2-1 28 200 265 0.96 593 1.67 11.82 17.20 36.58 104.51
B2-2 28 200 265 0.96 593 1.67 9.86 11.03 40.95 117.00
B2-3 28 200 265 0.96 593 1.67 18.74 23.70 24.33 69.51
B2-4 28 200 265 0.96 593 1.67 17.53 22.56 26.95 77.00
B2-5 28 200 265 0.96 593 1.67 25.53 35.14 26.60 76.00
B2-6 28 200 265 0.96 593 1.67 25.81 35.38 20.48 58.51
B3-1 28 200 315 0.78 593 1.35 13.34 18.63 37.63 107.51
B3-2 28 200 315 0.78 593 1.35 17.85 22.86 36.05 103.00
B3-3 28 200 315 0.78 593 1.35 6.02 7.24 52.50 150.00
B3-4 28 200 315 0.78 593 1.35 5.84 7.06 55.30 158.00
B3-5 28 200 315 0.78 593 1.35 26.29 35.80 35.70 102.00
B3-6 28 200 315 0.78 593 1.35 4.63 5.87 57.58 164.51
B4-1 28 200 215 1.61 575 2.2 5.28 6.51 33.60 96.00
B4-2 28 200 215 1.61 575 2.2 9.40 10.58 22.23 63.51
B4-3 28 200 215 1.61 575 2.2 11.27 16.68 22.75 65.00
B4-4 28 200 215 1.61 575 2.2 12.26 17.61 23.10 66.00
B4-5 28 200 215 1.61 575 2.2 20.09 30.40 18.73 53.51
B4-6 28 200 215 1.61 575 2.2 21.06 31.24 16.10 46.00
B5-1 28 200 265 1.22 575 1.68 9.10 10.28 31.15 89.00
B5-2 28 200 265 1.22 575 1.68 9.53 10.71 38.15 109.00
B5-3 28 200 265 1.22 575 1.68 9.53 10.71 29.75 85.00
B5-4 28 200 265 1.22 575 1.68 5.76 6.99 40.95 117.00
B5-5 28 200 265 1.22 575 1.68 14.18 19.42 25.55 73.00
B5-6 28 200 265 1.22 575 1.68 17.80 22.81 25.20 72.00
B6-1 28 200 315 0.99 575 1.36 5.67 6.90 58.98 168.51
B6-2 28 200 315 0.99 575 1.36 1.39 2.67 65.98 188.51
B6-3 28 200 315 0.99 575 1.36 4.69 5.93 57.40 164.00
B6-4 28 200 315 0.99 575 1.36 10.08 15.57 36.93 105.51
B6-5 28 200 315 0.99 575 1.36 3.37 4.63 48.48 138.51
B6-6 28(fcyl,75) 200 315 0.99 575 1.36 20.02 30.34 35.00 100.00
Azad et al. [25]
(24 tests)
BT1-2-4 38.91 150 150 0.92 520 3.10 5.40 6.63 10.68 30.51
BT1-3-4 36.89 150 150 0.92 520 3.10 14.20 19.43 10.15 29.00
BT1-2-6 45.77 150 150 0.92 520 3.10 15.20 20.37 10.46 29.89
BT1-3-6 46.45 150 150 0.92 520 3.10 21.40 31.54 9.15 26.14
BT1-2-8 33.40 150 150 0.92 520 3.10 21.50 31.63 7.82 22.34
BT1-3-8 46.45 150 150 0.92 520 3.10 31.00 44.73 6.48 18.51
BT2-2-4 39.94 150 150 1.33 590 3.10 5.50 6.73 12.76 36.46
BT2-3-4 35.68 150 150 1.33 590 3.10 8.80 9.99 11.97 34.20
BT2-2-6 44.45 150 150 1.33 590 3.10 21.10 31.28 10.43 29.80
BT2-3-6 44.21 150 150 1.33 590 3.10 14.00 19.25 10.55 30.14
BT2-2-8 44.69 150 150 1.33 590 3.10 22.90 32.85 8.88 25.37
BT2-3-8 37.66 150 150 1.33 590 3.10 25.50 35.11 8.49 24.26
BT3-2-4 40.18 150 150 1.06 520 3.54 8.00 9.20 10.92 31.20
BT3-3-4 35.68 150 150 1.06 520 3.54 9.10 10.28 10.19 29.11
BT3-2-6 33.40 150 150 1.06 520 3.54 10.10 15.58 9.88 28.23
BT3-3-6 44.21 150 150 1.06 520 3.54 17.60 22.63 9.28 26.51
BT3-2-8 33.40 150 150 1.06 520 3.54 21.40 31.54 9.12 26.06
BT3-3-8 33.40 150 150 1.06 520 3.54 34.80 47.77 6.60 18.86
BT4-2-4 36.89 150 150 1.54 590 3.57 7.90 9.10 12.03 34.37
BT4-3-4 46.49 150 150 1.54 590 3.57 10.90 16.34 10.93 31.23
BT4-2-6 46.49 150 150 1.54 590 3.57 13.40 18.68 10.02 28.63
BT4-3-6 40.94 150 150 1.54 590 3.57 18.60 23.57 8.98 25.66
BT4-2-8 40.94 150 150 1.54 590 3.57 18.00 23.00 9.00 25.71
BT4-3-8 37.66 (fcyl,75) 150 150 1.54 590 3.57 20.70 30.93 7.57 21.63
Shang [36]
(8 tests)
L10 42.78 151 200 1.61 321 3.64 0.00 0.00 21.37 35.62
L11 42.78 150 200 1.61 321 3.59 7.21 8.42 17.82 29.70
L12 42.78 150 200 1.61 321 3.61 9.63 10.80 17.51 29.18
L13 42.78 152 200 1.61 321 3.57 16.23 21.34 14.98 24.97
L20 44.90 151 200 0.89 313 3.57 0.00 0.00 11.21 18.68
L21 44.90 151 200 0.89 313 3.53 6.47 7.69 11.53 19.22
L22 44.90 150 200 0.89 313 3.59 12.42 13.56 11.26 18.77
L23 44.90 (fcu,150) 151 200 0.89 313 3.55 19.32 29.73 9.21 15.35
Rodriguez et al. [4]
(16 tests)
1 52.60 150 200 0.92 585 4.88 11.81 17.19 17.8 22.25
111 62.62 150 200 0.63 575 4.85 0.00 0.00 15.1 18.88
112 62.62 150 200 0.63 575 4.85 0.00 0.00 15.7 19.63
115 42.58 150 200 0.63 575 4.85 8.29 13.88 11.6 14.50
114 42.58 150 200 0.63 575 4.85 11.81 17.19 10.5 13.13
113 42.58 150 200 0.63 575 4.85 13.35 18.64 10.1 12.63
121 60.11 150 200 1.84 585 4.88 0.00 0.00 36.1 45.13
122 60.11 150 200 1.84 585 4.88 0.00 0.00 38.3 47.88
126 43.82 150 200 1.84 585 4.88 9.2 10.38 29 36.25
211 62.62 150 200 1.84 585 4.88 0.00 0.00 38.4 48.00
212 62.62 150 200 1.84 585 4.88 0.00 0.00 39.4 49.25
311 61.36 150 200 1.84 585 4.88 0.00 0.00 38.1 47.63
312 61.36 150 200 1.84 585 4.88 0.00 0.00 38.8 48.50
313 46.34 150 200 1.84 585 4.88 8.56 9.75 28.2 35.25
314 46.34 150 200 1.84 585 4.88 9.86 15.36 28.5 35.63
316 46.34(fcyl,150) 150 200 1.84 585 4.88 7.89 13.51 27.5 34.38
Chen [37]
(7 tests)
1 30 120 200 0.83 335 2.55 0.00 0.00 7.88 19.70
2 30 120 200 0.83 335 2.55 0.5 1.79 8.82 22.05
3 30 120 200 0.83 335 2.55 1 2.29 8.02 20.05
4 30 120 200 0.83 335 2.55 3 4.26 7.23 18.08
5 30 120 200 0.83 335 2.55 6 7.22 5.78 14.45
6 30 120 200 0.83 335 2.55 12 17.37 5.11 12.78
7 30(fcu,150) 120 200 0.83 335 2.55 24 33.80 2.84 7.10
Zhang [38]
(13 tests)
1 23.56 120 180 0.87 335 3.44 0.00 0.00 6.40 12.30
2 23.56 120 180 0.87 335 3.44 0.00 0.00 6.84 13.15
3 23.56 120 180 0.87 335 3.44 0.00 0.00 6.68 12.85
4 23.56 120 180 0.87 335 3.44 0.00 0.00 6.55 12.60
5 23.56 120 180 0.87 335 3.44 1.23 2.51 6.97 13.40
6 23.56 120 180 0.87 335 3.44 1.77 3.05 7.05 13.55
7 23.56 120 180 0.87 335 3.44 2.43 3.70 7.10 13.65
8 23.56 120 180 0.87 335 3.44 2.92 4.18 6.99 13.45
9 23.56 120 180 0.87 335 3.44 3.57 4.82 6.08 11.70
10 23.56 120 180 0.87 335 3.44 5.08 6.31 6.44 12.39
11 23.56 120 180 0.87 335 3.44 5.94 7.16 6.34 12.20
12 23.56 120 180 0.87 335 3.44 6.72 7.93 6.47 12.45
13 23.56(fcu,150) 120 180 0.87 335 3.44 6.91 8.12 6.53 12.55
Tab.1  Experimental data of flexural tests for CRC beams
different strength of concrete strength values (MPa)
fcyl, 150 12 16 20 25 30 35 40 45 50 55 60 70 80 90
ft 1.6 1.9 2.2 2.6 2.9 3.2 3.5 3.8 4.1 4.2 4.4 4.6 4.8 5.0
fcu, 150 15 20 25 30 37 45 50 55 60 67 75 85 95 105
fck 10.0 13.4 16.7 20.1 24.8 30.2 33.5 36.9 40.2 44.9 50.3 56.9 63.4 70.4
Tab.2  The conversion relationship among fcyl,150, ft, fcu, 150 and fck [41,33]
Fig.1  Ultimate flexural stress (sfx,exp) with respect to the corrosion ratio of longitudinal reinforcement (hwt).
Fig.2  Ultimate flexural stress (sfx,exp) with respect to width of beam section (b).
Fig.3  Ultimate flexural stress (sfx,exp) with respect to effective depth of beam section (h0).
Fig.4  Normalized ultimate flexural stress (sfxn,exp) with respect to cylinder compressive strength of concrete (fcyl,150).
Fig.5  Ultimate flexural stress (sfx,exp) with respect to ratio of strength between longitudinal reinforcement and concrete (rlfy/fcyl,150).
Fig.6  The relations between the ratios (Mfx,exp/Mfx,cal) and weight loss ratio of the longitudinal reinforcement (hwt) of the existing models. (a) Zhang et al.’s model [22]; (b) Xu’s model [23]; (c) Sun’s model [24]; (d) Azad et al.’s model [25]; (e) Azad et al.’s modified model [26]; (f) Torres-Acosta et al.’s model [27].
literature the ratios of test results to the predictions of existing models and new model
mean standard deviation maximum minimum maximum-minimum
Zhang et al. [22] 1.118 0.246 2.221 0.564 1.657
Xu [23] 1.250 0.310 2.682 0.597 2.085
Sun [24] 0.998 0.208 1.895 0.497 1.398
Azad et al. [25] 1.394 0.375 3.197 0.824 2.373
Azad et al. [26] 1.294 0.329 2.979 0.722 2.257
Torres-Acosta et al. [27] 1.509 0.917 5.501 0.683 4.818
The new proposal 1.030 0.171 1.653 0.626 1.027
Tab.3  Comparisons on residual flexural capacity of CRC beams from tests and predictions of existing empirical models and the new proposal
Fig.7  The experimental flexural capacity versus the predictions of the existing models. (a) Zhang et al.’s model [22]; (b) Xu’s model [23]; (c) Sun’s model [24]; (d) Azad et al.’s model [25]; (e) Azad et al.’s modified model [26]; (f) Torres-Acosta et al.’s model [27].
Fig.8  Comparisons between experimental results and the predictions of the new proposal. (a) The relationship between Mfx,exp/Mfx,cal and hwt; (b) The test results versus the predictions.
Fig.9  Sensitivity analysis of the new empirical model.
1 X H Wang, X L Liu. Simplified methodology for the evaluation of the residual strength of corroded reinforced concrete beams. Journal of Performance of Constructed Facilities, 2010, 24(2): 108–119
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000083
2 P K Mehta. Durability of concrete—Fifty yearʼs progress. ACI Special Publication, 1991, 126(1): 1–32
3 A A Almusallam, A S Al-Gahtani, A R Aziz, F H Dakhil, Rasheeduzzafar. Effect of reinforcement corrosion on flexural behavior of concrete slabs. Journal of Materials in Civil Engineering, 1996, 8(3): 123–127
https://doi.org/10.1061/(ASCE)0899-1561(1996)8:3(123)
4 J Rodriguez, L M Ortega, J Casal. Load carrying capacity of concrete structures with corroded reinforcement. Construction & Building Materials, 1997, 11(4): 239–248
https://doi.org/10.1016/S0950-0618(97)00043-3
5 P S Mangat, M S Elgarf. Flexural strength of concrete beams with corroding reinforcement. ACI Structural Journal, 1999, 96(1): 149–158
6 Y L Hui, R Li, Z S Lin, M Y Quan. Experimental studies on the property before and after corrosion of rebars in basic concrete members. Industrial Construction, 1997, 27(4): 14–18 (in Chinese)
7 R Huang, C C Yang. Condition assessment of reinforced concrete beams relative to reinforcement corrosion. Cement and Concrete Composites, 1997, 19(2): 131–137
https://doi.org/10.1016/S0958-9465(96)00050-9
8 Z H Lu, Y B Ou, Y G Zhao, C Q Li. Investigation of corrosion of steel stirrups in reinforced concrete structures. Construction & Building Materials, 2016, 127: 293–305
https://doi.org/10.1016/j.conbuildmat.2016.09.128
9 F Jnaid, R S Aboutaha. Residual flexural strength of corroded reinforced concrete beams. Engineering Structures, 2016, 119: 198–216
https://doi.org/10.1016/j.engstruct.2016.04.018
10 A A Torres-Acosta, A A Sagues. Concrete cracking by localized steel corrosion—Geometric effects. ACI Materials Journal, 2004, 101(6): 501–507
11 W J Zhu, R Francois. Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam. Construction & Building Materials, 2014, 51: 461–472
https://doi.org/10.1016/j.conbuildmat.2013.11.015
12 M G Stewart. Mechanical behaviour of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams. Structural Safety, 2009, 31(1): 19–30
https://doi.org/10.1016/j.strusafe.2007.12.001
13 M Dekoster, F Buyle-Bodin, O Maurel, Y Delmas. Modelling of the flexural behaviour of RC beams subjected to localised and uniform corrosion. Engineering Structures, 2003, 25(10): 1333–1341
https://doi.org/10.1016/S0141-0296(03)00108-1
14 F J O’Flaherty, P S Mangat, P Lambert, E H Browne. Effect of under-reinforcement on the flexural strength of corroded beams. Materials and Structures, 2008, 41(2): 311–321
https://doi.org/10.1617/s11527-007-9241-1
15 G Malumbela, P Moyo, M Alexander. Behaviour of RC beams corroded under sustained service loads. Construction & Building Materials, 2009, 23(11): 3346–3351
https://doi.org/10.1016/j.conbuildmat.2009.06.005
16 K Bhargava, A K Ghosh, Y Mori, S Ramanujam. Ultimate flexural and shear capacity of concrete beams with corroded reinforcement. Structural Engineering and Mechanics, 2007, 27(3): 347–363
https://doi.org/10.12989/sem.2007.27.3.347
17 Y F Fan, J Zhou, X Feng. Prediction of load carrying capacity of corroded reinforced concrete beam. China Ocean Engineering, 2004, 18(1): 107–118
18 W L Jin, Y X Zhao. Test study on bending strength of corroded reinforced concrete beams. Industrial Construction, 2001, 31(5): 9–11 (in Chinese)
19 G J Al-Sulaimani, M Kaleemullah, I A Basunbul. Rasheeduzzafar, Influence of corrosion and cracking on bond behaviour and strength of reinforced concrete members. ACI Structural Journal, 1990, 87(2): 220–231
20 A Castel, R Francois, G Arliguie. Mechanical behaviour of corroded reinforced concrete beams-Part 2: Bond and notch effects. Materials and Structures, 2000, 33(9): 545–551
https://doi.org/10.1007/BF02480534
21 W L Jin, Y X Zhao. Effect of corrosion on bond behavior and bending strength of reinforced concrete beams. Journal of Zhejiang University. Science A, 2001, 2(3): 298–308
https://doi.org/10.1631/jzus.2001.0298
22 J R Zhang, K B Zhang, H Peng, C Gui. Calculation method of normal section flexural capacity of corroded reinforced concrete rectangular beams. China Journal of Highway and Transport, 2009, 22(3): 45–51 (in Chinese)
23 S H Xu. The deteriorated models and durability evaluation of reinforced concrete structure. Dissertation for the Doctoral Degree. Xi’an: Xi’an University of Architecture and Technology, 2003 (in Chinese)
24 B Sun. Structural performance degrading and seismic evaluation of existing reinforced concrete structures. Dissertation for the Doctoral Degree. Xi’an: Xi’an University of Architecture and Technology, 2006 (in Chinese)
25 A K Azad, S Ahmad, S A Azher. Residual strength of corrosion-damaged reinforced concrete beams. ACI Materials Journal, 2007, 104(1): 40–47
26 A K Azad, S Ahmad, B H A Al-Gohi. Flexural strength of corroded reinforced concrete beams. Magazine of Concrete Research, 2010, 62(6): 405–414
https://doi.org/10.1680/macr.2010.62.6.405
27 A A Torres-Acosta, S Navarro-Gutierrez, J Terán-Guillén. Residual flexure capacity of corroded reinforced concrete beams. Engineering Structures, 2007, 29(6): 1145–1152
https://doi.org/10.1016/j.engstruct.2006.07.018
28 J G Cabrera, P Ghoddoussi. The effect of reinforcement corrosion on the strength of the steel/concrete bond. In: Proceedings of the International Conference on Bond in Concrete, from Research to Practice. Riga, Latvia: Riga Technical University, 1992, 11–24
29 S C Ting, A S Nowak. Effect of reinforcing steel area loss on flexural behavior of reinforced-concrete beams. ACI Structural Journal, 1991, 88(3): 309–314
30 Z H Lu, P Y Lun, W G Li, Z Luo, Y Li, P Liu. Empirical model of corrosion rate for steel reinforced concrete structures in chloride-laden environments. Advances in Structural Engineering, 2019, 22(1): 223–239
https://doi.org/10.1177/1369433218783313
31 K Bhargava, A K Ghosh, Y Mori, S Ramanujam. Corrosion-induced bond strength degradation in reinforced concrete—Analytical and empirical models. Nuclear Engineering and Design, 2007, 237(11): 1140–1157
https://doi.org/10.1016/j.nucengdes.2007.01.010
32 BIS. 2000. IS: 456, Indian Standard Code of Practice for Plain and Reinforced Concrete. 4th Revision. New Delhi: Bureau of Indian Standards, 67–76
33 GB50010-2002. Code for Design of Concrete Structures. Beijing: China Building Industry Press, 2002 (in Chinese)
34 F B Cao, C X Wang, L G Liu, Y D Xin, J H Li, Z G Tian. Experimental study and rigidity analysis on corroded reinforced recycled concrete beams. Building Structure, 2015, 45(10): 49–55 (in Chinese)
35 J Xia, W L Jin, L Y Li. Effect of chloride-induced reinforcing steel corrosion on the flexural strength of reinforced concrete beams. Magazine of Concrete Research, 2012, 64(6): 471–485
https://doi.org/10.1680/macr.10.00169
36 D F Shang. Study on flexural behavior of corroded reinforced concrete beams. Dissertation for the Doctoral Degree. Shanghai: Tongji University, 2005 (in Chinese)
37 J Chen. Study on degradation regularity of bearing capacity of RC beams under corrosive conditions. Journal of Disaster Prevention and Mitigation Engineering, 2013, 33: 83–87 (in Chinese)
38 Z Zhang. Experimental study of bending behavior of corroded reinforced concrete beams. Dissertation for the Doctoral Degree. Shanghai: Shanghai Jiao Tong University, 2010 (in Chinese)
39 J G MacGregor. Reinforced Concrete: Mechanics and Design. 3rd ed. New Jersey: Prentice Hall, 1997
40 Z H Lu, H Li, W G Li, Y G Zhao, W K Dong. An empirical model for the shear strength of corroded reinforced concrete beam. Construction & Building Materials, 2018, 188: 1234–1248
https://doi.org/10.1016/j.conbuildmat.2018.08.123
41 Eurocode 2. Design of concrete structures—Part 1-1: General Rules and Rules for Buildings. EN 1992-1-1. Brussels: European Committee for Standardization, British Standards Institution, 2004
42 R L Day, M N Haque. Correlation between strength of small and standard concrete cylinders. ACI Materials Journal, 1993, 90(5): 452–462
43 M A Rashid, M A Mansur, P Paramasivam. Correlations between mechanical properties of high-strength concrete. Journal of Materials in Civil Engineering, 2002, 14(3): 230–238
https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(230)
44 X H Wang, T Y Zhong. Relation between the loss coefficient of the corroded rebar’s cross-section in concrete and that of its weight. Research and Application of Building Materials, 2005, 1: 4–6 (in Chinese)
45 Y L Xu, Z M Shao, W D Shen. Bond strength between reinforcing bars and concrete. Building Science, 1988, 4(4): 8–14 (in Chinese)
46 K Woo, R N White. Initiation of shear cracking in reinforced concrete beams with no web reinforcement. ACI Structural Journal, 1991, 88(3): 301–314
47 H S Lee, T Noguchi, F Tomosawa. FEM analysis for structural performance of deteriorated RC structures due to rebar corrosion. In: Proceeding of the 2nd International Conference on Concrete Under Severe Conditions. Tromso: CRC Press, 1998, 327–336
48 C G Koh, K K Ang, L Zhang. Effects of repeated loading on creep deflection of reinforced concrete beams. Engineering Structures, 1997, 19(1): 2–18
https://doi.org/10.1016/S0141-0296(96)00028-4
49 L Zhang, P Mendis, W C Hon, S Fragomeni, N Lam, Y Song. Effect of cyclic loading on the long-term deflection of prestressed concrete beams. Computers and Concrete, 2013, 12(6): 739–754
https://doi.org/10.12989/cac.2013.12.6.739
50 L Wang, X H Zhang, J R Zhang, L Z Dai, Y M Liu. Failure analysis of corroded PC beams under flexural load considering bond degradation. Engineering Failure Analysis, 2017, 73: 11–24
https://doi.org/10.1016/j.engfailanal.2016.12.004
[1] Behnam VAKHSHOURI, Shami NEJADI. Empirical models and design codes in prediction of modulus of elasticity of concrete[J]. Front. Struct. Civ. Eng., 2019, 13(1): 38-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed