Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (1) : 253-274    https://doi.org/10.1007/s11709-020-0639-y
RESEARCH ARTICLE
Nonlinear analysis of cable structures using the dynamic relaxation method
Mohammad REZAIEE-PAJAND(), Mohammad MOHAMMADI-KHATAMI
Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
 Download: PDF(2370 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The analysis of cable structures is one of the most challenging problems for civil and mechanical engineers. Because they have highly nonlinear behavior, it is difficult to find solutions to these problems. Thus far, different assumptions and methods have been proposed to solve such structures. The dynamic relaxation method (DRM) is an explicit procedure for analyzing these types of structures. To utilize this scheme, investigators have suggested various stiffness matrices for a cable element. In this study, the efficiency and suitability of six well-known proposed matrices are assessed using the DRM. To achieve this goal, 16 numerical examples and two criteria, namely, the number of iterations and the analysis time, are employed. Based on a comprehensive comparison, the methods are ranked according to the two criteria. The numerical findings clearly reveal the best techniques. Moreover, a variety of benchmark problems are suggested by the authors for future studies of cable structures.

Keywords nonlinear analysis      cable structure      stiffness matrix      dynamic relaxation method     
Corresponding Author(s): Mohammad REZAIEE-PAJAND   
Just Accepted Date: 16 October 2020   Online First Date: 11 February 2021    Issue Date: 12 April 2021
 Cite this article:   
Mohammad REZAIEE-PAJAND,Mohammad MOHAMMADI-KHATAMI. Nonlinear analysis of cable structures using the dynamic relaxation method[J]. Front. Struct. Civ. Eng., 2021, 15(1): 253-274.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-020-0639-y
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I1/253
Fig.1  Simple truss element.
Fig.2  Element of Deng et al. [32].
Fig.3  Jayaraman element in 2-D space.
Fig.4  Element of Thai and Kim [36].
Fig.5  Yang element.
method sign
truss element TEL
Torkamani and Naserian T&N
Jayaraman JYR
Thai HTI
Deng DNG
Yang YNG
Tab.1  Proposed strategies for cable element
Fig.6  Simple cable net.
Fig.7  Static equilibrium path of simple cable net.
Fig.8  Hyper net.
Fig.9  Static equilibrium path of hyper net.
Fig.10  Inverted cable dome.
Fig.11  Static equilibrium path of inverted cable dome.
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 44 67 132 431 157 122 106 97 92 87 1335 97 3 0.204 100 1
T&N 58503 54833 71210 122713 37164 39310 35179 32024 29435 27293 507664 - - 299.75 - -
JYR 462 508 604 1205 357 333 292 262 239 221 4483 0 4 0.578 20 4
HTI 44 67 132 410 156 120 106 92 94 83 1304 98 2 0.39 60 3
DNG 42 65 129 390 148 114 99 89 83 79 1238 100 1 0.312 77 2
YNG 462 509 604 1204 358 332 292 262 239 221 4483 0 4 0.672 0 5
Tab.2  Number of iterations and analysis time for solving simple cable net
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 172 147 151 163 166 166 165 163 162 160 1615 100 1 0.359 100 1
T&N 29610 20991 21394 21108 20514 19848 19189 18568 17995 17472 206689 - - 3405.445 - -
JYR 246 240 237 231 224 217 211 205 200 196 2207 0 4 0.5 70 3
HTI 228 224 221 215 209 202 196 191 186 181 2053 26 2 0.828 0 5
DNG 228 224 221 215 209 203 197 191 186 182 2056 25 3 0.469 77 2
YNG 246 240 237 231 224 217 211 205 200 196 2207 0 4 0.578 53 4
Tab.3  Number of iterations and analysis time for solving hyper net
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 514 391 344 330 323 318 313 308 304 300 3445 100 1 5.641 100 1
T&N 28646 22597 21850 21124 20434 19871 19352 18873 18430 18026 209203 - - 3023.297 - -
JYR 5858 641 445 416 407 401 399 397 398 394 9756 0 3 17.812 58 2
HTI 4797 503 364 374 533 1651 323 329 359 372 9605 2 2 34.453 0 4
DNG - - - - - - - - - - - - - - - -
YNG 5859 641 445 416 407 401 398 398 396 396 9757 0 4 21.484 45 3
Tab.4  Number of iterations and analysis time for solving inverted cable dome
Fig.12  2-D view of rectangular grid.
Fig.13  3-D view of rectangular grid.
node z-coord. node z-coord. node z-coord. node z-coord. node z-coord.
17 0.36 28 0.66 39 0.9 50 1.08 61 1.2
18 0.3 29 0.55 40 0.75 51 0.9 62 1
19 0.24 30 0.44 41 0.6 52 0.72 63 0.8
20 0.18 31 0.33 42 0.45 53 0.54 64 0.6
21 0.12 32 0.22 43 0.3 54 0.36 65 0.4
Tab.5  The z-coordinates of the rectangular grid (m)
Fig.14  Static equilibrium path of rectangular grid.
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 516 410 415 353 306 274 251 233 219 208 3185 0 4 4.64 87 3
T&N 34259 33874 33167 32942 32658 32473 32254 31497 31214 32987 327325 - - 4351.72 - -
JYR 381 396 310 263 234 214 200 188 179 171 2536 91 3 4.078 100 1
HTI 386 398 308 260 231 210 196 184 175 167 2515 94 2 8.468 0 5
DNG 381 392 302 255 227 207 192 181 172 164 2473 100 1 4.141 98 2
YNG 381 396 310 263 234 214 200 188 179 171 2536 91 3 5.125 76 4
Tab.6  Number of iterations and analysis time in solving rectangular grid for first boundary condition
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 819 781 790 785 773 759 745 731 717 703 7603 40 2 12.079 70 2
T&N 34517 33861 33542 33389 32955 32645 32253 31493 31752 33983 330390 - - 41256 - -
JYR 1857 1742 1549 1360 1170 975 789 656 590 560 11248 0 3 18.985 27 3
HTI 346 307 257 227 207 191 179 169 160 150 2193 100 1 7.375 100 1
DNG - - - - - - - - - - - - - - - -
YNG 1857 1742 1549 1360 1170 975 789 656 590 560 11248 0 3 23.328 0 4
Tab.7  Number of iterations and analysis time in solving rectangular grid for second boundary condition
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 787 715 742 746 747 740 732 722 713 703 7347 100 1 12.266 100 1
T&N 35624 33741 32954 32685 31965 31428 30156 29845 29831 30789 319018 - - 4623.742 - -
JYR 1817 1706 1558 1412 1267 1115 957 804 679 604 11919 0 3 21.532 34 2
HTI 440 - - - - - - - - - - - - - -
DNG - - - - - - - - - - - - - - - -
YNG 1817 1706 1557 1412 1267 1115 957 804 679 604 11918 0 2 26.438 0 3
Tab.8  Number of iterations and analysis time in solving rectangular grid for third boundary condition
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 149 93 106 157 188 102 269 261 228 202 1755 100 1 0.438 100 1
T&N 24258 24156 23742 23564 23228 22567 23782 23984 24732 24983 238996 - - 3859.02 - -
JYR 154 97 112 165 197 106 283 275 240 213 1842 1 4 0.484 91 2
HTI 150 93 107 158 188 103 268 261 228 202 1758 97 2 0.953 0 5
DNG 150 93 107 158 188 103 270 261 228 202 1760 94 3 0.531 82 3
YNG 154 97 112 165 197 106 283 275 241 213 1843 0 5 0.609 67 4
Tab.9  Number of iterations and analysis time for solving spatial net
Fig.15  Spatial net.
Fig.16  Static equilibrium path of spatial net.
node z-coord. node z-coord. node z-coord. node z-coord. node z-coord. node z-coord.
1 -1.368 11 -1.032 22 -0.792 33 -0.648 44 -0.6 10 0
2 -2.432 12 -1.835 23 -1.408 34 -1.152 45 -1.067 21 0
3 -3.192 13 -2.408 24 -1.848 35 -1.512 46 -1.4 32 0
4 -3.648 14 -2.752 25 -2.118 36 -1.728 47 -1.6 43 0
5 -3.8 15 -2.867 26 -2.2 37 -1.8 48 -1.667 54 0
Tab.10  The z-coordinates of the saddle net (m)
Fig.17  Saddle net.
Fig.18  Static equilibrium path of saddle net.
Fig.19  Simple cable.
Fig.20  Static equilibrium path of simple cable.
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 522 604 497 269 196 164 143 126 121 111 2753 100 1 2.438 100 1
T&N 38651 38289 37763 33427 31046 30558 30236 32587 32963 33421 338941 - - 4456.36 - -
JYR 573 663 529 292 219 182 157 139 133 123 3010 0 4 2.859 83 3
HTI 546 612 499 272 197 165 144 127 122 112 2796 83 3 5.063 0 5
DNG 523 606 497 270 196 164 143 126 121 110 2756 98 2 2.719 89 2
YNG 573 663 529 292 219 182 157 139 133 123 3010 0 4 3.516 59 4
Tab.11  Number of iterations and analysis time for solving saddle net
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 171 107 87 73 68 63 54 54 50 50 777 3 4 0.156 34 2
T&N 170 106 87 77 68 63 59 54 54 50 788 - - 0.156 - -
JYR 93 73 68 69 68 68 69 72 76 80 736 15 3 0.125 100 1
HTI 43 40 41 46 46 46 46 46 46 46 446 100 1 0.125 100 1
DNG 96 87 73 67 60 57 53 51 48 46 638 43 2 0.172 0 3
YNG 93 73 68 69 68 68 69 72 76 80 736 15 3 0.125 100 1
Tab.12  Number of iterations and analysis time for solving simple cable
Fig.21  Tetrahedral grid.
Fig.22  Static equilibrium path of tetrahedral grid.
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL - - - - - - - - - - - - - - - -
T&N 18216 18045 17831 17612 17376 17017 16748 16361 16115 16034 171355 - - 5218.48 - -
JYR 131 153 132 124 116 114 108 107 105 103 1193 0 2 2 100 1
HTI 130 153 128 120 117 107 105 104 103 100 1167 100 1 3.953 0 3
DNG - - - - - - - - - - - - - - - -
YNG 131 153 132 124 116 114 108 107 105 103 1193 0 2 2.5 74 2
Tab.13  Number of iterations and analysis time in solving tetrahedral grid for first boundary condition
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL - - - - - - - - - - - - - - - -
T&N - - - - - - - - - - - - - - - -
JYR 859 - - - - - - - - - - - - - - -
HTI 208 220 166 153 148 144 142 141 141 138 1601 100 1 5.406 100 1
DNG - - - - - - - - - - - - - - - -
YNG 859 - - - - - - - - - - - - - - -
Tab.14  Number of iterations and analysis time in solving tetrahedral grid for second boundary condition
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL - - - - - - - - - - - - - - - -
T&N 45378 45189 44864 44613 44382 44043 43752 43436 43189 42671 441517 - - 9827.34 - -
JYR 832 726 754 754 743 730 713 694 675 656 7277 0 2 13.375 25 2
HTI 232 183 168 157 152 149 151 153 153 152 1650 100 1 5.609 100 1
DNG - - - - - - - - - - - - - - - -
YNG 832 726 754 754 743 730 713 694 675 656 7277 0 2 15.985 0 3
Tab.15  Number of iterations and analysis time in solving tetrahedral grid for third boundary condition
Fig.23  Annular roof.
Fig.24  Static equilibrium path of annular roof.
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 272 195 171 158 146 136 131 126 123 120 1578 0 3 3.11 100 1
T&N 26585 26368 26175 25841 25536 25146 24834 24651 24431 24076 253643 - - 3826.65 - -
JYR 265 195 166 154 143 134 127 121 117 115 1537 52 2 3.375 92 2
HTI 259 186 165 150 139 130 124 119 116 111 1499 100 1 6.359 0 4
DNG - - - - - - - - - - - - - - - -
YNG 265 195 166 154 143 134 127 121 117 115 1537 52 2 4.156 68 3
Tab.16  Number of iterations and analysis time for solving annular roof
node z-coord. node z-coord. node z-coord. node z-coord. node z-coord.
1 0 4 4.38 7 10 10 12.5 13 15.63
2 9.38 5 0 8 8.13 11 11.88 14 15
3 7.5 6 10.63 9 5 12 10 15 20
Tab.17  The z-coordinates of the rhombus net (m)
Fig.25  Rhombus net.
Fig.26  Static equilibrium path of rhombus net.
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 109 104 103 103 103 104 104 104 103 103 1040 100 1 0.375 100 1
T&N 18120 17782 17431 17193 16728 16371 16043 15846 15623 15419 166556 - - 2834.21 - -
JYR 137 125 118 113 110 109 109 109 108 108 1146 0 4 0.484 79 2
HTI 111 106 105 105 106 106 107 107 106 105 1064 77 3 0.89 0 5
DNG 110 104 103 103 103 104 105 104 104 103 1043 97 2 0.5 76 3
YNG 137 125 118 113 110 109 109 109 108 108 1146 0 4 0.563 64 4
Tab.18  Number of iterations and analysis time for solving rhombus net
Fig.27  Cylindrical net.
Fig.28  Static equilibrium path of cylindrical net.
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 48963 7204 546 474 469 449 443 456 455 449 59908 0 2 130.141 0 2
T&N 78341 56279 29843 28452 28175 27691 27374 27049 26943 26683 356830 - - 10159.65 - -
JYR - - - - - - - - - - - - - - - -
HTI 1251 760 609 541 484 446 423 396 379 378 5667 100 1 17.062 100 1
DNG - - - - - - - - - - - - - - - -
YNG - - - - - - - - - - - - - - - -
Tab.19  Number of iterations and analysis time in solving cylindrical net for symmetric load
method number of iterations in each step iteration time
1 2 3 4 5 6 7 8 9 10 total numbers score grade second score grade
TEL 26453 21712 20437 19729 19181 18721 18329 17984 17669 17380 197595 0 2 426.109 0 2
T&N 102361 100971 98476 96375 95651 95318 94627 94164 93591 93283 964817 - - 15364.25 - -
JYR - - - - - - - - - - - - - - - -
HTI 1177 721 564 499 441 417 391 377 359 352 5298 100 1 15.922 100 1
DNG - - - - - - - - - - - - - - - -
YNG - - - - - - - - - - - - - - - -
Tab.20  Number of iterations and analysis time in solving cylindrical net for asymmetric load
ranking method Gij score
j= 1 j= 2 j= 3 j= 4 j= 5
1 HTI 8 6 1 - - 83
2 TEL 6 3 2 2 - 65
3 JYR - 3 5 5 - 46
4 YNG - 4 3 5 1 45
5 DNG 2 3 2 - - 35
6 T&N - - - - - 0
Tab.21  General comparison of methods based on required number of iterations
ranking method Gij score
j= 1 j= 2 j= 3 j= 4 j= 5
1 TEL 8 4 1 - - 74
2 JYR 3 6 3 1 - 62
3 HTI 6 - 2 2 5 56
4 YNG 1 1 4 6 1 42
5 DNG - 4 3 - - 31
6 T&N - - - - - 0
Tab.22  General comparison of methods based on analysis time
1 P Underwood. Computational Method for Transient Analysis. North Holland, 1983
2 Day A S. An Introduction to Dynamic Relaxation. The Engineer, 1965
3 J W Bunce. A note on the estimation of critical damping in dynamic relaxation. International Journal for Numerical Methods in Engineering, 1972, 4(2): 301–303
https://doi.org/10.1002/nme.1620040214
4 A C Cassell, R E Hobbs. Numerical stability of dynamic relaxation analysis of non-linear structures. International Journal for Numerical Methods in Engineering, 1976, 10(6): 1407–1410
https://doi.org/10.1002/nme.1620100620
5 Q Shizhong. An adaptive dynamic relaxation method for nonlinear problems. Computers & Structures, 1988, 30(4): 855–859
https://doi.org/10.1016/0045-7949(88)90117-4
6 L G Zhang, T X Yu. Modified adaptive dynamic relaxation method and its application to elastic-plastic bending and wrinkling of circular plates. Computers & Structures, 1989, 33(2): 609–614
https://doi.org/10.1016/0045-7949(89)90035-7
7 L C Zhang, M Kadkhodayan, Y W Mai. Development of the MADR method. Computers & Structures, 1994, 52(1): 1–8
https://doi.org/10.1016/0045-7949(94)90249-6
8 M. Rezaiee-PajandNonlinear analysis of truss structures using dynamic relaxation. International Journal of Engineering, 2006, 19: 11–22
9 M Kadkhodayan, J Alamatian, G J Turvey. A new fictitious time for the dynamic relaxation (DXDR) method. International Journal for Numerical Methods in Engineering, 2008, 74(6): 996–1018
https://doi.org/10.1002/nme.2201
10 M Rezaiee-Pajand, J Alamatian. The dynamic relaxation method using new formulation for fictitious mass and damping. Structural Engineering and Mechanics, 2010, 34(1): 109–133
https://doi.org/10.12989/sem.2010.34.1.109
11 M Rezaiee-Pajand, S R Sarafrazi. Nonlinear structural analysis using dynamic relaxation method with improved convergence rate. International Journal of Computational Methods, 2010, 7(4): 627–654
https://doi.org/10.1142/S0219876210002386
12 M Rezaiee-Pajand, S R Sarafrazi. Nonlinear dynamic structural analysis using dynamic relaxation with zero damping. Computers & Structures, 2011, 89(13–14): 1274–1285
https://doi.org/10.1016/j.compstruc.2011.04.005
13 M Rezaiee-Pajand, S R Sarafrazi, H Rezaiee. Efficiency of dynamic relaxation methods in nonlinear analysis of truss and frame structures. Computers & Structures, 2012, 112–113: 295–310
https://doi.org/10.1016/j.compstruc.2012.08.007
14 J Alamatian. Displacement-based methods for calculating the buckling load and tracing the post-buckling regions with Dynamic Relaxation method. Computers & Structures, 2013, 114–115: 84–97
https://doi.org/10.1016/j.compstruc.2012.10.023
15 M Rezaiee-Pajand, H Rezaee. Fictitious time step for the kinetic dynamic relaxation method. Mechanics of Advanced Materials and Structures, 2014, 21(8): 631–644
https://doi.org/10.1080/15376494.2012.699603
16 M Rezaiee-Pajand, H Estiri. Computing the structural buckling limit load by using dynamic relaxation method. International Journal of Non-linear Mechanics, 2016, 81: 245–260
https://doi.org/10.1016/j.ijnonlinmec.2016.01.022
17 M Rezaiee-Pajand, H Estiri. Finding equilibrium paths by minimizing external work in dynamic relaxation method. Applied Mathematical Modelling, 2016, 40(23–24): 10300–10322
https://doi.org/10.1016/j.apm.2016.07.017
18 M Rezaiee-Pajand, H Estiri. Mixing dynamic relaxation method with load factor and displacement increments. Computers & Structures, 2016, 168: 78–91
https://doi.org/10.1016/j.compstruc.2016.02.011
19 M Rezaiee-Pajand, H Estiri. A comparison of large deflection analysis of bending plates by dynamic relaxation. Periodica Polytechnica. Civil Engineering, 2016, 60(4): 619–645
https://doi.org/10.3311/PPci.8728
20 M Rezaiee-Pajand, H Estiri. Comparative analysis of three-dimensional frames by dynamic relaxation methods. Mechanics of Advanced Materials and Structures, 2018, 25(6): 451–466
https://doi.org/10.1080/15376494.2017.1285462
21 M Rezaiee-Pajand, J Alamatian, H Rezaee. The state of the art in Dynamic Relaxation methods for structural mechanics Part 1: Formulations. Iranian Journal of Numerical Analysis and Optimization, 2017, 7(2): 65–86
22 M Rezaiee-Pajand, J Alamatian, H Rezaee. The state of the art in Dynamic Relaxation methods for structural mechanics Part 2: Applications. Iranian Journal of Numerical Analysis and Optimization, 2017, 7(2): 87–114
23 S F Labbafi, S R Sarafrazi, T H K Kang. Comparison of viscous and kinetic dynamic relaxation methods in form-finding of membrane structures. Advances in Computational Design , 2017, 2(1): 71–87
https://doi.org/10.12989/acd.2017.2.1.071
24 M Rezaiee-Pajand, M Mohammadi-Khatami. A fast and accurate dynamic relaxation scheme. Frontiers of Structural and Civil Engineering, 2019, 13(1): 176–189
https://doi.org/10.1007/s11709-018-0486-2
25 M Rezaiee-Pajand, H Estiri, M. Mohammadi-KhatamiCreating better dynamic relaxation methods. Engineering Computations, 2019, 36(5): 1483–1521
26 H Ozdemir. A finite element approach for cable problems. International Journal of Solids and Structures, 1979, 15(5): 427–437
https://doi.org/10.1016/0020-7683(79)90063-5
27 A H Pevrot, A M Goulois. Analysis of cable structures. Computers & Structures, 1979, 10(5): 805–813
https://doi.org/10.1016/0045-7949(79)90044-0
28 G R Monforton, N M El-Hakim. Analysis of truss-cable structures. Computers & Structures, 1980, 11(4): 327–335
https://doi.org/10.1016/0045-7949(80)90082-6
29 H B Jayaraman, W C Knudson. A curved element for the analysis of cable structures. Computers & Structures, 1981, 14(3–4): 325–333
https://doi.org/10.1016/0045-7949(81)90016-X
30 W J Lewis, M S Jones, K R Rushton. Dynamic relaxation analysis of the non-linear static response of pretensioned cable roofs. Computers & Structures, 1984, 18(6): 989–997
https://doi.org/10.1016/0045-7949(84)90142-1
31 S Kmet, Z Kokorudova. Nonlinear analytical solution for cable truss. Journal of Engineering Mechanics, 2006, 132(1): 119–123
https://doi.org/10.1061/(ASCE)0733-9399(2006)132:1(119)
32 H Deng, Q F Jiang, A S K Kwan. Shape finding of incomplete cable-strut assemblies containing slack and prestressed elements. Computers & Structures, 2005, 83(21–22): 1767–1779
https://doi.org/10.1016/j.compstruc.2005.02.022
33 A Andreu, L Gil, P Roca. A new deformable catenary element for the analysis of cable net structures. Computers & Structures, 2006, 84(29–30): 1882–1890
https://doi.org/10.1016/j.compstruc.2006.08.021
34 Y B Yang, J Y Tsay. Geometric nonlinear analysis of cable structures with a two-node cable element by generalized displacement control method. International Journal of Structural Stability and Dynamics, 2007, 07(04): 571–588
https://doi.org/10.1142/S0219455407002435
35 Z H Chen, Y J Wu, Y Yin, C Shan. Formulation and application of multi-node sliding cable element for the analysis of Suspen-Dome structures. Finite Elements in Analysis and Design, 2010, 46(9): 743–750
https://doi.org/10.1016/j.finel.2010.04.003
36 H T Thai, S E Kim. Nonlinear static and dynamic analysis of cable structures. Finite Elements in Analysis and Design, 2011, 47(3): 237–246
https://doi.org/10.1016/j.finel.2010.10.005
37 T V Vu, H E Lee, Q T Bui. Nonlinear analysis of cable-supported structures with a spatial catenary cable element. Structural Engineering and Mechanics, 2012, 43(5): 583–605
https://doi.org/10.12989/sem.2012.43.5.583
38 M Huttner, J Maca, P Fajman. Numerical analysis of cable structures. In: Proceedings of the Eleventh International Conference: Computational Structures Technology. Stirlingshire: Civil-Comp Press, 2012
39 M Ahmadizadeh. Three-dimensional geometrically nonlinear analysis of slack cable structures. Computers & Structures, 2013, 128: 160–169
https://doi.org/10.1016/j.compstruc.2013.06.005
40 R Temur, G Bekdaş, Y C Toklu. Analysis of cable structures through total potential optimization using meta-heuristic algorithms. In: ACE2014, the 11th International Congress on Advances in Civil Engineering. 2014, 21–25
41 S K Hashemi, M A Bradford, H R Valipour. Dynamic response of cable-stayed bridge under blast load. Engineering Structures, 2016, 127: 719–736
https://doi.org/10.1016/j.engstruct.2016.08.038
42 S Gale, W J Lewis. Patterning of tensile fabric structures with a discrete element model using dynamic relaxation. Computers & Structures, 2016, 169: 112–121
https://doi.org/10.1016/j.compstruc.2016.03.005
43 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials and Continua, 2019, 59(1): 345–359
https://doi.org/10.32604/cmc.2019.06641
44 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials and Continua, 2019, 59(2): 433–456
https://doi.org/10.32604/cmc.2019.06660
45 T Rabczuk, H Ren, X Zhuang. A nonlocal operator method for partial differential equations with application to electromagnetic waveguide problem. Computers, Materials and Continua, 2019, 59(1): 31–55
https://doi.org/10.32604/cmc.2019.04567
46 M A M Torkamani, J H Shieh. Higher-order stiffness matrices in nonlinear finite element analysis of plane truss structures. Engineering Structures, 2011, 33(12): 3516–3526
https://doi.org/10.1016/j.engstruct.2011.07.015
47 M Hüttner, J Máca, P Fajman. The efficiency of dynamic relaxation methods in static analysis of cable structures. Advances in Engineering Software, 2015, 89: 28–35
https://doi.org/10.1016/j.advengsoft.2015.06.009
48 M Rezaiee-Pajand, R Naserian. Using more accurate strain for three-dimensional truss analysis. Asian Journal of Civil Engineering, 2016, 17(1): 107–126
49 W J Lewis. The efficiency of numerical methods for the analysis of prestressed nets and pin-jointed frame structures. Computers & Structures, 1989, 33(3): 791–800
https://doi.org/10.1016/0045-7949(89)90254-X
[1] Mohammad REZAIEE-PAJAND, Mohammad MOHAMMADI-KHATAMI. A fast and accurate dynamic relaxation scheme[J]. Front. Struct. Civ. Eng., 2019, 13(1): 176-189.
[2] Fatiha IGUETOULENE, Youcef BOUAFIA, Mohand Said KACHI. Non linear modeling of three-dimensional reinforced and fiber concrete structures[J]. Front. Struct. Civ. Eng., 2018, 12(4): 439-453.
[3] Ricardo MONTEIRO, Miguel ARAÚJO, Raimundo DELGADO, Mário MARQUES. Modeling considerations in seismic assessment of RC bridges using state-of-practice structural analysis software tools[J]. Front. Struct. Civ. Eng., 2018, 12(1): 109-124.
[4] Siu-Lai CHAN, Yaopeng LIU, Andy LEE, . Nonlinear analysis of pre-tensioned glass wall facade by stability function with initial imperfection[J]. Front. Struct. Civ. Eng., 2010, 4(3): 376-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed