Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (6) : 1441-1452    https://doi.org/10.1007/s11709-021-0774-0
RESEARCH ARTICLE
Estimation of optimum design of structural systems via machine learning
Gebrail BEKDAŞ, Melda YÜCEL, Sinan Melih NIGDELI()
Department of Civil Engineering, Istanbul University-Cerrahpaşa, Istanbul 34320, Turkey
 Download: PDF(23878 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Three different structural engineering designs were investigated to determine optimum design variables, and then to estimate design parameters and the main objective function of designs directly, speedily, and effectively. Two different optimization operations were carried out: One used the harmony search (HS) algorithm, combining different ranges of both HS parameters and iteration with population numbers. The other used an estimation application that was done via artificial neural networks (ANN) to find out the estimated values of parameters. To explore the estimation success of ANN models, different test cases were proposed for the three structural designs. Outcomes of the study suggest that ANN estimation for structures is an effective, successful, and speedy tool to forecast and determine the real optimum results for any design model.

Keywords optimization      metaheuristic algorithms      harmony search      structural designs      machine learning      artificial neural networks     
Corresponding Author(s): Sinan Melih NIGDELI   
Just Accepted Date: 19 October 2021   Online First Date: 25 November 2021    Issue Date: 21 January 2022
 Cite this article:   
Gebrail BEKDAŞ,Melda YÜCEL,Sinan Melih NIGDELI. Estimation of optimum design of structural systems via machine learning[J]. Front. Struct. Civ. Eng., 2021, 15(6): 1441-1452.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0774-0
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I6/1441
name of metric abbreviation meaning formulation
mean absolute error MAE averaging of absolute value of difference between actual and predicted results for all samples/ margin of deviation i=1n Ai?Pi n
mean squared error MSE average value of squared of deviation amount of estimations from actual values/ errors for n samples/ magnified error i=1n(Ai?Pi)2n
root mean squared error RMSE root of mean squared error value/measure of distance between actual and predicted values i=1n(Ai?Pi)2n
Tab.1  Properties of error metrics
case application FW HMCR iteration number population number
1 comparison of FW-HMCR 0.05–1 by increasing 0.05 0.05–1 by increasing 0.05 20000 30
2 comparison of iteration-population numbers 0.05 0.5 [5,50,100,500,1000 and 2500–40000 by increasing 2500] [3 and 5–40 by increasing 5]
3 ANN training and estimation process values of best choices in terms of minimum objective functions by comparing cases 1 and 2 as unique to each optimization model (unselected parameters have the same values in other cases)
Tab.2  Parameter information and properties of applied cases
Fig.1  3-bar truss structure.
Fig.2  Representation of change for minimum volume according to different values of FW and HMCR.
A1=A3 (cm2) A2 (cm2) Minf(v) (cm3) mean of volume (cm3) Std. Dev. of volume HMCR FW
0.7885 0.4087 263.8959 263.9033 0.0058 0.55 0.05
Tab.3  The best solution and statistical evaluations for case 1
Fig.3  Analysis of the minimum volume of trusses by using several combinations of iteration-population numbers.
A1=A3 (cm2) A2 (cm2) Minf(v) (cm3) mean of volume Std. Dev. of volume iterationnumber populationNumber
0.7886 0.4083 263.8959 263.8985 0.0031 25000 15
Tab.4  The best solution and statistical evaluations for case 2
Fig.4  Error metrics of estimated results for training data (model 1).
parameter load HS optimization result ANN estimation error calculations for HS average RMSE
MAE MSE
A1 = A3 1.68 0.6629 0.6622 0.0007 0.0044 4.95e–05 0.007
2.37 0.9348 0.9309 0.0039
0.92 0.362 0.3636 –0.0016
0.04 0.016 0.0154 0.0006
2.81 1 0.9849 0.0151
A2 1.68 0.3418 0.3437 –0.0019 0.0123 3.62e394 0.019
2.37 0.4832 0.4944 –0.0113
0.92 0.1899 0.1851 0.0048
0.04 0.0075 0.0105 –0.0031
2.81 0.9626 1.0032 –0.0406
Minf(v) 1.68 221.6734 221.6746 –0.0012 0.0662 8.30e226 0.0911
2.37 312.7167 312.6713 0.0454
0.92 121.3934 121.3996 –0.0062
0.04 5.2804 5.4004 –0.1200
2.81 379.1044 378.9463 0.1581
Tab.5  Estimation results for A1=A3, A2 and minimum volume ( Minf(v)) of test models
Fig.5  10-bar truss structure.
property parameter notation value/limit unit
design constants elasticity modulus Es 10000 ksi
weight per unit of volume of bars Ρ 0.1 lb/in3
design variables section areas A 0.1–35 in2
design constraints displacements for whole nodes in all directions δ ±2 in
tensile/compression stresses for each bar σ ±25 ksi
Tab.6  Properties of optimization design for 10-bar truss model
Fig.6  Minimum weights for 10-bar truss obtained via FW and HMCR combinations.
parameter value
A1 (in2) 23.9436
A2 (in2) 0.1
A3 (in2) 25.2889
A4 (in2) 14.053
A5 (in2) 0.1
A6 (in2) 1.9785
A7 (in2) 12.5091
A8 (in2) 12.9271
A9 (in2) 20.1141
A10 (in2) 0.1
Minf(v) (lb) 4680.8384
mean of weight 4693.8804
Std. Dev. of weight 4.9906
HMCR 0.25
FW 0.05
Tab.7  Optimum solution, design variables, and the best parameters belonging to case 1
Fig.7  Analysis of minimum weight of truss by using several combinations of iteration-population number.
parameter value
A1 (in2) 24.1027
A2 (in2) 0.1
A3 (in2) 26.0599
A4 (in2) 14.0816
A5 (in2) 0.1
A6 (in2) 2.0014
A7 (in2) 12.258
A8 (in2) 12.5361
A9 (in2) 20.0621
A10 (in2) 0.1
Minf(v) (lb) 4680.852
mean of weight 4694.1209
Std. Dev. of weight 4.5771
iteration number 35000
population number 35
Tab.8  Optimum results with best numbers of iteration and population for case 2
Fig.8  Error metrics of estimated results for training data (model 2).
parameter P1 (kip) P2 (kip) HS optimization result ANN estimation error calculations for HS average RMSE
MAE MSE
A1 143 48 22.5921 22.3536 0.2385 0.7326 0.7398 0.8601
150.4 43.5 27.6794 26.6037 1.0758
154 50.5 24.151 24.5216 –0.3707
145 42 24.401 25.8323 –1.4313
157.25 55.25 22.8998 23.4463 –0.5465
A2 143 48 0.1 0.1254 –0.0254 0.0206 0.0006 0.0247
150.4 43.5 0.1 0.1419 –0.0419
154 50.5 0.1 0.0995 0.0005
145 42 0.1 0.1143 –0.0143
157.25 55.25 0.1 0.121 –0.021
A3 143 48 23.9015 24.3014 –0.3999 0.3782 0.1464 0.3826
150.4 43.5 26.4858 26.764 –0.2782
154 50.5 26.4822 26.1031 0.3792
145 42 26.4865 26.0293 0.4572
157.25 55.25 26.2506 25.8739 0.3767
A4 143 48 12.7495 136,382 –0.8887 0.4566 0.3336 0.5776
150.4 43.5 15.6635 155,987 0.0649
154 50.5 14.1376 149,142 –0.7766
145 42 15.5657 150,464 0.5193
157.25 55.25 14.6318 146,655 –0.0337
A5 143 48 0.1 0.094 0.006 0.0071 7.01e–05 0.0084
150.4 43.5 0.1 0.1146 –0.0146
154 50.5 0.1 0.1091 –0.0041
145 42 0.1 –0.009 –0.009
157.25 55.25 0.1 0.0982 0.0018
A6 143 48 1.9183 1.9275 –0.0092 0.0361 0.0017 0.0415
150.4 43.5 1.7466 1.8007 –0.0541
154 50.5 1.9958 2.0378 –0.0419
145 42 1.72 1.7802 –0.0602
157.25 55.25 2.1835 2.1984 –0.0149
A7 143 48 11.9171 11.8335 0.0836 0.1305 0.0411 0.2027
150.4 43.5 12.2539 12.2239 0.0299
154 50.5 12.6766 12.7335 –0.0569
145 42 11.522 11.9607 –0.4386
157.25 55.25 12.9318 12.9754 –0.0436
A8 143 48 12.2143 12.046 0.1683 0.2253 0.08 0.2829
150.4 43.5 15.1782 15.4772 –0.299
154 50.5 13.5386 13.4783 0.0603
145 42 14.8597 14.936 –0.0763
157.25 55.25 11.8532 12.3758 –0.5226
A9 143 48 19.774 19.2167 0.5573 0.5299 0.3321 0.5762
150.4 43.5 21.542 22.1308 –0.5889
154 50.5 21.7187 21.1551 0.5636
145 42 21.4216 21.3008 0.1208
157.25 55.25 21.4534 20.6344 0.819
A10 143 48 0.1 0.0784 0.0216 0.0168 0.0004 0.0205
150.4 43.5 0.1 0.0896 0.0104
154 50.5 0.1 0.1082 –0.0082
145 42 0.1 0.0622 0.0378
157.25 55.25 0.1 0.106 –0.006
Minf(w) (lb) 143 48 4449.3922 4449.0023 0.0216 1.2065 1.841 1.3469
150.4 43.5 5082.3537 5083.7904 0.0104
154 50.5 4856.2858 4857.0534 –0.0082
145 42 4900.2784 4898.137 0.0378
157.25 55.25 4741.1288 4742.4228 –0.006
Tab.9  Estimation results for A1?A10 and minimum weight ( Minf(w)) of test models
Fig.9  Simply-supported RC beam.
h (in) b (in) As (in2) Minf(c) ($) mean of cost Std. Dev. of cost HMCR FW
34.0000 8.5000 6.3200 359.2080 360.1468 0.8707 0.35 0.35
Tab.10  The best solution and statistical evaluations for case 1
Fig.10  Variation of minimum costs according to different values of FW and HMCR.
h (in) b (in) As (in2) Minf(c) ($) mean of cost Std. Dev. of cost iteration number population number
34.0000 8.5000 6.3200 359.2080 359.2463 0.0400 37500 40
Tab.11  Optimum design results together with cost statistics for case 2
Fig.11  Detection of minimum cost for RC beam through the usage of various iteration-population numbers.
Fig.12  Error metrics of estimated results for training data (model 3).
parameter L (ft) MDL (in·kip) MLL (in·kip) HS optimization result ANN estimation error calculations for HS average RMSE
MAE MSE
h (in) 16.25 1250 2000 32.0000 30.9730 1.0270 0.4798 0.3643 0.6036
18.6 2700 1450 33.0000 33.7684 –0.7684
19.45 1400 2800 34.0000 33.7005 0.2995
14.5 1750 1600 30.0000 30.2945 –0.2945
20.10 2325 2250 34.0000 34.0098 –0.0098
b (in) 16.25 1250 2000 8.0000 7.7671 0.2329 0.1139 0.0186 0.1363
18.6 2700 1450 8.3954 8.4178 –0.0224
19.45 1400 2800 8.5139 8.4368 0.0770
14.5 1750 1600 7.5000 7.6638 –0.1638
20.10 2325 2250 8.5000 8.5731 –0.0731
As (in) 16.25 1250 2000 5.2800 5.6157 –0.3357 0.1667 0.0356 0.1886
18.6 2700 1450 6.3200 6.1875 0.1325
19.45 1400 2800 6.6000 6.7408 –0.1408
14.5 1750 1600 6.0000 5.8518 0.1482
20.10 2325 2250 7.1100 7.0336 0.0764
Minf(w) (lb) 16.25 1250 2000 165.8322 165.9773 –0.1451 0.3660 0.2650 0.5148
18.6 2700 1450 216.8218 216.8772 –0.0554
19.45 1400 2800 237.0143 238.0555 –1.0413
14.5 1750 1600 148.6500 148.5034 0.1466
20.10 2325 2250 254.8233 254.3817 0.4417
Tab.12  Estimation results for hb, As and minimum cost ( Minf(c)) of test models
1 J H Holland. Adaptation in Natural and Artificial Systems. Michigan: University of Michigan Press, 1975
2 R Storn, K Price. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 1997, 11( 4): 341– 359
https://doi.org/10.1023/A:1008202821328
3 O K Erol, I Eksin. A new optimization method: Big bang–big crunch. Advances in Engineering Software, 2006, 37( 2): 106– 111
https://doi.org/10.1016/j.advengsoft.2005.04.005
4 D Simon. Biogeography-based optimization. IEEE Transactions on Evolutionary Computation, 2008, 12( 6): 702– 713
https://doi.org/10.1109/TEVC.2008.919004
5 J Kennedy, R C Eberhart. Particle swarm optimization. Proceedings of IEEE International Conference on Neural Networks No. IV. Perth: IEEE Conference Publication, 1995, 1942– 1948
6 X Li. A new intelligent optimization method-artificial fish school algorithm. Dissertation for the Doctoral Degree. Hangzhou: Zhejiang University, 2003
7 D Karaboga. An Idea Based on Honeybee Swarm for Numerical Optimization, vol. 200. Technical Report TR06. 2005
8 X S Yang, S Deb. Cuckoo search via Lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). Coimbatore: IEEE, 2009, 210– 214
9 X S Yang. Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation. Berlin: Springer, 2012, 240– 249
10 S Mirjalili, S M Mirjalili, A Lewis. Grey wolf optimizer. Advances in Engineering Software, 2014, 69 : 46– 61
https://doi.org/10.1016/j.advengsoft.2013.12.007
11 S Mirjalili, A Lewis. The whale optimization algorithm. Advances in Engineering Software, 2016, 95 : 51– 67
https://doi.org/10.1016/j.advengsoft.2016.01.008
12 F Glover. Future paths for integer programming and links to artificial intelligence. Computers & Operations Research, 1986, 13( 5): 533– 549
https://doi.org/10.1016/0305-0548(86)90048-1
13 Z W Geem, J H Kim, G V Loganathan. A new heuristic optimization algorithm: Harmony search. Simulation, 2001, 76( 2): 60– 68
https://doi.org/10.1177/003754970107600201
14 S Kirkpatrick, C D Gelatt, M P Vecchi. Optimization by simulated annealing. Science, 1983, 220( 4598): 671– 680
https://doi.org/10.1126/science.220.4598.671
15 R A Formato. Central force optimization: A new nature inspired computational framework for multidimensional search and optimization. Nature Inspired Cooperative Strategies for Optimization (NICSO 2007). Berlin: Springer, 2007, 221– 238
16 E Rashedi, H Nezamabadi-Pour, S Saryazdi. GSA: A gravitational search algorithm. Information Sciences, 2009, 179( 13): 2232– 2248
https://doi.org/10.1016/j.ins.2009.03.004
17 A Kaveh, T Bakhshpoori. Water evaporation optimization: A novel physically inspired optimization algorithm. Computers & Structures, 2016, 167 : 69– 85
https://doi.org/10.1016/j.compstruc.2016.01.008
18 G Quaranta, A Fiore, G C Marano. Optimum design of prestressed concrete beams using constrained differential evolution algorithm. Structural and Multidisciplinary Optimization, 2014, 49( 3): 441– 453
https://doi.org/10.1007/s00158-013-0979-5
19 H Ozbasaran, T Yilmaz. Shape optimization of tapered I-beams with lateral-torsional buckling, deflection and stress constraints. Journal of Constructional Steel Research, 2018, 143 : 119– 130
https://doi.org/10.1016/j.jcsr.2017.12.022
20 M Yücel, G Bekdaş, S M Ni̇gdeli̇. Minimizing the weight of cantilever beam via metaheuristic methods by using different population-iteration combinations. WSEAS Transactions on Computers, 2020, 19 : 69– 77
https://doi.org/10.37394/23205.2020.19.10
21 M N Rabi’, S T Yousif. Optimum cost design of reinforced concrete columns using genetic algorithms. Al Rafdain Engineering Journal (New York), 2014, 22( 1): 112– 141
22 G F de Medeiros, M Kripka. Optimization of reinforced concrete columns according to different environmental impact assessment parameters. Engineering Structures, 2014, 59 : 185– 194
https://doi.org/10.1016/j.engstruct.2013.10.045
23 I Aydogdu, A Akin. Biogeography based CO2 and cost optimization of RC cantilever retaining walls. In: 17th International Conference on Structural Engineering. Paris: World Academy of Science, Engineering and Technology, 2015, 1480– 1485
24 N A Jasim, A M Al-Yaqoobi. Optimum design of tied back retaining wall. Open Journal of Civil Engineering, 2016, 6( 2): 139– 155
https://doi.org/10.4236/ojce.2016.62013
25 F A Mohammad, H G Ahmed. Optimum design of reinforced concrete cantilever retaining walls according to Eurocode 2 (EC2). Athens Journal of Technology & Engineering, 2018, 5( 3): 277– 296
https://doi.org/10.30958/ajte.5-3-4
26 A Kaveh, K B Hamedani, A Zaerreza. A set theoretical shuffled shepherd optimization algorithm for optimal design of cantilever retaining wall structures. Engineering with Computers, 2021, 37( 4): 3265– 3282
https://doi.org/10.1007/s00366-020-00999-9
27 A E Kayabekir, G Bekdaş, S M Nigdeli. Metaheuristic Approaches for Optimum Design of Reinforced Concrete Structures: Emerging Research and Opportunities. Hershey, PA: IGI Global, 2020, 161– 182
28 X Chen, S Liu, S He. The optimization design of truss based on ant colony optimal algorithm. In: Sixth International Conference on Natural Computation, vol. 2. Yantai: IEEE, 720– 723
29 S O Degertekin, M S Hayalioglu. Sizing truss structures using teaching-learning-based optimization. Computers & Structures, 2013, 119 : 177– 188
https://doi.org/10.1016/j.compstruc.2012.12.011
30 G Bekdaş, S M Nigdeli, X S Yang. Sizing optimization of truss structures using flower pollination algorithm. Applied Soft Computing, 2015, 37 : 322– 331
https://doi.org/10.1016/j.asoc.2015.08.037
31 A Mortazavi, V Toğan, A Nuhoğlu. Weight minimization of truss structures with sizing and layout variables using integrated particle swarm optimizer. Journal of Civil Engineering and Management, 2017, 23( 8): 985– 1001
https://doi.org/10.3846/13923730.2017.1348982
32 M Salar, B Dizangian. Sizing optimization of truss structures using ant lion optimizer. In: 2nd International Conference on Civil Engineering, Architecture and Urban Management in Iran. Tehran: Tehran University, 2019
33 Yücel M, Bekdaş G, Nigdeli S M. Prediction of optimum 3-bar truss model parameters with an ANN model. In: Proceedings of 6th International Conference on Harmony Search, Soft Computing and Applications (ICHSA 2020). Singapore: Springer, 2021, 317–324
34 D Prayogo, G Gaby, B H Wijaya, F T Wong. Reliability-based design with size and shape optimization of truss structure using symbiotic organisms search. IOP Conference Series: Earth and Environmental Science, 2020, 506 : 012047–
35 A Mortazavi. Large-scale structural optimization using a fuzzy reinforced swarm intelligence algorithm. Advances in Engineering Software, 2020, 142 : 102790–
https://doi.org/10.1016/j.advengsoft.2020.102790
36 A Kaveh, S Mohammadi, O K Hosseini, A Keyhani, V R Kalatjari. Optimum parameters of tuned mass dampers for seismic applications using charged system search. Civil Engineering (Shiraz), 2015, 39( C1): 21– 40
37 W Shi, L Wang, Z Lu, Q Zhang. Application of an artificial fish swarm algorithm in an optimum tuned mass damper design for a pedestrian bridge. Applied Sciences (Basel, Switzerland), 2018, 8( 2): 175–
https://doi.org/10.3390/app8020175
38 G Bekdaş, S M Nigdeli, X S Yang. A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures. Engineering Structures, 2018, 159 : 89– 98
https://doi.org/10.1016/j.engstruct.2017.12.037
39 M Yucel, G Bekdaş, S M Nigdeli, S Sevgen. Estimation of optimum tuned mass damper parameters via machine learning. Journal of Building Engineering, 2019, 26 : 100847–
https://doi.org/10.1016/j.jobe.2019.100847
40 S Soheili, H Zoka, M Abachizadeh. Tuned mass dampers for the drift reduction of structures with soil effects using ant colony optimization. Advances in Structural Engineering, 2021, 24( 4): 771– 783
41 M Yucel, S Öncü-Davas, S M Nigdeli, G Bekdaş, S. Sevgen Estimating of analysis results for structures with linear base isolation systems using artificial neural network model. International Journal of Control Systems and Robotics, 2018, 3
42 V M Nguyen-Thanh, X Zhuang, T Rabczuk. A deep energy method for finite deformation hyperelasticity. European Journal of Mechanics. A, Solids, 2020, 80 : 103874–
https://doi.org/10.1016/j.euromechsol.2019.103874
43 E Samaniego, C Anitescu, S Goswami, V M Nguyen-Thanh, H Guo, K Hamdia, X Zhuang, T Rabczuk. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 2020, 362 : 112790–
https://doi.org/10.1016/j.cma.2019.112790
44 D W Abueidda, S Koric, N A Sobh. Topology optimization of 2D structures with nonlinearities using deep learning. Computers & Structures, 2020, 237 : 106283–
https://doi.org/10.1016/j.compstruc.2020.106283
45 V Minh Nguyen-Thanh, L Trong Khiem Nguyen, T Rabczuk, X Zhuang. A surrogate model for computational homogenization of elastostatics at finite strain using high-dimensional model representation-based neural network. International Journal for Numerical Methods in Engineering, 2020, 121( 21): 4811– 4842
https://doi.org/10.1002/nme.6493
46 A Kaveh, A D Eslamlou, S M Javadi, N G Malek. Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mechanica, 2021, 232( 3): 921– 931
https://doi.org/10.1007/s00707-020-02878-2
47 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59( 2): 433– 456
48 X Zhuang, H Guo, N Alajlan, H Zhu, T Rabczuk. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of kirchhoff plates with transfer learning. European Journal of Mechanics. A, Solids, 2021, 87 : 104225–
https://doi.org/10.1016/j.euromechsol.2021.104225
49 S Koziel, X S Yang. Computational Optimization, Methods and Algorithms. Berlin: Springer-Verlag, 2011
50 W S Sarle. Neural networks and statistical models. In: Proceedings of the Nineteenth Annual SAS Users Group International Conference. Cary: SAS Institute, 1994, 1538– 1550
51 Mathworks MATLAB. Matlab 2018a, Neural Net Fitting, 2018
52 Y Fujita, K Lind, T J Williams. Computer Applications in the Automation of Shipyard Operation and Ship Design, vol. 2. New York: Elsevier, 1974, 327– 338
53 L A Jr Schmit, B Farshi. Some approximation concepts for structural synthesis. AIAA Journal, 1974, 12( 5): 692– 699
https://doi.org/10.2514/3.49321
54 H M Amir, T Hasegawa. Nonlinear mixed-discrete structural optimization. Journal of Structural Engineering, 1989, 115( 3): 626– 646
https://doi.org/10.1061/(ASCE)0733-9445(1989)115:3(626
55 318–14 ACI. Building Code Requirements for Reinforced Concrete. Detroit, MI: American Concrete Institute, 1977
[1] Narges PAHNABI, Seyed Mohammad SEYEDPOOR. Damage identification in connections of moment frames using time domain responses and an optimization method[J]. Front. Struct. Civ. Eng., 2021, 15(4): 851-866.
[2] Shan LIN, Hong ZHENG, Chao HAN, Bei HAN, Wei LI. Evaluation and prediction of slope stability using machine learning approaches[J]. Front. Struct. Civ. Eng., 2021, 15(4): 821-833.
[3] Trong NGHIA-NGUYEN, Mamoru KIKUMOTO, Samir KHATIR, Salisa CHAIYAPUT, H. NGUYEN-XUAN, Thanh CUONG-LE. Data-driven approach to solve vertical drain under time-dependent loading[J]. Front. Struct. Civ. Eng., 2021, 15(3): 696-711.
[4] Amin MAHDAVI-MEYMAND, Mohammad ZOUNEMAT-KERMANI, Kourosh QADERI. Prediction of hydro-suction dredging depth using data-driven methods[J]. Front. Struct. Civ. Eng., 2021, 15(3): 652-664.
[5] Mohammad Sadegh ES-HAGHI, Aydin SHISHEGARAN, Timon RABCZUK. Evaluation of a novel Asymmetric Genetic Algorithm to optimize the structural design of 3D regular and irregular steel frames[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1110-1130.
[6] Siamak TALATAHARI, Mahdi RABIEI. Shear wall layout optimization of tall buildings using Quantum Charged System Search[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1131-1151.
[7] Zohreh SHEIKH KHOZANI, Khabat KHOSRAVI, Mohammadamin TORABI, Amir MOSAVI, Bahram REZAEI, Timon RABCZUK. Shear stress distribution prediction in symmetric compound channels using data mining and machine learning models[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1097-1109.
[8] Shahaboddin SHAMSHIRBAND, Amir MOSAVI, Timon RABCZUK. Particle swarm optimization model to predict scour depth around a bridge pier[J]. Front. Struct. Civ. Eng., 2020, 14(4): 855-866.
[9] Hamed FATHNEJAT, Behrouz AHMADI-NEDUSHAN. An efficient two-stage approach for structural damage detection using meta-heuristic algorithms and group method of data handling surrogate model[J]. Front. Struct. Civ. Eng., 2020, 14(4): 907-929.
[10] Tiago Miguel FERREIRA, João ESTÊVÃO, Rui MAIO, Romeu VICENTE. The use of Artificial Neural Networks to estimate seismic damage and derive vulnerability functions for traditional masonry[J]. Front. Struct. Civ. Eng., 2020, 14(3): 609-622.
[11] Meisam RABIEI, Asskar Janalizadeh CHOOBBASTI. Innovative piled raft foundations design using artificial neural network[J]. Front. Struct. Civ. Eng., 2020, 14(1): 138-146.
[12] Walid Khalid MBARAK, Esma Nur CINICIOGLU, Ozer CINICIOGLU. SPT based determination of undrained shear strength: Regression models and machine learning[J]. Front. Struct. Civ. Eng., 2020, 14(1): 185-198.
[13] Xiao YAN, Zizheng SUN, Shucai LI, Rentai LIU, Qingsong ZHANG, Yiming ZHANG. Quantitatively assessing the pre-grouting effect on the stability of tunnels excavated in fault zones with discontinuity layout optimization: A case study[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1393-1404.
[14] Renpeng CHEN, Pin ZHANG, Huaina WU, Zhiteng WANG, Zhiquan ZHONG. Prediction of shield tunneling-induced ground settlement using machine learning techniques[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1363-1378.
[15] Tugrul TALASLIOGLU. Optimal dome design considering member-related design constraints[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1150-1170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed