Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2019, Vol. 13 Issue (1) : 38-48    https://doi.org/10.1007/s11709-018-0479-1
REVIEW
Empirical models and design codes in prediction of modulus of elasticity of concrete
Behnam VAKHSHOURI(), Shami NEJADI
Centre for Built Infrastructure Research, University of Technology Sydney, Sydney, Australia
 Download: PDF(901 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Modulus of Elasticity (MOE) is a key parameter in reinforced concrete design. It represents the stress-strain relationship in the elastic range and is used in the prediction of concrete structures. Out of range estimation of MOE in the existing codes of practice strongly affect the design and performance of the concrete structures. This study includes: (a) evaluation and comparison of the existing analytical models to estimating the MOE in normal strength concrete, and (b) proposing and verifying a new model. In addition, a wide range of experimental databases and empirical models to estimate the MOE from compressive strength and density of concrete are evaluated to verification of the proposed model. The results show underestimation of MOE of conventional concrete in majority of the existing models. Also, considering the consistency between density and mechanical properties of concrete, the predicted MOE in the models including density effect, are more compatible with the experimental results.

Keywords modulus of elasticity      normal strength normal weight concrete      empirical models      design codes      compressive strength      density     
Corresponding Author(s): Behnam VAKHSHOURI   
Online First Date: 08 May 2018    Issue Date: 04 January 2019
 Cite this article:   
Behnam VAKHSHOURI,Shami NEJADI. Empirical models and design codes in prediction of modulus of elasticity of concrete[J]. Front. Struct. Civ. Eng., 2019, 13(1): 38-48.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-018-0479-1
https://academic.hep.com.cn/fsce/EN/Y2019/V13/I1/38
Fig.1  Stress-strain diagram of concrete and its components
Fig.2  Classification of factors affecting the elastic modulus of concrete [8]
Fig.3  Predicted MOE values of Eq. (1) versus experimented values
Fig.4  Comparison between predicted MOE in codes of practice vs. predicted MOE by proposed model.
Fig.5  Comparison between predicted MOE in empirical models vs. predicted MOE by proposed model.
Fig.6  Comparison of experimental vs. predicted MOE in proposed model and best matching models in codes of practice
Fig.7  Comparison of experimental vs. predicted MOE in proposed model and best matching empirical models
Design code Model Limits and coefficients
ACI 318- 08 [38] Ec=0.043w1.5(fc')0.5 MPa, kg/m3
Ec=4730(fc')0.5 MPa
1440<w<2500 kg/m3
Modified ACI 318-95
[54]
Ec=30.16w1.5(fc')0.5+484200
E in psi; fc' in psi; w in pcf
ACI 363R-92, (1997)[55] Ec=3320(fc')0.5+6890 21< fc'?<83 MPa
ACI-209-2R-08[56] Ec=0.043w1.5(fc')0.5 MPa, kg/m3
Ec=4730(fc')0.5 MPa
for 1440<w<2500 kg/m3
ACI 312-92 [8] E=14000+3250 fc'0.5
E=9500( fc'+8)1/3
E=0.043w1.5 fc'0.5 MPa
CSA A23.3-04[48] Ec=(3300 ( fc')0.5+6900)( w2300 ) 1.5 MPa
Ec=4500(fc')0.5
20≤ fc'≤40 MPa
1500<w<2500 kg/m3
CAN A23.3- M94[39] Ec=5(fc')0.5 GPa
NZS-3101-95[57] Ec=(3320 ( fc')0.5+6900)( w2300 ) 1.5MPa
CEB-FIP (1993) [44] Ec=10000 (fc'+8 ) 13
CEB-FIP (1990) [58] Ec=21500α( fc'10) 13 α=1.2 basalt, dense limestone,
1= quartzite , 0.9 limestone,
0.7 sandstone aggregate
EC2-04 (2004) [59] Ec=22000 ( fc' 10)0.3MPa sc between 0 and 0.4fcm
AASHTO-LRFD [45] Ec=0.043 k1 wc1.5(fc')0.5 kg/m3 and MPa
K1?= 1.0 unless determined by physical test
1280<w<2400 kg/m3
14≤ fc'≤48 MPa
FHWA (2000) [42] Ec=3837(fc')0.5 28≤ fc'≤193 MPa
OHBDC-1983 [46] Ec=5000(fc')0.5psi
NCHRP-2003 [43] Ec =33000k1k2 (0.14+fc'/1000) 1.5 ( fc ')0.5ksi k1 =1.0, k2 =90th percentile upper bound and the 10th percentile lower bound
2320<w<2480 kg/m3
AS-3600(2009) [51] Ec=0.043 wc1.5(fc')0.5
Ec=5050(fc')0.5normal weight concrete
<40 MPa, sc between 0 and 0.4fcm
AS-3600(2009) [51] Ec =wc1.5( 0.024 (fc') 0.5+0.12) fc'>40 MPa
JSCE (2007) [36] Ec=4700(fc')0.5(ACI-318-08)
Ec= 10.792ln( fc') - 9.0675 best fit
18≤ fc'≤80 MPa
NS-3473(1992) [60] Ec=9.5(fc')0.3( W2400)1.5 GPa, kg/m3
Ec=9500(fc')0.3
EHE (1998) [61] Ec=10,000fc'3
NBR-6118 (2003) [62] Ec=5600(fc')0.5
(AIJ- Japan) [47] Ec=2.1× 105 ( w2.3)1.5( fc'200)0.5
E, f’c: kgf/cm2 , w= t/m3
TS-500 (2000) [63] Ec=3.25(fc')0.5+14
IS 456 (BIS, 2000) [52] Ec=5000(fc')0.5
GBJ 11-89 (1994) [1] Ec= 102/[2.2 +( 34.7fc')]
IDC 3274 [1] Ec=5.7(fc')0.5
GDC 2000 [1] Ec=4.76(fc')0.5
SABS-0100 (1992)
Modified [4]
Ec (GPa) =K0+ afcu K0 (GPa) = 17 (ferro quartzite);
20 ( Jukskei granite);
29 (Eikenhof andesit
α (GPa/MPa) = 0.4 (ferro quartzite);
0.2 ( Jukskei granite and Eikenhof andesit
NTE E.060(2009) [49] Ec=0.043w1.5(fc')0.5 MPa, kg/m3
Ec=4730 ( fc')0.5 MPa
SP 52-101-2003 [14] Ec= 11.652ln(fc') - 7.4713 10≤ fc'≤60 MPa
BS 5400-4(1990) [37] Ec=8.6475 ( fc')0.348 20≤ fc'≤60 MPa
BS 8110 (1997)[50] Ec=20+0.2fc' 20≤ fc'≤60 MPa
Dutch VBC-95 [40] Ec=22250+250fc' MPa
RakMK-D3-2012 [53] Ec =5000(w2400) +(fc')0.5
Tab.1  Existing models in codes of practice to predict MOE of normal strength concrete
f’c (MPa) 10 15 20 25 30 35 40 45 50 55 60
E (GPa) 19 24 27.5 39 32.5 34.5 36 37 38 39 39.5
Best fit Ec= 11.652ln(fc') – 7.4713 R2= 0.9968 best fit
Tab.2  The best fitting equation with the CS-MOE data in SP 52-101(2003) [14]
f’c (MPa) 18 24 30 40 50 60 70 80
E (GPa) 22 25 28 31 33 35 37 38
Best fit Ec = 4700( fc'0.5 By ACI-318- R2=0.984
Ec = 10.792ln(f c') - 9.0675 Best fit R2 = 0.9983
Tab.3  The best fitting equation with the CS-MOE data in JSCE (2007) [36]
fc' (MPa) 20 25 30 35 40 60
E (GPa) 25 26 28 31 34 36
Best fit Ec=8.6475 ( fc')0.348, R2=0.992, best fit
Tab.4  The best fitting equation with the CS-MOE data in BS 5400-4(1990) [37]
Class-1 Class-2 Class-3 Class-4 Class-5
ACI-318-08[38] ACI312-92[8] ACI-363R-92[55] BS 8110 (1997)[50] CSA-A23.3-M94[39]
ACI-209-2R-08[56] TS-500-2000[63] NZS-3101-95[57] SABS 0100 (1992) Mdf.[4] OHBDC[46]
NTE-060-09[49] IS-456-2000[52]
JSCE-07[36] RakMK-D3-2012[53]
AS-3600-2900[51]
Tab.5  Classification of international design codes using the same MOE model
Researchers(s) Model Limits and coefficients
Carrasquillo, et al.(1981) [64] Ec=3.320 ( fc')0.5+6.900( w2346 ) GPa , kg/m3
Ec=3.320 ( fc')0.5+6.900
Dinakar (2008) [65] Ec=4.55(fc')0.5in fsp
Yanjun Liu (2006) [17] Ec=α ( fc')0.5
Ec , fc' in psi
α=55949 Miami oolite limestone, 62721 for Georgia granite ,
43777 for stalite lightweight aggregate
Rashid et al. (2002) [16] Ec=8900(fc')0.33 20< fc'<130 MPa
Kheder and Al-Windawi (2005) [6] Ec=5.323 ( fc')0.453 MPa, GPa
Soleymani (2006) [66] Ec=( wc2300)1.5( 3000 (fc') 0.5+6900)
Ec=( wc2300)1.5( 3000 (fc') 0.5+6900)
Ec=4500(fc')0.5
-Best fit with eq. 8-6 in CSA-A23.3(1994)
-Best fit with eq. 8-6 in CSA-23.3(1994)
-worst fit with eq. 8-7 in CSA-A23.3(1994)
Ravindrarajah et al. (1985) [67] Ec=4.630 ( fc')0.5
San Luis Obispo (2011) [68] Ec=6.59(fc')0.38
Noguchi et al. (2009) [3] MPa, kg/m3 40≤ fc'≤160 MPa
Haranki (2009) [5] Ec=31.92× w1.5(fc')0.5+345,328 psi , lb/ft3
Gardner and Zhao(1991) [69] Ec=9(fc')13 fc'>27 MPa
Ahmad and Shah (1985) [70] Ec=3.38× 10 5×λ2.5( fc')0.65
Jobse and Mustafa (1984) [71] Ec=0.103 wc1.5(fc')0.5
Cook (1989) [72] Ec=3.22× 10 5×λ2.5(fc')0.315 kg/m3 , MPa
Gutierrez and Canovas (1995) [73] Ec=8430fc'3
Leemann and Hoffmann (2005)[26] Ec=5480(fc')0.5
Min and Gjorv (1991) [7] Ec=1.19(fc') 2/3 GPa , MPa For light-weigth concrete
Levtchitch et el. (2004) [15] Ec=10000( 1.9+0.45fc') MPa
Jensen (1943) [52] Ec =6× 106/ (1+2000/fc' ) psi 1280<w<2400 kg/m3
14≤ fc'≤48 MPa
Pauw (1960) [41] Ec=13.82w1.79(fc')0.44
Tab.6  Empirical models to predict the modulus of elasticity of normal strength concrete
ACI-318-08[38] CSA.A23.3-M94[39] VBC-95[40] Proposed model
Experimental/
Predicted MOE
1.13 1.04 1.07 1.03
R2 0.73 0.63 0.71 0.78
Tab.7  Coefficient of correlation factor for MOE (models in codes of practice)
Pauw (1960)[41] Leemann and Hoffmann (2005)[26] Haranki (2009)[5] Proposed model
Experimental/
Predicted MOE
0.82 0.75 0.81 0.86
R2 0.99 0.97 1.02 1.003
Tab.8  Coefficient of correlation factor for MOE (Empirical models)
1 K AKorkmaz, F Demir, HTekeli. Uncertainty modelling of critical column buckling for reinforced concrete buildings. Sadhana, 2011, 36(2): 267–280
https://doi.org/10.1007/s12046-011-0013-9
2 FAslani, S Nejadi. Mechanical properties of conventional and self-compacting concrete: An analytical study. Construction & Building Materials, 2012, 36: 330–347
https://doi.org/10.1016/j.conbuildmat.2012.04.034
3 TNoguchi, F Tomosawa, KMNemati , BMChiaia, ARFantilli. A practical equation for elastic modulus of concrete. ACI Structural Journal, 2009, 106(5): 690–696
4 GFanourakis . Y Ballim. An assessment of the accuracy of nine design models for predicting creep in concrete. Journal of the South African Institution of Civil Engineering, 2006, 48(4): 2-8
5 BHaranki. Strength, modulus of elasticity, creep and shrinkage of concrete used in Florida. 2009, University of Florida
6 GKheder, S Al-Windawi. Variation in mechanical properties of natural and recycled aggregate concrete as related to the strength of their binding mortar. Materials and Structures, 2005, 38(7): 701–709
https://doi.org/10.1007/BF02484315
7 M HZhang, O E Gjvorv. Mechanical properties of high-strength lightweight concrete. Materials Journal, 1991, 88(3): 240–247
8 İ BTopçu, AUğurlu. Elasticity theory of concrete and prediction of Static E-modulus for dam Concrete using composite models. Teknik Dergi, 2007, 18(1): 4055–4067
9 LIZARAZO-MARRIAGA, LÓPEZ YÉPEZ. Effect of sedimentary and metamorphic aggregate on static modulus of elasticity of high-strength concrete. Dyna (Bilbao), 2011, 78: 235–242
10 W H L D HKnepper. Geologic characterization of natural aggregate; a field geologist’s guide to natural aggregate resource assessment, in Open-File Report. 1995, U.S. Geological Survey: USA. p. 28
11 LCrouch, J Pitt, RHewitt. Aggregate effects on pervious portland cement concrete static modulus of elasticity. Journal of Materials in Civil Engineering, 2007, 19(7): 561–568
https://doi.org/10.1061/(ASCE)0899-1561(2007)19:7(561)
12 P CAïtcin. High performance concrete. 2011, CRC press, US
13 SChen , H Wang, JZhang, HXing, H. WangExperimental study on low-strength similar-material proportioning and properties for coal mining. Advances in Materials Science and Engineering, 2015, (3): 1–6
14 SP-52-101,SP-52-101-2003. Concrete and reinforced concrete structures without prestressing. In Gosstroi of Russia, Moscow, 2004
15 VLevtchitch. Seismic performance capacities of old concrete. In: Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada, 2004
16 MRashid, M Mansur, PParamasivam. Correlations between mechanical properties of high-strength concrete. Journal of Materials in Civil Engineering, 2002, 14(3): 230–238
https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(230)
17 YLiu. Strength, modulus of elasticity, shrinkage and creep of concrete. 2007, Citeseer
18 AAbbasi, A Al-Tayyib. Effect of hot weather on modulus of rupture and splitting tensile strength of concrete. Cement and Concrete Research, 1985, 15(2): 233–244
https://doi.org/10.1016/0008-8846(85)90034-1
19 LLam, Y Wong, C SPoon. Effect of fly ash and silica fume on compressive and fracture behaviors of concrete. Cement and Concrete Research, 1998, 28(2): 271–283
https://doi.org/10.1016/S0008-8846(97)00269-X
20 GGiaccio, R Zerbino. Failure mechanism of concrete: combined effects of coarse aggregates and strength level. Advanced Cement Based Materials, 1998, 7(2): 41–48
https://doi.org/10.1016/S1065-7355(97)00014-X
21 J KKim, S H Han. Mechanical properties of self-flowing concrete. in High-Performance Concrete: Design and Materials and Recent Advances in Concrete Technology. Proceedings of Third CANMET/ACI International Conference, 1997
22 AAjdukiewicz, A Kliszczewicz. Influence of recycled aggregates on mechanical properties of HS/HPC. Cement and Concrete Composites, 2002, 24(2): 269–279
https://doi.org/10.1016/S0958-9465(01)00012-9
23 SSwaddiwudhipong, H R Lu, T H Wee. Direct tension test and tensile strain capacity of concrete at early age. Cement and Concrete Research, 2003, 33(12): 2077–2084
https://doi.org/10.1016/S0008-8846(03)00231-X
24 ASheinn, C Tam, FRodrigo. Comparative Study On Hardened Properties Of Self compacting Concrete (Scc) With Normal Slump Concrete (Nsc). In: Proceedings of the 29th Conference On Our World In Concrete & Structures, Singapore, 2004
25 J KKim, Y Lee, S TYi. Fracture characteristics of concrete at early ages. Cement and Concrete Research, 2004, 34(3): 507–519
https://doi.org/10.1016/j.cemconres.2003.09.011
26 ALeemann, C Hoffmann. Properties of self-compacting and conventional concrete–differences and similarities. Magazine of Concrete Research, 2005, 57(6): 315–319
https://doi.org/10.1680/macr.2005.57.6.315
27 DBjegović, M Skazlić, ŽSkazlić. Fracture Energy of Ultra High Performance Concrete Beams Using AE Technique. In: Proceedings of the 6th International Congress “Global Construction: ultimate concrete opportunities”, 2005
28 GRodríguez de Sensale. Strength development of concrete with rice-husk ash. Cement and Concrete Composites, 2006, 28(2): 158–160
https://doi.org/10.1016/j.cemconcomp.2005.09.005
29 BBissonnette, M Pigeon, A MVaysburd. Tensile creep of concrete: study of its sensitivity to basic parameters. ACI Materials Journal, 2007, 104(4): 360–368
30 APerez, J Pablo. Effect of slag cement on drying shrinkage of concrete. in Masters Abstracts International, 2008
31 GTheran, M Miguel. Experimental evaluation of the modulus of elasticity of self-consolidating concrete. Masters Abstracts International, 2009
32 A PLiu, J Yin, W MSong. Study on the Performance and Application of High Performance Pavement Portland Cement Concrete. Advanced Materials Research. 2013, 639-649(203): 411–416
33 CParra, M Valcuende, FGomez. Splitting tensile strength and modulus of elasticity of self-compacting concrete. Construction & Building Materials, 2011, 25(1): 201–207
https://doi.org/10.1016/j.conbuildmat.2010.06.037
34 JGuru Jawahar, CSashidhar, I VRamana Reddy, JAnnie Peter. Effect of coarse aggregate blending on short-term mechanical properties of self compacting concrete. Materials & Design, 2013, 43: 185–194
https://doi.org/10.1016/j.matdes.2012.06.063
35 DSLane. Evaluation of concrete characteristics for rigid pavements. VTRC 98-R24. Virginia transportation research council, 1998, Charlottesville
36 JSCE. Guidelines for concrete, Standard specifications for concrete structures- Design. Japan Society of Civil Engineering, JSCE, 2010, JAPAN
37 BS-5400-4. Steel, concrete and composite bridges, Part 4: Code of practice for design of concrete bridges. Committee reference CSB/59, Draft for comment 88/11190 DC (1990), 1990, British Standard: UK
38 ACI-318-08. Building code requirements for structural concrete, in American Concrete Institute. 2008, American Concrete Institute: Farmington Hills MI
39 CSAA23 M94. Design of concrete structures. Canadian Standard Association, 1994, Rexdale, ON
40 VBC-1995.Voorschriften Beton TGB 1990. Constructieve Eisen en Rekenmethoden, 1995
41 APauw. Static modulus of elasticity of concrete as affected by density. Aci Structural Journal, 1960
42 F HAdministration. Material Property Characterization of Ultra-High Performance Concrete, in FHWA. Highway Research Center: McLean, 2000, VA
43 NCHRP. National Cooperative Highway Research Program in NCHRP, 2003, Washington DC, US
44 C E I dBeton. CEB-FIP model code 1990, in CEB-FIP-90. 2003, Thomas Telford, London
45 AASHTO. Interim bridge design specifications and commentary. American Association of Highway and Transportation Officials Washington (DC), 2006
46 Ministry of Transportation. Ontario Highway Bridge Design Code, in OHBDC. Ministry of Transportation, Downs view, 1983, Ontario, Canada
47 AIJ. Standard for Structural calculations of steel reinforced concrete structures. Architectural Institute of Japan, 1985, Japan
48 CSA A23.04.Design of concrete structures. Canadian Standards Association, 2004, Canada
49 NTE-E 060. Reglamento nacional de edificaciones. Norma Técnica de Edificaciones, 2009, Concreto Armado: Perú
50 BS-8110-1. Structural use of concrete, Part14: Code of practice for design and construction, in Committee reference B/525/2 Draft for comment 95/105430 DC. 1997, British Standard: UK
51 AS-3600-09.Concrete structures, in Australian Standards. Standards Australia, 2009, Australia
52 IS-456-2000. Plain and reinforced concrete code of practice. Indian Standard, 2000, India
53 RakMK-D3-12. Rakennusten energiatehokkuus. Suomen rakentamismääräyskokoelma, 2012, Finnish building code: Helsinki
54 ACI-318-95. Building code requirements for structural concrete. American Concrete Institute. 1995, Farmington Hills MI
55 ACI-363-R. State of the art report on high-strength concrete. American Concrete Institute, 1992, Farmington Hills (Michigan)
56 ACI-209 2R-08. Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete. 2008, ACI Committe
57 NZS-3101. Concrete Structures Standard, Part 1- The Design of Concrete Structures. New Zealand Standard Wellington, 1995, New Zealand
58 C EBeton. High-strength concrete state of the art report, in CEB-FIP. 1990, Thomas Telford: London
59 Eurocode-2. Design of Concrete Structures. Part 1-General Rules and Rules for Buildings, in EN 1992-1-1. The Concrete Centre: Blackwater, 2004, Camberley, UK
60 NS-3473.Concrete structures—design rules, in Norges Standardiserings Forbund. Norwegian Council for Strandardization, 1992, Oslo, Norway
61 EHE. Spanish code for structural concrete. Real Decreto 2661, 1998, Madrid, Spain
62 NBR-6118. Design of concrete structures. Brazilian association of technical standards, 2003, Rio de Janeiro
63 TS-500. Building code requirements for reinforced concrete. Turkish Standards Institute, 2000, Ankara, Turkey
64 RLCarrasquillo, HH Nilson. Properties of high strength concrete subjected to short term loads. ACI Journal Proceedings, 1981, 78(3): 171–178
65 PDinakar, K Babu, MSanthanam. Mechanical properties of high-volume fly ash self-compacting concrete mixtures. Structural Concrete, 2008, 9(2): 109–116
https://doi.org/10.1680/stco.2008.9.2.109
66 H RSoleymani. Structural design properties of concrete for a bridge in Alberta. Canadian Journal of Civil Engineering, 2006, 33(2): 199–205
https://doi.org/10.1139/l05-092
67 BSabaa, R S Ravindrarajah. Engineering properties of lightweight concrete containing crushed expanded polystyrene waste. In: Material Research Society, Fall Meeting Symposium MM, Advances in Materials for Cementitious Composites, 1997, Boston
68 B MSchoppe. Shrinkage & modulus of elasticity in concrete with recycled aggregates. 2011, California Polytechnic State University, San Luis Obispo
69 NGardner, J Zhao. Mechanical properties of concrete for calculation of long term deformations. Proceedings of the second Canadian on cement and concrete, Vancouver, Canada, 1991, 150–159
70 S HAhmad, S P Shah. Structural properties of high strength concrete and its implications for precast prestressed concrete. PCI Journal, 1985, 30(6): 92–119
https://doi.org/10.15554/pcij.11011985.92.119
71 H JJobse, S E Moustafa. Applications of high strength concrete for highway bridges. PCI Journal, 1984, 29(3): 44–73
https://doi.org/10.15554/pcij.05011984.44.73
72 J ECook. 10,000 psi concrete. Concrete International, 1989, 11(10): 67–75
73 P AGutierrez, M FCanovas. The modulus of elasticity of high performance concrete. Materials and Structures, 1995, 28(10): 559–568
https://doi.org/10.1007/BF02473187
[1] Süleyman ÖZEN, Muhammet Gökhan ALTUN, Ali MARDANI-AGHABAGLOU, Kambiz RAMYAR. Effect of nonionic side chain length of polycarboxylate-ether-based high-range water-reducing admixture on properties of cementitious systems[J]. Front. Struct. Civ. Eng., 2020, 14(6): 1573-1582.
[2] Zhao-Hui LU, Hong-Jun WANG, Fulin QU, Yan-Gang ZHAO, Peiran LI, Wengui LI. Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete beam[J]. Front. Struct. Civ. Eng., 2020, 14(4): 888-906.
[3] Guoqiang LI, Yifan LYU, Yanbo WANG. State-of-the-art on resistance of bearing-type bolted connections in high strength steel[J]. Front. Struct. Civ. Eng., 2020, 14(3): 569-585.
[4] Mahmood AKBARI, Vahid JAFARI DELIGANI. Data driven models for compressive strength prediction of concrete at high temperatures[J]. Front. Struct. Civ. Eng., 2020, 14(2): 311-321.
[5] Rekha SINGH, Sanjay GOEL. Experimental investigation on mechanical properties of binary and ternary blended pervious concrete[J]. Front. Struct. Civ. Eng., 2020, 14(1): 229-240.
[6] Jordan CARTER, Aikaterini S. GENIKOMSOU. Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1520-1530.
[7] Vahid ALIZADEH. Finite element analysis of controlled low strength materials[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1243-1250.
[8] Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF. Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene fibers using extreme vertices mixture design[J]. Front. Struct. Civ. Eng., 2019, 13(4): 821-830.
[9] Ali Reza GHANIZADEH, Morteza RAHROVAN. Modeling of unconfined compressive strength of soil-RAP blend stabilized with Portland cement using multivariate adaptive regression spline[J]. Front. Struct. Civ. Eng., 2019, 13(4): 787-799.
[10] Kunamineni VIJAY, Meena MURMU. Effect of calcium lactate on compressive strength and self-healing of cracks in microbial concrete[J]. Front. Struct. Civ. Eng., 2019, 13(3): 515-525.
[11] Ali Reza GHANIZADEH, Hakime ABBASLOU, Amir Tavana AMLASHI, Pourya ALIDOUST. Modeling of bentonite/sepiolite plastic concrete compressive strength using artificial neural network and support vector machine[J]. Front. Struct. Civ. Eng., 2019, 13(1): 215-239.
[12] Minkyum KIM, Pranjal PHALTANE, Louay N. MOHAMMAD, Mostafa ELSEIFI. Temperature segregation and its impact on the quality and performance of asphalt pavements[J]. Front. Struct. Civ. Eng., 2018, 12(4): 536-547.
[13] Ismael FLORES-VIVIAN, Rani G.K PRADOTO, Mohamadreza MOINI, Marina KOZHUKHOVA, Vadim POTAPOV, Konstantin SOBOLEV. The effect of SiO2 nanoparticles derived from hydrothermal solutions on the performance of portland cement based materials[J]. Front. Struct. Civ. Eng., 2017, 11(4): 436-445.
[14] Chu MAI, Katerina KONAKLI, Bruno SUDRET. Seismic fragility curves for structures using non-parametric representations[J]. Front. Struct. Civ. Eng., 2017, 11(2): 169-186.
[15] Faezehossadat KHADEMI,Mahmoud AKBARI,Sayed Mohammadmehdi JAMAL,Mehdi NIKOO. Multiple linear regression, artificial neural network, and fuzzy logic prediction of 28 days compressive strength of concrete[J]. Front. Struct. Civ. Eng., 2017, 11(1): 90-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed