Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (6) : 1453-1479    https://doi.org/10.1007/s11709-021-0767-z
RESEARCH ARTICLE
A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced composite plates using modal kinetic energy
Huy Q. LE1,2, Tam T. TRUONG1,4, D. DINH-CONG3,4, T. NGUYEN-THOI1,4()
1. Division of Computational Mathematics and Engineering, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
2. Faculty of Civil Engineering, Ho Chi Minh City University of Transport, Ho Chi Minh City 700000, Vietnam
3. Division of Construction Computation, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
4. Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
 Download: PDF(96750 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper proposes a new Deep Feed-forward Neural Network (DFNN) approach for damage detection in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. In the proposed approach, the DFNN model is developed based on a data set containing 20 000 samples of damage scenarios, obtained via finite element (FE) simulation, of the FG-CNTRC plates. The elemental modal kinetic energy (MKE) values, calculated from natural frequencies and translational nodal displacements of the structures, are utilized as input of the DFNN model while the damage locations and corresponding severities are considered as output. The state-of-the art Exponential Linear Units (ELU) activation function and the Adamax algorithm are employed to train the DFNN model. Additionally, in order to enhance the performance of the DFNN model, the mini-batch and early-stopping techniques are applied to the training process. A trial-and-error procedure is implemented to determine suitable parameters of the network such as the number of hidden layers and the number of neurons in each layer. The accuracy and capability of the proposed DFNN model are illustrated through two distinct configurations of the CNT-fibers constituting the FG-CNTRC plates including uniform distribution (UD) and functionally graded-V distribution (FG-VD). Furthermore, the performance and stability of the DFNN model with the consideration of noise effects on the input data are also investigated. Obtained results indicate that the proposed DFNN model is able to give sufficiently accurate damage detection outcomes for the FG-CNTRC plates for both cases of noise-free and noise-influenced data.

Keywords damage detection      deep feed-forward neural networks      functionally graded carbon nanotube-reinforced composite plates      modal kinetic energy     
Corresponding Author(s): T. NGUYEN-THOI   
Just Accepted Date: 24 September 2021   Online First Date: 16 November 2021    Issue Date: 21 January 2022
 Cite this article:   
Huy Q. LE,Tam T. TRUONG,D. DINH-CONG, et al. A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced composite plates using modal kinetic energy[J]. Front. Struct. Civ. Eng., 2021, 15(6): 1453-1479.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0767-z
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I6/1453
Fig.1  ?(a) Architecture of a typical DFNN model; (b) operators at jth node, ith hidden layer.
Fig.2  ?(a) Uniform distribution (UD); (b) functionally graded V-distribution (FG-VD); (c) orientation angle of fibers.
modes UD FG-VD
present [87] [92] [91] present [87] [92] [91]
FEM ANSYS CS-DSG3 IGA FEM ANSYS CS-DSG3 IGA
1 28.206 28.400 28.354 28.811 30.391 26.128 26.304 26.248 26.588 27.709
2 32.895 33.114 33.012 33.687 34.828 31.281 31.496 31.405 31.902 32.651
3 43.967 44.559 44.070 45.120 45.827 42.977 43.589 42.991 43.913 44.377
4 58.501 59.198 58.978 60.204 64.011 55.551 56.249 55.894 57.050 61.232
5 61.276 61.851 61.556 63.255 65.386 58.633 59.221 59.090 60.529 63.176
6 61.439 63.043 61.709 63.396 67.826 60.962 62.608 60.643 62.502 63.996
Tab.1  ?Comparison of the first six non-dimensional natural frequencies of the FG-CNTRC plates
Fig.3  ?(a) Geometry of the FG-CNTRC plates; (b) numbering of the elements discretized.
edge SSSS CSSS CCCC CFCF
top u=w=βy=0 u=w=βy=0 u=v=w=βx=βy=0
bottom u=w=βy=0 u=w=βy=0 u=v=w=βx=βy=0
left v=w=βx=0 u=v=w=βx=βy=0 u=v=w=βx=βy=0 u=v=w=βx=βy=0
right u=w=βy=0 v=w=βx=0 u=v=w=βx=βy=0 u=v=w=βx=βy=0
Tab.2  ?Restraints of the degrees of freedom corresponding to the boundary conditions
AF optimizers
Ftrl SGD Adagrad Adadelta RMSprop Adam Adamax Nadam
lr* = 0.001 lr = 0.01 lr = 0.001 lr = 1.0 lr = 0.001 lr = 0.001 lr = 0.002 lr = 0.001
ReLU train 65.9 65.8 65.8 55.8 2.4 1.7 1.1 2.1
test 65.8 65.7 65.7 56.3 14.4 14.2 12.1 19.0
train/test 1.0 1.0 1.0 1.0 5.9 8.2 11.0 9.1
LeakyReLU train 65.9 65.7 65.9 56.3 7.5 2.3 3.0 22.6
test 65.8 65.7 65.8 56.8 20.0 15.9 22.1 42.4
train/test 1.0 1.0 1.0 1.0 2.7 7.0 7.3 1.9
ELU train 65.9 65.7 65.8 55.5 4.6 2.2 2.5 1.9
test 65.8 65.7 65.8 56.0 14.0 15.3 14.8 14.5
train/test 1.0 1.0 1.0 1.0 3.0 7.1 5.9 7.5
selu train 65.9 64.7 65.5 45.0 9.0 3.1 2.8 5.5
test 65.8 64.7 65.5 46.9 26.2 22.3 31.1 28.1
train/test 1.0 1.0 1.0 1.0 2.9 7.2 11.2 5.1
softplus train 65.9 65.9 65.9 65.3 66.0 13.6 14.5 11.6
test 65.8 65.8 65.8 65.2 65.9 38.5 37.7 38.2
train/test 1.0 1.0 1.0 1.0 1.0 2.8 2.6 3.3
Tab.3  ?The mse values (×10?4) for different pairs of AF/Op (3-[200], 3000 epochs, batch size of 160)
Fig.4  ?Loss values (×10?4) among pairs of AF/Op: (a) training data; (b) validating data.
Fig.5  ?Well-performed pairs of AF/Op: (a) training data; (b) validating data; (c) ratios of val_loss value to loss value.
Fig.6  ?The training history of the different pairs: (a) [ReLU/RMSprop]; (b) [LeakyReLU/Adam]; (c) [ELU/RMSprop]; (d) [ELU/Adam]; (e) [ELU/Adamax]; (f) [ELU/Nadam].
number of layers number of nodes per layer
300 400 500 600 700 800
3 14.97 ± 1.25 14.01 ± 1.65 13.77 ± 0.14 14.67 ± 1.00 12.92 ± 0.55 14.30 ± 0.18
4 6.55 ± 0.49 5.95 ± 0.53 5.88 ± 0.06 5.34 ± 0.18 5.25 ± 0.10 4.94 ± 0.10
5 4.56 ± 0.13 4.36 ± 0.11 4.16 ± 0.05 3.83 ± 0.01 3.92 ± 0.01 3.88 ± 0.02
6 4.45 ± 0.02 4.19 ± 0.05 4.22 ± 0.08 3.95 ± 0.04 4.06 ± 0.03 3.98 ± 0.03
7 5.13 ± 0.06 5.00 ± 0.07 4.76 ± 0.02 4.76 ± 0.04 4.67 ± 0.02 4.62 ± 0.05
Tab.4  ?Validation loss values (×10?4) according to different associations of [NoL-NoN]
Fig.7  ?The training history of the architecture using five hidden layers and 600 nodes per each layer: (a) loss values; (b) accuracy values.
batch size mse (×10?4) accuracy (%)
train test train test
(0.5%) 80 0.0810 ± 0.0131 3.8657 ± 0.0630 98.17 ± 0.25 96.17 ± 0.11
(1.0%) 160 0.0530 ± 0.0172 3.8327 ± 0.0124 98.43 ± 0.29 96.36 ± 0.20
(1.5%) 240 0.0407 ± 0.0198 4.1740 ± 0.1358 98.77 ± 0.30 96.15 ± 0.27
(2.0%) 320 0.0333 ± 0.0159 4.4640 ± 0.1396 98.96 ± 0.28 95.97 ± 0.36
(2.5%) 400 0.0397 ± 0.0188 4.5607 ± 0.0807 98.94 ± 0.28 95.87 ± 0.21
(3.0%) 480 0.0483 ± 0.0037 4.7010 ± 0.1006 98.75 ± 0.13 95.79 ± 0.25
(3.5%) 560 0.0427 ± 0.0204 4.7983 ± 0.1515 98.98 ± 0.34 95.67 ± 0.29
(4.0%) 640 0.0367 ± 0.0131 4.7870 ± 0.1312 99.10 ± 0.15 95.59 ± 0.08
Tab.5  mse values and accuracy values of different settings of the batch size
material configuration boundary condition noise level mse (×10?4) accuracy (%) epochs
train test train test
UD SSSS noise free 0.055 3.822 98.44 96.53 7953
5% noise 0.231 8.159 95.83 87.50 3191
CSSS noise free 0.055 3.816 98.62 96.17 5524
5% noise 0.148 7.850 96.37 87.02 3754
CCCC noise free 0.041 3.938 98.91 96.43 5738
5% noise 0.152 7.668 96.57 87.55 4803
CFCF noise free 0.040 4.034 98.67 95.30 12787
5% noise 0.174 9.570 96.65 86.85 4588
FG-VD SSSS noise free 0.076 3.878 98.31 96.60 6285
5% noise 0.083 7.353 97.79 87.37 6610
CSSS noise free 0.049 3.783 98.51 96.30 5879
5% noise 0.094 7.858 97.57 87.92 5700
CCCC noise free 0.020 4.077 99.09 96.40 8481
5% noise 0.026 7.946 98.76 87.25 8886
CFCF noise free 0.048 4.125 98.38 95.20 7373
5% noise 0.197 9.779 96.67 86.08 6097
Tab.6  ?Training results of the DFNN model
scenario no. 1 damaged element 2 damaged elements 3 damaged elements
element no. damage severity (%) element no. damage severity (%) element no. damage severity (%)
1st 80th 19.84 55th 36.56 8th 67.46
65th 24.91 59th 59.86
98th 21.38
2nd 72nd 44.13 21st 30.96 37th 38.61
85th 48.44 75th 40.50
79th 36.75
Tab.7  ?Two damage scenarios of the FG-CNTRC plate discretized into 100 elements
Fig.8  ?One damage occurrence with the severity of 19.84% assumed at the 80th element.
Fig.9  ?Detected results of the first case of the first scenario for the UD plates in different boundary conditions: (a) SSSS: mse = 2.606e?07;mse_noise = 6.591e?05; (b) CSSS:mse = 4.511e?07;mse_noise = 1.055e?04; (c) CCCC:mse = 4.809e?07;mse_noise = 2.323e?05; (d) CFCF:mse = 7.080e?07;mse_noise = 3.504e?05.
Fig.10  ?Detected results of the first case of the first scenario for the FG-VD plates in different boundary conditions: (a) SSSS: mse = 1.533e?06;mse_noise = 1.309e?05; (b) CSSS:mse = 3.780e?07;mse_noise = 8.090e?05; (c) CCCC:mse = 5.209e?07;mse_noise = 1.288e?05; (d) CFCF:mse = 9.000e?07;mse_noise = 5.760e?06.
Fig.11  ?Two damage occurrences with severities of 36.56% and 24.91% assumed at the 55th and 65th elements, respectively.
Fig.12  ?Detected results of the second case of the first scenario for the UD plates in different boundary conditions: (a) SSSS: mse = 2.836e?05;mse_noise = 7.249e?05; (b) CSSS:mse = 2.498e?05;mse_noise = 1.913e?04; (c) CCCC:mse = 1.897e?05;mse_noise = 4.355e?05; (d) CFCF:mse = 3.958e?05;mse_noise = 6.969e?05.
Fig.13  Detected results of the second case of the first scenario for the VD plates in different boundary conditions: (a) SSSS: mse = 2.509e?05;mse_noise = 1.210e?04; (b) CSSS:mse = 2.925e?05;mse_noise = 1.049e?04; (c) CCCC:mse = 5.732e?06;mse_noise = 2.798e?05; (d) CFCF:mse = 7.001e?05;mse_noise = 1.815e?04.
Fig.14  ?Three damage occurrences with severities of 67.46%, 59.86%, and 21.38% assumed at the 8th, 59th, and 98th elements, respectively.
Fig.15  Detected results of the final case of the first scenario for the UD plates in different boundary conditions: (a) SSSS: mse = 9.567e?06;mse_noise = 9.793e?05; (b) CSSS:mse = 1.720e?05;mse_noise = 1.530e?04; (c) CCCC:mse = 1.711e?04;mse_noise = 1.891e?04; (d) CFCF:mse = 2.183e?04;mse_noise = 1.345e?03.
Fig.16  Detected results of the final case of the first scenario for the VD plates in different boundary conditions: (a) SSSS: mse = 4.307e?05;mse_noise = 1.064e?04; (b) CSSS:mse = 3.777e?05;mse_noise = 2.828e?04; (c) CCCC:mse = 2.769e?05;mse_noise = 5.157e?04; (d) CFCF:mse = 3.176e?04;mse_noise = 1.117e?03.
Fig.17  ?One damage occurrence with the severity of 44.13% assumed at the 72nd element.
Fig.18  Detected results of the first case of the second scenario for the UD plates in different boundary conditions: (a) SSSS: mse = 1.108e?06; mse_noise = 5.932e?05; (b) CSSS: mse = 7.708e?07; mse_noise = 4.485e?06; (c) CCCC: mse = 3.213e?07; mse_noise = 1.476e?05; (d) CFCF: mse = 7.760e?07; mse_noise = 1.545e?05.
Fig.19  Detected results of the first case of the second scenario for the VD plates in different boundary conditions: (a) SSSS: mse = 7.496e?07;mse_noise = 9.554e?05; (b) CSSS:mse = 5.180e?07;mse_noise = 4.340e?05; (c) CCCC:mse = 3.537e?07;mse_noise = 4.763e?06; (d) CFCF:mse = 9.628e?07;mse_noise = 2.138e?05.
Fig.20  ?Two damage occurrences with severities of 30.96% and 48.44% assumed at the 21st and 85th elements, respectively.
Fig.21  Detected results of the second case of the second scenario for the UD plates in different boundary conditions: (a) SSSS: mse = 3.601e?06;mse_noise = 7.009e?05; (b) CSSS:mse = 1.672e?06;mse_noise = 2.121e?04; (c) CCCC:mse = 2.838e?06;mse_noise = 2.672e?05; (d) CFCF:mse = 7.688e?06;mse_noise = 2.488e?04.
Fig.22  Detected results of the second case of the second scenario for the VD plates in different boundary conditions: (a) SSSS: mse = 6.168e?06;mse_noise = 3.695e?05; (b) CSSS:mse = 3.603e?06;mse_noise = 7.286e?05; (c) CCCC:mse = 3.913e?06;mse_noise = 4.179e?04; (d) CFCF:mse = 3.104e?06;mse_noise = 4.358e?05.
Fig.23  ?Three damage occurrences with severities of 38.61%, 40.50%, and 36.75% assumed at the 37th, 75th, and 79th elements, respectively.
Fig.24  Detected results of the final case of the second scenario for the UD plates in different boundary conditions: (a) SSSS: mse = 4.477e?06;mse_noise = 2.933e?04; (b) CSSS:mse = 2.671e?06;mse_noise = 7.494e?04; (c) CCCC:mse = 3.893e?06;mse_noise = 2.800e?04; (d) CFCF:mse = 3.289e?06;mse_noise = 5.185e?04.
Fig.25  Detected results of the final case of the second scenario for the VD plates in different boundary conditions: (a) SSSS: mse = 2.868e?06;mse_noise = 5.316e?04; (b) CSSS:mse = 2.780e?06;mse_noise = 1.892e?04; (c) CCCC:mse = 2.651e?06;mse_noise = 8.236e?05; (d) CFCF:mse = 3.976e?06;mse_noise = 3.690e?04.
1 J Pora. Meliorative conditions and processes of soil degradation on irrigated lands of Russia. Eurasian Soil Science, 1999, 32( 5): 558– 569
2 A Biswal, S K Swain. Smart composite materials for civil engineering applications. Polymer Nanocomposite-Based Smart Materials, 2020, 197– 210
3 Miyamoto Y, Kaysser W A, Rabin B H, Kawasaki K, Ford R G. Funtionally Graded Materials: Design, Processing and Applications. New York: Springer Science & Business Media, 2013
4 L S Schadler, S C Giannaris, P M Ajayan. Load transfer in carbon nanotube epoxy composites. Applied Physics Letters, 1998, 73( 26): 3842– 3844
https://doi.org/10.1063/1.122911
5 A K T Lau, D Hui. The revolutionary creation of new advanced materials––Carbon nanotube composites. Composites. Part B, Engineering, 2002, 33( 4): 263– 277
https://doi.org/10.1016/S1359-8368(02)00012-4
6 M J Biercuk, M C Llaguno, M Radosavljevic, J K Hyun, A T Johnson, J E Fischer. Carbon nanotube composites for thermal management. Applied Physics Letters, 2002, 80( 15): 2767– 2769
https://doi.org/10.1063/1.1469696
7 E T Thostenson, Z Ren, T W Chou. Advances in the science and technology of carbon nanotubes and their composites: A review. Composites Science and Technology, 2001, 61( 13): 1899– 1912
https://doi.org/10.1016/S0266-3538(01)00094-X
8 K M Liew, Z X Lei, L W Zhang. Mechanical analysis of functionally graded carbon nanotube reinforced composites: A review. Composite Structures, 2015, 120 : 90– 97
https://doi.org/10.1016/j.compstruct.2014.09.041
9 Yengejeh S Imani, S A Kazemi, A Öchsner. Carbon nanotubes as reinforcement in composites: A review of the analytical, numerical and experimental approaches. Computational Materials Science, 2017, 136 : 85– 101
https://doi.org/10.1016/j.commatsci.2017.04.023
10 C R Farrar, K Worden. An introduction to Structural Health Monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1851, 2007( 365): 303– 315
11 Balageas D, Fritzen C P, Güemes A. Structural Health Monitoring. London: ISTE Ltd, 2006
12 H Sohn, C R Farrar, F Hemez, J Czarnecki. A Review of Structural Health Monitoring literature 1996–2001. Los Alamos National Laboratory USA, 2003, 1
13 Y Zou, L Tong, G P Steven. Vibration-based model-dependent damage (delamination) identification and health monitoring for composite structures—A review. Journal of Sound and Vibration, 2000, 230( 2): 357– 378
https://doi.org/10.1006/jsvi.1999.2624
14 D Montalvão, N M M Maia, A M R Ribeiro. A review on vibration-based structural health monitoring with special emphasis on composite materials. Shock and Vibration Digest, 2006, 38( 4): 295– 324
https://doi.org/10.1177/0583102406065898
15 D Dinh-Cong, T T Truong, T Nguyen-Thoi. A comparative study of different dynamic condensation techniques applied to multi-damage identification of FGM and FG-CNTRC plates. Engineering with Computers, 2021, 1– 25
16 D Dinh-Cong, T Nguyen-Thoi, D T Nguyen. A two-stage multi-damage detection approach for composite structures using MKECR-Tikhonov regularization iterative method and model updating procedure. Applied Mathematical Modelling, 2021, 90 : 114– 130
https://doi.org/10.1016/j.apm.2020.09.002
17 D Dinh-Cong, H Dang-Trung, T Nguyen-Thoi. An efficient approach for optimal sensor placement and damage identification in laminated composite structures. Advances in Engineering Software, 2018, 119 : 48– 59
https://doi.org/10.1016/j.advengsoft.2018.02.005
18 P Cawley, R D Adams. A vibration technique for non-destructive testing of fibre composite structures. Journal of Composite Materials, 1979, 13( 2): 161– 175
https://doi.org/10.1177/002199837901300207
19 S S Kessler, S M Spearing, M J Atalla, C E S Cesnik, C Soutis. Damage detection in composite materials using frequency response methods. Composites. Part B, Engineering, 2002, 33( 1): 87– 95
https://doi.org/10.1016/S1359-8368(01)00050-6
20 P Moreno-García, dos Santos J V Araújo, H Lopes. A new technique to optimize the use of mode shape derivatives to localize damage in laminated composite plates. Composite Structures, 2014, 108 : 548– 554
https://doi.org/10.1016/j.compstruct.2013.09.050
21 C S Hamey, W Lestari, P Qiao, G Song. Experimental damage identification of carbon/epoxy composite beams using curvature mode shapes. Structural Health Monitoring, 2004, 3( 4): 333– 353
https://doi.org/10.1177/1475921704047502
22 W Lestari, P Qiao, S Hanagud. Curvature mode shape-based damage assessment of carbon/epoxy composite beams. Journal of Intelligent Material Systems and Structures, 2007, 18( 3): 189– 208
https://doi.org/10.1177/1045389X06064355
23 H Hu, B T Wang, C H Lee, J S Su. Damage detection of surface cracks in composite laminates using modal analysis and strain energy method. Composite Structures, 2006, 74( 4): 399– 405
https://doi.org/10.1016/j.compstruct.2005.04.020
24 M Kumar, R A Shenoi, S J Cox. Experimental validation of modal strain energies based damage identification method for a composite sandwich beam. Composites Science and Technology, 2009, 69( 10): 1635– 1643
https://doi.org/10.1016/j.compscitech.2009.03.019
25 T Vo-Duy, V Ho-Huu, H Dang-Trung, T Nguyen-Thoi. A two-step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm. Composite Structures, 2016, 147 : 42– 53
https://doi.org/10.1016/j.compstruct.2016.03.027
26 D Dinh-Cong, L Vo-Van, D Nguyen-Quoc, T Nguyen-Thoi. Modal kinetic energy change ratio-based damage assessment of laminated composite beams using noisy and incomplete measurements. Journal of Advanced Engineering and Computation, 2019, 3( 3): 452– 463
https://doi.org/10.25073/jaec.201933.248
27 D Dinh-Cong, T Nguyen-Thoi, D T Nguyen. A FE model updating technique based on SAP2000-OAPI and enhanced SOS algorithm for damage assessment of full-scale structures. Applied Soft Computing, 2020, 89 : 106100–
https://doi.org/10.1016/j.asoc.2020.106100
28 D Dinh-Cong, T Vo-Duy, V Ho-Huu, H Dang-Trung, T Nguyen-Thoi. An efficient multi-stage optimization approach for damage detection in plate structures. Advances in Engineering Software, 2017, 112 : 76– 87
https://doi.org/10.1016/j.advengsoft.2017.06.015
29 D Dinh-Cong, V Ho-Huu, T Vo-Duy, H Q Ngo-Thi, T Nguyen-Thoi. Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function. Engineering Optimization, 2018, 50( 8): 1233– 1251
https://doi.org/10.1080/0305215X.2017.1367392
30 D Dinh-Cong, T Vo-Duy, N Nguyen-Minh, V Ho-Huu, T Nguyen-Thoi. A two-stage assessment method using damage locating vector method and differential evolution algorithm for damage identification of cross-ply laminated composite beams. Advances in Structural Engineering, 2017, 20( 12): 1807– 1827
https://doi.org/10.1177/1369433217695620
31 T Vo-Duy, N Nguyen-Minh, H Dang-Trung, A Tran-Viet, T Nguyen-Thoi. Damage assessment of laminated composite beam structures using damage locating vector (DLV) method. Frontiers of Structural and Civil Engineering, 2015, 9( 4): 457– 465
https://doi.org/10.1007/s11709-015-0303-0
32 D Dinh-Cong, T Pham-Toan, D Nguyen-Thai, T Nguyen-Thoi. Structural damage assessment with incomplete and noisy modal data using model reduction technique and LAPO algorithm. Structure and Infrastructure Engineering, 2019, 15( 11): 1436– 1449
https://doi.org/10.1080/15732479.2019.1624785
33 D Dinh-Cong, S Pham-Duy, T Nguyen-Thoi. Damage detection of 2D frame structures using incomplete measurements by optimization procedure and model reduction. Journal of Advanced Engineering and Computation, 2018, 2( 3): 164– 173
https://doi.org/10.25073/jaec.201823.203
34 Z Su, L Ye, Y Lu. Guided Lamb waves for identification of damage in composite structures: A review. Journal of Sound and Vibration, 2006, 295( 3−5): 753– 780
https://doi.org/10.1016/j.jsv.2006.01.020
35 X Liu, N A J Lieven, P J Escamilla-Ambrosio. Frequency response function shape-based methods for structural damage localisation. Mechanical Systems and Signal Processing, 2009, 23( 4): 1243– 1259
https://doi.org/10.1016/j.ymssp.2008.10.002
36 R Jafarkhani, S F Masri. Finite element model updating using evolutionary strategy for damage detection. Computer-Aided Civil and Infrastructure Engineering, 2011, 26( 3): 207– 224
https://doi.org/10.1111/j.1467-8667.2010.00687.x
37 A H Hadjian Shahri, A K Ghorbani-Tanha. Damage detection via closed-form sensitivity matrix of modal kinetic energy change ratio. Journal of Sound and Vibration, 2017, 401 : 268– 281
https://doi.org/10.1016/j.jsv.2017.04.039
38 Y Li, M Zhang, W Yang. Numerical and experimental investigation of modal-energy-based damage localization for offshore wind turbine structures. Advances in Structural Engineering, 2018, 21( 10): 1510– 1525
https://doi.org/10.1177/1369433217750725
39 T Nguyen-Thoi, A Tran-Viet, N Nguyen-Minh, T Vo-Duy, V Ho-Huu. A combination of damage locating vector method (DLV) and differential evolution algorithm (DE) for structural damage assessment. Frontiers of Structural and Civil Engineering, 2018, 12( 1): 92– 108
https://doi.org/10.1007/s11709-016-0379-1
40 S Das, P Saha, S K Patro. Vibration-based damage detection techniques used for health monitoring of structures: A review. Journal of Civil Structural Health Monitoring, 2016, 6( 3): 477– 507
https://doi.org/10.1007/s13349-016-0168-5
41 G F Gomes, Y A D Mendez, P D S L Alexandrino, S S da Cunha, A C Ancelotti. A review of vibration based inverse methods for damage detection and identification in mechanical structures using optimization algorithms and ANN. Archives of Computational Methods in Engineering, 2019, 26( 4): 883– 897
https://doi.org/10.1007/s11831-018-9273-4
42 Z Y Shi, S S Law, L M Zhang. Structural damage detection from modal strain energy change. Journal of Engineering Mechanics, 2000, 126( 12): 1216– 1223
https://doi.org/10.1061/(ASCE)0733-9399(2000)126:12(1216
43 S M Seyedpoor. A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization. International Journal of Non-linear Mechanics, 2012, 47( 1): 1– 8
https://doi.org/10.1016/j.ijnonlinmec.2011.07.011
44 Y J Cha, O Buyukozturk. Structural damage detection using modal strain energy and hybrid multiobjective optimization. Computer-Aided Civil and Infrastructure Engineering, 2015, 30( 5): 347– 358
https://doi.org/10.1111/mice.12122
45 D Dinh-Cong, T Vo-Duy, V Ho-Huu, T Nguyen-Thoi. Damage assessment in plate-like structures using a two-stage method based on modal strain energy change and Jaya algorithm. Inverse Problems in Science and Engineering, 2019, 27( 2): 166– 189
https://doi.org/10.1080/17415977.2018.1454445
46 D Dinh-Cong, T Nguyen-Thoi, M Vinyas, D T Nguyen. Two-stage structural damage assessment by combining modal kinetic energy change with symbiotic organisms search. International Journal of Structural Stability and Dynamics, 2019, 19( 10): 1950120–
https://doi.org/10.1142/S0219455419501207
47 Goodfellow I, Bengio Y, Courville A. Deep Learning: Adaptive Computation and Machine Learning. London: MIT Press, 2016
48 E Samaniego, C Anitescu, S Goswami, V M Nguyen-Thanh, H Guo, K Hamdia, X Zhuang, T Rabczuk. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 2020, 362 : 112790–
https://doi.org/10.1016/j.cma.2019.112790
49 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials and Continua, 2019, 59( 1): 345– 359
https://doi.org/10.32604/cmc.2019.06641
50 X Zhuang, H Guo, N Alajlan, H Zhu, T Rabczuk. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics. A, Solids, 2021, 87 : 104225–
https://doi.org/10.1016/j.euromechsol.2021.104225
51 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59( 2): 433– 456
https://doi.org/10.32604/cmc.2019.06660
52 T T Truong, D Dinh-Cong, J Lee, T Nguyen-Thoi. An effective deep feedforward neural networks (DFNN) method for damage identification of truss structures using noisy incomplete modal data. Journal of Building Engineering, 2020, 30 : 101244–
https://doi.org/10.1016/j.jobe.2020.101244
53 Y Xu, S Wei, Y Bao, H Li. Automatic seismic damage identification of reinforced concrete columns from images by a region-based deep convolutional neural network. Structural Control and Health Monitoring, 2019, 26( 3): e2313–
https://doi.org/10.1002/stc.2313
54 N Wang, X Zhao, P Zhao, Y Zhang, Z Zou, J Ou. Automatic damage detection of historic masonry buildings based on mobile deep learning. Automation in Construction, 2019, 103 : 53– 66
https://doi.org/10.1016/j.autcon.2019.03.003
55 H Liu, Y Zhang. Image-driven structural steel damage condition assessment method using deep learning algorithm. Measurement, 2019, 133 : 168– 181
https://doi.org/10.1016/j.measurement.2018.09.081
56 D Lecompte, J Vantomme, H Sol. Crack detection in a concrete beam using two different camera techniques. Structural Health Monitoring, 2006, 5( 1): 59– 68
https://doi.org/10.1177/1475921706057982
57 M R Jahanshahi, S F Masri. Parametric Performance evaluation of wavelet-based corrosion detection algorithms for condition assessment of civil infrastructure systems. Journal of Computing in Civil Engineering, 2013, 27( 4): 345– 357
https://doi.org/10.1061/(ASCE)CP.1943-5487.0000225
58 D J Atha, M R Jahanshahi. Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection. Structural Health Monitoring, 2018, 17( 5): 1110– 1128
https://doi.org/10.1177/1475921717737051
59 S German, I Brilakis, R Desroches. Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments. Advanced Engineering Informatics, 2012, 26( 4): 846– 858
https://doi.org/10.1016/j.aei.2012.06.005
60 T Dawood, Z Zhu, T Zayed. Machine vision-based model for spalling detection and quantification in subway networks. Automation in Construction, 2017, 81 : 149– 160
https://doi.org/10.1016/j.autcon.2017.06.008
61 F Wei, G Yao, Y Yang, Y Sun. Instance-level recognition and quantification for concrete surface bughole based on deep learning. Automation in Construction, 2019, 107 : 102920–
https://doi.org/10.1016/j.autcon.2019.102920
62 K Vaghefi, T Ahlborn, D K Harris, C N Brooks. Combined imaging technologies for concrete bridge deck condition assessment. Journal of Performance of Constructed Facilities, 2015, 29( 4): 04014102–
https://doi.org/10.1061/(ASCE)CF.1943-5509.0000465
63 Y Shi, L Cui, Z Qi, F Meng, Z Chen. Automatic road crack detection using random structured forests. IEEE Transactions on Intelligent Transportation Systems, 2016, 17( 12): 3434– 3445
https://doi.org/10.1109/TITS.2016.2552248
64 L Zhang, F Yang, Y D Yang, Y J Zhu. Road crack detection using deep convolutional neural network. In: 2016 IEEE international conference on image processing (ICIP). Phoenix: IEEE, 2016, 3708– 3712
65 Y J Cha, W Choi, O Büyüköztürk. Deep Learning-based crack damage detection using convolutional neural networks. Computer-Aided Civil and Infrastructure Engineering, 2017, 32( 5): 361– 378
https://doi.org/10.1111/mice.12263
66 Q Mei, M Gül, M R Azim. Densely connected deep neural network considering connectivity of pixels for automatic crack detection. Automation in Construction, 2020, 110 : 103018–
https://doi.org/10.1016/j.autcon.2019.103018
67 Y Xu, Y Bao, J Chen, W Zuo, H Li. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images. Structural Health Monitoring, 2019, 18( 3): 653– 674
https://doi.org/10.1177/1475921718764873
68 G Fu, P Sun, W Zhu, J Yang, Y Cao, M Y Yang, Y Cao. A deep-learning-based approach for fast and robust steel surface defects classification. Optics and Lasers in Engineering, 2019, 121 : 397– 405
https://doi.org/10.1016/j.optlaseng.2019.05.005
69 R Ali, Y J Cha. Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer. Construction & Building Materials, 2019, 226 : 376– 387
https://doi.org/10.1016/j.conbuildmat.2019.07.293
70 S Teng, G Chen, G Liu, J Lv, F Cui. Modal strain energy-based structural damage detection using convolutional neural networks. Applied Sciences (Basel, Switzerland), 2019, 9( 16): 3376–
https://doi.org/10.3390/app9163376
71 H Khodabandehlou, G Pekcan, M S Fadali. Vibration-based structural condition assessment using convolution neural networks. Structural Control and Health Monitoring, 2019, 26( 2): e2308–
72 S Li, X Zuo, Z Li, H Wang. Applying deep learning to continuous bridge deflection detected by fiber optic gyroscope for damage detection. Sensors (Basel), 2020, 20( 3): 911–
https://doi.org/10.3390/s20030911
73 M Azimi, A D Eslamlou, G Pekcan. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors (Basel), 2020, 20( 10): 2778–
https://doi.org/10.3390/s20102778
74 Nwankpa C, Ijomah W, Gachagan A, Marshall S. Activation functions: Comparison of trends in practice and research for deep learning. 2018, arXiv: 1811.03378
75 Agostinelli F, Hoffman M, Sadowski P, Baldi P. Learning activation functions to improve deep neural networks. 2014, arXiv: 1412.6830
76 Ramachandran P, Zoph B, Le Q V. Searching for activation functions. 2017, arXiv: 1710.05941
77 J Duchi, E Hazan, Y Singer. adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 2011, 12( 7): 2121– 2159
78 Zeiler M D. AdaDelta: An adaptive learning rate method. arXiv preprint arXiv: 1212.5701, 2012
79 G Hinton, N Srivastava, K Swersky. Neural Networks for Machine Learning. Coursera, video lectures, 2012, 264( 1): 2146– 2153
80 Mcmahan H B, Holt G, Sculley D, Young M, Ebner D, Grady J, Nie L, Phillips T, Davydov E, Golovin D, Chikkerur S, Liu D, Wattenberg M, Hrafnkelsson A M, Boulos T, Kubica J. Ad click prediction: A view from the trenches. In: Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. 2013: 1222–1230
81 I Sutskever, J Martens, G Dahl, G Hinton. On the importance of initialization and momentum in deep learning. In: Proceedings of the 30th International Conference on Machine Learning. PMLR, 2013, 28( 3): 1139– 1147
82 Kingma D P, Ba J L. Adam: A method for stochastic optimization. 2015, arXiv: 1412.6980
83 Dozat T. Incorporating Nesterov Momentum into Adam. ICLR Workshop, 2016
84 Reddy J N. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. Boca Raton: CRC Press, 2003
85 Zienkiewcz O C, Taylor R L, Fox D D. The Finite Element Method for Solid & Structural Mechanics. 7th ed. Oxford: Elsevier Ltd, 2014
86 Y Han, J Elliott. Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Computational Materials Science, 2007, 39( 2): 315– 323
https://doi.org/10.1016/j.commatsci.2006.06.011
87 P Zhu, Z X Lei, K M Liew. Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Composite Structures, 2012, 94( 4): 1450– 1460
https://doi.org/10.1016/j.compstruct.2011.11.010
88 H S Shen. Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Composite Structures, 2009, 91( 1): 9– 19
https://doi.org/10.1016/j.compstruct.2009.04.026
89 J D Fidelus, E Wiesel, F H Gojny, K Schulte, H D Wagner. Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Composites. Part A, Applied Science and Manufacturing, 2005, 36( 11): 1555– 1561
https://doi.org/10.1016/j.compositesa.2005.02.006
90 A M K Esawi, M M Farag. Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design, 2007, 28( 9): 2394– 2401
https://doi.org/10.1016/j.matdes.2006.09.022
91 P Phung-Van, M Abdel-Wahab, K M Liew, S P A Bordas, H Nguyen-Xuan. Isogeometric analysis of functionally graded carbon nanotube-reinforced composite plates using higher-order shear deformation theory. Composite Structures, 2015, 123 : 137– 149
https://doi.org/10.1016/j.compstruct.2014.12.021
92 T Truong-Thi, T Vo-Duy, V Ho-Huu, T Nguyen-Thoi. Static and free vibration analyses of functionally graded carbon nanotube reinforced composite plates using CS-DSG3. International Journal of Computational Methods, 2020, 17( 03): 1850133–
https://doi.org/10.1142/S0219876218501335
93 Géron A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow—Concepts, Tools, and Techniques to Build Intelligent Systems. 2nd ed. Canada: O’Reilly Media Inc, 2019
94 G E Hinton. A practical guide to training restricted boltzmann machines. In: Neural Networks: Tricks of the Trade. Berlin: Springer-Heidelberg, 2012, 599– 619
[1] Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN. An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model[J]. Front. Struct. Civ. Eng., 2020, 14(4): 907-929.
[2] Alireza ARABHA NAJAFABADI, Farhad DANESHJOO, Hamid Reza AHMADI. Multiple damage detection in complex bridges based on strain energy extracted from single point measurement[J]. Front. Struct. Civ. Eng., 2020, 14(3): 722-730.
[3] Jong-Woong PARK,Sung-Han SIM,Jin-Hak YI,Hyung-Jo JUNG. Development of temperature-robust damage factor based on sensor fusion for a wind turbine structure[J]. Front. Struct. Civ. Eng., 2015, 9(1): 42-47.
[4] João Pedro SANTOS,Christian CREMONA,André D. ORCESI,Paulo SILVEIRA,Luis CALADO. Static-based early-damage detection using symbolic data analysis and unsupervised learning methods[J]. Front. Struct. Civ. Eng., 2015, 9(1): 1-16.
[5] ZHU Jinsong, XIAO Rucheng. Damage identification of a large-span concrete cable-stayed bridge based on genetic algorithm[J]. Front. Struct. Civ. Eng., 2007, 1(2): 170-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed