Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2017, Vol. 11 Issue (2) : 169-186    https://doi.org/10.1007/s11709-017-0385-y
RESEARCH ARTICLE
Seismic fragility curves for structures using non-parametric representations
Chu MAI, Katerina KONAKLI, Bruno SUDRET()
Risk, Safety & Uncertainty Quantification, Institute of Structural Engineering, ETH Zürich, Zürich CH-8093, Switzerland
 Download: PDF(2574 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fragility curves are commonly used in civil engineering to assess the vulnerability of structures to earthquakes. The probability of failure associated with a prescribed criterion (e.g., the maximal inter-storey drift of a building exceeding a certain threshold) is represented as a function of the intensity of the earthquake ground motion (e.g., peak ground acceleration or spectral acceleration). The classical approach relies on assuming a lognormal shape of the fragility curves; it is thus parametric. In this paper, we introduce two non-parametric approaches to establish the fragility curves without employing the above assumption, namely binned Monte Carlo simulation and kernel density estimation. As an illustration, we compute the fragility curves for a three-storey steel frame using a large number of synthetic ground motions. The curves obtained with the non-parametric approaches are compared with respective curves based on the lognormal assumption. A similar comparison is presented for a case when a limited number of recorded ground motions is available. It is found that the accuracy of the lognormal curves depends on the ground motion intensity measure, the failure criterion and most importantly, on the employed method for estimating the parameters of the lognormal shape.

Keywords earthquake engineering      fragility curves      lognormal assumption      non-parametric approach      kernel density estimation      epistemic uncertainty     
Corresponding Author(s): Bruno SUDRET   
Online First Date: 17 April 2017    Issue Date: 19 May 2017
 Cite this article:   
Chu MAI,Katerina KONAKLI,Bruno SUDRET. Seismic fragility curves for structures using non-parametric representations[J]. Front. Struct. Civ. Eng., 2017, 11(2): 169-186.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-017-0385-y
https://academic.hep.com.cn/fsce/EN/Y2017/V11/I2/169
Fig.1  (a) Maximal drifts versus IM before scaling; (b) maximal drifts versus IM after scaling within the bin marked with red color. (Note: a large bin is considered in the figure only to facilitate visualization of the method)
Fig.2  (a) Steel frame structure; (b) hysteretic behavior of steel material at section 1-1 for an example ground motion.
parameterdistributionsupportμXσX
Ia (s× g)lognormal(0, + ∞)0.04680.164
D5-95 (s)beta[,]17.39.31
tmid (s)beta[0.5, 40]12.47.44
ωmid/2π(Hz)gamma(0, + ∞)5.873.11
ω'/2π(Hz)two-sided exponential[-2, 0.5]-0.0890.185
ςfbeta[0.02, 1]0.2130.143
Tab.1  Statistics of synthetic ground motion parameters according to Ref. [].
Fig.3  Examples of synthetic ground motions.
PGASa
δoapproachmedianlog-stdmedianlog-std
0.7%MLE0.35 g0.700.49 g0.36
LR0.37 g0.640.44 g0.13
KDE0.36 g0.45 g
1.5%MLE1.10 g0.561.66 g0.31
LR0.87 g0.641.47 g0.24
KDE1.08 g1.53 g
2.5%MLE1.76 g0.562.82 g0.37
LR1.55 g0.643.29 g0.24
KDE1.82 g3.04 g
Tab.2  Steel frame structure−parameters of the obtained fragility curves
Fig.4  Paired data {(IMi, Di), i = 1,…,N} and fitted models in log-scale (the units of the variables in the fitted models are the same as in the axes of the graphs)
Fig.5  Fragility curves with parametric and non-parametric approaches using PGA and Sa as intensity measures (LR: linear regression; MLE: maximum likelihood estimation; bMCS: binned Monte Carlo simulation; KDE: kernel density estimation)
Fig.6  Histograms and fitted normal distributions for lnD at two levels of PGA and Sa. (a) PGA = 0.5 g; (b) PGA = 1.5 g; (c) Sa = 0.5 g; (d)Sa = 1.5 g
δoapproachPGASa
0.7%bMCS0.0003 g0.005 g
KDE0.0005 g0.005 g
1.5%bMCS0.037 g0.054 g
KDE0.037 g0.050 g
2.5%bMCS0.114 g0.090 g
KDE0.120 g0.080 g
Tab.3  Log-standard deviation of median IM
Fig.7  Estimated and mean bootstrap fragility curves and 95% confidence intervals for the binned Monte Carlo simulation and the kernel density estimation approaches. (a) Binned Monte Carlo simulation (PGA); (b) Kernel density estimation (PGA); (c) Binned Monte Carlo simulation (Sa); (d) Kernel density estimation (Sa)
Fig.8  Bridge configuration [] and hysteretic behavior.
referenceleveldescriptiondamagedrift ratio δo
[]IIOperationaMinor0.01
[]IIILife safetyModerate0.03
[]IIOperationaMinor0.005
[]IIILife safetyModerate0.015
Tab.4  Bridge performance and respective drift-ratio threshold
Fig.9  Paired data {(IMi, Di), i = 1,…,N} and fitted models in log-scale (the units of the variables in the fitted models are the same as in the axes of the graphs).
Fig.10  Fragility curves with parametric and non-parametric approaches using PGA and Psa as intensity measures (LR: linear regression; MLE: maximum likelihood estimation; KDE: kernel density estimation.
1 Porter K A. An overview of PEER's performance-based earthquake engineering methodology. In: Proc. 9th Int. Conf. on Applications of Stat. and Prob. in Civil Engineering (ICASP9), San Francisco. 2003, 6–9
2 Baker J W, Cornell C A. Uncertainty propagation in probabilistic seismic loss estimation. Structural Safety, 2008, 30(3): 236–252
3 Günay S, Mosalam K M. PEER performance-based earthquake engineering methodology, revisited. Journal of Earthquake Engineering, 2013, 17(6): 829–858
4 Mackie K, Stojadinovic B. Fragility basis for California highway overpass bridge seismic decision making. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley; 2005.
5 Ellingwood B R, Kinali K. Quantifying and communicating uncertainty in seismic risk assessment. Structural Safety, 2009, 31(2): 179–187
6 Seo J, Duenas-Osorio L, Craig J I, Goodno B J. Metamodel-based regional vulnerability estimate of irregular steel moment-frame structures subjected to earthquake events. Engineering Structures, 2012, 45: 585–597
7 Banerjee S, Shinozuka M. Nonlinear static procedure for seismic vulnerability assessment of bridges. Comput-Aided Civ Inf, 2007, 22(4): 293–305
8 Richardson J E, Bagchi G, Brazee R J. The seismic safety margins research program of the U.S. Nuclear Regulatory Commission. Nuclear Engineering and Design, 1980, 59(1): 15–25
9 Pei S, Van De Lindt J. Methodology for earthquake-induced loss estimation: An application to woodframe buildings. Structural Safety, 2009, 31(1): 31–42
10 Eads L, Miranda E, Krawinkler H, Lignos D G. An efficient method for estimating the collapse risk of structures in seismic regions. Earthquake Engineering & Structural Dynamics, 2013, 42(1): 25–41
11 Dukes J, DesRoches R, Padgett J E. Sensitivity study of design parameters used to develop bridge specific fragility curves. In: Proceedings of the 15th World Conf. Earthquake Eng. 2012
12 Güneyisi E M, Altay G. Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes. Structural Safety, 2008, 30(5): 461–480
13 Seyedi D M, Gehl P, Douglas J, Davenne L, Mezher N, Ghavamian S. Development of seismic fragility surfaces for reinforced concrete buildings by means of nonlinear time-history analysis. Earthquake Engineering & Structural Dynamics, 2010, 39(1): 91–108
14 Gardoni P, Der Kiureghian A, Mosalam K M. Probabilistic capacity models and fragility estimates for reinforced concrete columns based on experimental observations. Journal of Engineering Mechanics, 2002, 128(10): 1024–1038
15 Ghosh J, Padgett J E. Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering, 2010, 136(12): 1497–1511
16 Argyroudis S, Pitilakis K. Seismic fragility curves of shallow tunnels in alluvial deposits. Soil Dynamics and Earthquake Engineering, 2012, 35: 1–12
17 Chiou J, Chiang C, Yang H, Hsu S. Developing fragility curves for a pile-supported wharf. Soil Dynamics and Earthquake Engineering, 2011, 31(5-6): 830–840
18 Quilligan A O, Connor A, Pakrashi V. Fragility analysis of steel and concrete wind turbine towers. Engineering Structures, 2012, 36: 270–282
19 Borgonovo E, Zentner I, Pellegri A, Tarantola S, de Rocquigny E. On the importance of uncertain factors in seismic fragility assessment. Reliability Engineering & System Safety, 2013, 109(0): 66–76
20 Karantoni F, Tsionis G, Lyrantzaki F, Fardis M N. Seismic fragility of regular masonry buildings for in-plane and out-of-plane failure. Earthquakes and Structures, 2014, 6(6): 689–713
21 Rossetto T, Elnashai A. A new analytical procedure for the derivation of displacementbased vulnerability curves for populations of RC structures. Engineering Structures, 2005, 27(3): 397–409
22 Shinozuka M, Feng M, Lee J, Naganuma T. Statistical analysis of fragility curves. Journal of Engineering Mechanics, 2000, 126(12): 1224–1231
23 Ellingwood B R. Earthquake risk assessment of building structures. Reliability Engineering & System Safety, 2001, 74(3): 251–262
24 Zentner I. Numerical computation of fragility curves for NPP equipment. Nuclear Engineering and Design, 2010, 240(6): 1614–1621
25 Gencturk B, Elnashai A, Song J. Fragility relationships for populations of woodframe structures based on inelastic response. Journal of Earthquake Engineering, 2008, 12(sup2): 119–128
26 Jeong S H, Mwafy A M, Elnashai A S. Probabilistic seismic performance assessment of code-compliant multi-story RC buildings. Engineering Structures, 2012, 34: 527–537
27 Banerjee S, Shinozuka M. Mechanistic quantification of RC bridge damage states under earthquake through fragility analysis. Probabilistic Engineering Mechanics, 2008, 23(1): 12–22
28 Karamlou A, Bocchini P. Computation of bridge seismic fragility by large-scale simulation for probabilistic resilience analysis. Earthquake Engineering & Structural Dynamics, 2015, 44(12): 1959–1978
29 Mai C V, Sudret B, Mackie K, Stojadinovic B, Konakli K. Non parametric fragility curves for bridges using recorded ground motions. In: Cunha A, Caetano E, Ribeiro P, Müller G, eds. IX International Conference on Structural Dynamics, Porto, Portugal. 2014, 2831–2838
30 Rezaeian S, Der Kiureghian A. A stochastic ground motion model with separable temporal and spectral nonstationarities. Earthquake Engineering & Structural Dynamics, 2008, 37(13): 1565–1584
31 Choi E, DesRoches R, Nielson B. Seismic fragility of typical bridges in moderate seismic zones. Engineering Structures, 2004, 26(2): 187–199
32 Padgett J E, DesRoches R. Methodology for the development of analytical fragility curves for retro_tted bridges. Earthquake Engineering & Structural Dynamics, 2008, 37(8): 1157–1174
33 Zareian F, Krawinkler H. Assessment of probability of collapse and design for collapse safety. Earthquake Engineering & Structural Dynamics, 2007, 36(13): 1901–1914
34 Shome N, Cornell C A, Bazzurro P, Carballo J E. Earthquakes, records, and nonlinear responses. Earthquake Spectra, 1998, 14(3): 469–500
35 Luco N, Bazzurro P. Does amplitude scaling of ground motion records result in biased nonlinear structural drift responses? Earthquake Engineering & Structural Dynamics, 2007, 36(13): 1813–1835
36 Cimellaro G P, Reinhorn A M, D’Ambrisi A, De Stefano M. Fragility analysis and seismic record selection. Journal of Structural Engineering, 2009, 137(3): 379–390
37 Mehdizadeh M, Mackie K R, Nielson B G. Scaling bias and record selection for fragility analysis. In: Proceedings of the 15th World Conf. Earthquake Eng. 2012
38 Bazzurro P, Cornell C A, Shome N, Carballo J E. Three proposals for characterizing MDOF nonlinear seismic response. Journal of Structural Engineering, 1998, 124(11): 1281–1289
39 Vamvatsikos D, Cornell C A. Incremental dynamic analysis. Earthquake Engineering & Structural Dynamics, 2002, 31(3): 491–514
40 Wand M, Jones M C. Kernel smoothing. Chapman and Hall, 1995
41 Duong T. Bandwidth selectors for multivariate kernel density estimation. Dissertation of the School of mathematics and Statistics, University of Western Australia, 2004
42 Duong T, Hazelton M L. Cross-validation bandwidth matrices for multivariate kernel density estimation. Scandinavian Journal of Statistics, 2005, 32(3): 485–506
43 Frankel A D, Mueller C S, Barnhard T P, Leyendecker E V, Wesson R L, Harmsen S C, Klein F W, Perkins D M, Dickman N C, Hanson S L, Hopper M G. USGS national seismic hazard maps. Earthquake Spectra, 2000, 16(1): 1–19
44 Sudret B, Mai C V. Calcul des courbes de fragilité par approches non-paramétriques. In: Proc. 21e Congrès Français de Mécanique (CFM21), Bordeaux, 2013
45 Bradley B A, Lee D S. Accuracy of approximate methods of uncertainty propagation in seismic loss estimation. Structural Safety, 2010, 32(1): 13–24
46 Liel A B, Haselton C B, Deierlein G G, Baker J W. Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety, 2009, 31(2): 197–211
47 Efron B. Bootstrap methods: another look at the Jackknife. Annals of Statistics, 1979, 7(1): 1–26
48 Kwong N S, Chopra A K, McGuire R K. Evaluation of ground motion selection and modification procedures using synthetic ground motions. Earthquake Engineering & Structural Dynamics, 2015, 44(11): 1841–1861
49 Rezaeian S, Der Kiureghian A. Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering & Structural Dynamics, 2010, 39(10): 1155–1180
50 Vetter C, Taanidis A A. Comparison of alternative stochastic ground motion models for seismic risk characterization. Soil Dynamics and Earthquake Engineering, 2014, 58: 48–65
51 Boore D M. Simulation of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics, 2003, 160(3): 635–676
52 Eurocode 1. Actions on structures- Part 1–1: general actions- densities, self-weight, imposed loads for buildings. 2004
53 Pacific Earthquake Engineering and Research Center. OpenSees: The Open System for Earthquake Engineering Simulation, 2004
54 Eurocode 3. Design of steel structures- Part 1–1: General rules and rules for buildings. 2005
55 Joint Committee on Structural Safety, . Probabilistic Model Code- Part 3: Resistance Models, 2001
56 Deierlein G G, Reinhorn A M, Willford M R. Nonlinear structural analysis for seismic design. NEHRP Seismic Design Technical Brief No 2010, 4
57 Mackie K, Stojadinovic B. Improving probabilistic seismic demand models through refined intensity measures. In: Proceeding of the 13th World Conf. Earthquake Eng. International Association for Earthquake Eng, Japan, 2004
58 Padgett J, Nielson B, DesRoches R. Selection of optimal intensity measures in probabilistic seismic demand models of highway bridge portfolios. Earthquake Engineering & Structural Dynamics, 2008, 37(5): 711–725
https://doi.org/10.1002/eqe.782
59 Cornell C, Jalayer F, Hamburger R, Foutch D. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of Structural Engineering, 2002, 128(4): 526–533
60 Lagaros N D, Fragiadakis M. Fragility assessment of steel frames using neural networks. Earthquake Spectra, 2007, 23(4): 735–752
61 Federal Emergency Management Agency. Washington, DC. Commentary for the seismic rehabilitation of buildings; 2000
62 Eurocode 8. Design of structures for earthquake resistance- Part 1: General rules, seismic actions and rules for buildings, 2004
63 Mackie K, Stojadinovic B. Seismic demands for performance-based design of bridges. Tech. Rep.; Pacific Earthquake Engineering Research Center, 2003
64 Ramamoorthy S K, Gardoni P, Bracci J. Probabilistic demand models and fragility curves for reinforced concrete frames. Journal of Structural Engineering, 2006, 132(10): 1563–1572
65 Bai J W, Gardoni P, Hueste M D. Story-specific demand models and seismic fragility estimates for multi-story buildings. Structural Safety, 2011, 33(1): 96–107
66 Muggeo V M R. Estimating regression models with unknown break-points. Statistics in Medicine, 2003, 22(19): 3055–3071
67 Duong T. ks: kernel density estimation and kernel discriminant analysis for multivariate data in R. Journal of Statistical Software, 2007, 21(7): 1–16
68 Choun Y S, Elnashai A S. A simplified framework for probabilistic earthquake loss estimation. Probabilistic Engineering Mechanics, 2010, 25(4): 355–364
69 Marsh M L, Stringer S J. Performance-based seismic bridge design, a synthesis of highway practice. vol. 440. Transportation Research Board, Washington D C, 2013
70 Lu Y, Gu X, Guan J. Probabilistic drift limits and performance evaluation of reinforced concrete columns. Journal of Structural Engineering, 2005, 131(6): 966–978
71 Jankovic S, Stojadinovic B. Probabilistic performance based seismic demand model for R/C frame buildings. In: Proceeding of the 13th World Conf. Earthquake Eng. 2004
72 Jalayer F, Cornell C A. Alternative non-linear demand estimation methods for probability-based seismic assessments. Earthquake Engineering & Structural Dynamics, 2009, 38(8): 951–972
73 Baker J W. Probabilistic structural response assessment using vector-valued intensity measures. Earthquake Engineering & Structural Dynamics, 2007, 36(13): 1861–1883
74 Celik O C, Ellingwood B. Seismic fragilities for non-ductile reinforced concrete frames- role of aleatoric and epistemic uncertainties. Structural Safety, 2010, 32(1): 1–12
75 Jalayer F, De Risi R, Manfredi G. Bayesian Cloud Analysis: effcient structural fragility assessment using linear regression. Bulletin of Earthquake Engineering, 2014, 13(4): 1183–1203
76 Ghanem R, Spanos P. Stochastic Finite Elements: A Spectral Approach. Courier Dover Publications, 2003
77 Blatman G, Sudret B. Adaptive sparse polynomial chaos expansion based on Least Angle Regression. Journal of Computational Physics, 2011, 230(6): 2345–2367
78 Sudret B, Piquard V, Guyonnet C. Use of polynomial chaos expansions to establish fragility curves in seismic risk assessment. In: G. De Roeck G. Degrande G L, Müller G, eds. In: Proceedings of the 8th International Conference Structural Dynamics (EURODYN 2011), Leuven, Belgium, 2011
79 Sudret B, Mai C V. Computing seismic fragility curves using polynomial chaos expansions. In: Deodatis G, ed. In: Proceedings of the 11th International Conference Structural Safety and Reliability (ICOSSAR'2013). New York, USA, 2013
[1] Mehdi SABAGH, Abbas GHALANDARZADEH. Centrifuge experiments for shallow tunnels at active reverse fault intersection[J]. Front. Struct. Civ. Eng., 2020, 14(3): 731-745.
[2] Mohammad Reza AZADI KAKAVAND, Reza ALLAHVIRDIZADEH. Enhanced empirical models for predicting the drift capacity of less ductile RC columns with flexural, shear, or axial failure modes[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1251-1270.
[3] Muhammad Usman ALI, Shaukat Ali KHAN, Muhammad Yousaf ANWAR. Application of BCP-2007 and UBC-97 in seismic vulnerability assessment of gravity designed RC buildings in Pakistan[J]. Front. Struct. Civ. Eng., 2017, 11(4): 396-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed