Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2022, Vol. 16 Issue (10) : 1213-1232    https://doi.org/10.1007/s11709-022-0880-7
RESEARCH ARTICLE
Development of deep neural network model to predict the compressive strength of FRCM confined columns
Khuong LE-NGUYEN1,2, Quyen Cao MINH1, Afaq AHMAD3, Lanh Si HO1,4()
1. Department of Civil Engineering, University of Transport Technology, Hanoi 100000, Vietnam
2. Faculty of Arts and Design, University of Canberra, Bruce ACT 2617, Australia
3. Department of Civil Engineering, University of Engineering and Technology, Taxila 47080, Pakistan
4. Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8527, Japan
 Download: PDF(30330 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The present study describes a reliability analysis of the strength model for predicting concrete columns confinement influence with Fabric-Reinforced Cementitious Matrix (FRCM). through both physical models and Deep Neural Network model (artificial neural network (ANN) with double and triple hidden layers). The database of 330 samples collected for the training model contains many important parameters, i.e., section type (circle or square), corner radius rc, unconfined concrete strength fco, thickness nt, the elastic modulus of fiber Ef , the elastic modulus of mortar Em. The results revealed that the proposed ANN models well predicted the compressive strength of FRCM with high prediction accuracy. The ANN model with double hidden layers (APDL-1) was shown to be the best to predict the compressive strength of FRCM confined columns compared with the ACI design code and five physical models. Furthermore, the results also reveal that the unconfined compressive strength of concrete, type of fiber mesh for FRCM, type of section, and the corner radius ratio, are the most significant input variables in the efficiency of FRCM confinement prediction. The performance of the proposed ANN models (including double and triple hidden layers) had high precision with R higher than 0.93 and RMSE smaller than 0.13, as compared with other models from the literature available.

Keywords FRCM      deep neural networks      confinement effect      strength model      confined concrete     
Corresponding Author(s): Lanh Si HO   
Just Accepted Date: 13 September 2022   Online First Date: 30 November 2022    Issue Date: 29 December 2022
 Cite this article:   
Khuong LE-NGUYEN,Quyen Cao MINH,Afaq AHMAD, et al. Development of deep neural network model to predict the compressive strength of FRCM confined columns[J]. Front. Struct. Civ. Eng., 2022, 16(10): 1213-1232.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-022-0880-7
https://academic.hep.com.cn/fsce/EN/Y2022/V16/I10/1213
Fig.1  Equivalent circular cross-section.
modelanalytical expressionsNo.
Ortlepp’s model [32]fccfco=1+0.27×flufco+5.55×(flufco)2?3.51×(flufco)3(1)
σlu=ke×b+hbh×af×nf×ffu(2)
ke=1?bn2+hn23Ac(3)
ACI 549.4-13 [31]fccfco=fco+3.1κaflufco(4)
flu=(2nfAfEfεfe)/(2nfAfEfεfe)(b2+h2)(b2+h2)0.5(5)
κa=(bh)2[1?(bh)bn2+(hb)hn23Ag](6)
κb=(hb)2[1?(bh)bn2+(hb)hn23Ag](7)
εfe=min(εfu;0.012)(8)
Ombres’s model [7]fccfco=1+0.913(flufco)0.5(9)
flu=12kekθρfEfεfu(10)
ke=0.25[(ρfEffco)0.3?1](11)
kθ=11+3tan?θ(12)
Triantafillou’s model [22]fccfco=1+1.9(flufco)1.27(13)
flu=keb+hbhtfEfεfu(14)
ke=1?bn2+hn23Ac(15)
de Caso’s model [33]fccfco=1+2.87(flufco)0.775(16)
flu=2EfεfutfnfD(17)
Colajanni’s model [23]fccfco=2.2541+7.94flufco?2flufco?1.254(18)
flu=12ρfEfεfuke(19)
ke=1?(b?rc)2+(h?rc)23Ag(20)
Fossetti’s model [26]fccfco=6.46η?0.86ρ+3.47η?0.28(21)
η=EcρfEf(22)
ρ=2r/l(23)
Tab.1  Summary of the strength models used in this study
Fig.2  Simplified mathematical function of ANN.
No.parameterminmaxdiffavgmedianst.devCOV
1area (mm2)785090000821502233317663156030.70
2l/h0.300.600.290.470.500.070.15
3θ (° )30906088.50908.710.10
4fco (MPa)11.4052.3940.9922.1721.806.240.28
5eco (%)0.110.740.630.240.210.100.42
6fuo (MPa)0.4534.9034.5117.9918.015.660.31
7euo (%)0.030.850.820.300.270.120.40
8fcm (MPa)2.4982.0079.5134.3630.4017.390.51
9ftm (MPa)0.2013.5013.306.275.303.220.51
10Em (GPa)2.8036.0033.2015.1310.359.860.65
11ffu (MPa)586580052143373.4632401665.480.49
12Ef (GPa)50330280180.7820481.950.45
13ρ = 2r/l0.001.001.000.811.000.330.41
14ρf = 4tfn/l0.2332.0031.773.902.514.321.11
15af (mm2/m)0.00562.36562.3684.3322.98109.411.30
exp fcc/fco1.013.291.281.461.410.340.23
Tab.2  Parameters details in the database for FRCM
Fig.3  Histogram with a normal distribution fit. (a) area (mm2 × 104); (b) l/h; (c) θ (°); (d) fco (MPa); (e) εco (%); (f) fuo (MPa); (g) εuo (%); (h) fcm (MPa); (i) ftm (MPa); (j) Em (GPa); (k) ffu (MPa); (l) Ef (GPa); (m) ρ = 2r/l; (n) ρf = 4tf n/l; (o) af (mm2/m).
No.hyper-parameteroptimized value
1net.trainParam.epochs1000 maximum number of epochs to train
2net.trainParam.goal0 performance goal
3net.trainParam.max_fail6 maximum validation failures
4net.trainParam.min_grad1e?7 minimum performance gradient
5net.trainParam.mu0.001 initial mu
6net.trainParam.mu_dec0.1 mu decrease factor
7net.trainParam.mu_inc10 mu increase factor
8net.trainParam.mu_max1e10 maximum mu
9net.trainParam.show25 epochs between displays (NaN for no displays)
10net.trainParam.timeinf maximum time to train in seconds
Tab.3  Detail of the hyper-parameter of LM used for modeling the ANN models
Fig.4  Local minima and over-fitting problem. (a) Local and global error; (b) over-fitting problem.
Fig.5  K-Fold cross-validation.
Sr. No.ANNall input parametersinputsL1-2L3-4hiddenoutput
1APDL-1A, l/h, θ, fco, eco, fuo,euo, fcm, ftm, Em, ffu, Ef, ρ, ρf, af15SDFTHF15-15fcc/fco, 1
2APDL -2SDFTHF18-18fcc/fco, 1
3APDL -3SDFTHF21-21fcc/fco, 1
4APDL -4SDFTHF24-24fcc/fco, 1
5APDL -5SDFTHF27-27fcc/fco, 1
6APDL -6SDFTHF30-30fcc/fco, 1
Tab.4  Double Layers ANN Models with all Parameters for FRCM
Sr. No.ANNall input parametersinputsL1-2L3-4L4-5hiddenoutput
1APTL-1A, l/h, θ, fco, eco, fuo,euo, fcm, ftm, Em, ffu, Ef, ρ, ρf, af15SDFTHFTHF15-15-15fcc/fco, 1
2APTL-2SDFTHFTHF18-18-18fcc/fco, 1
3APTL-3SDFTHFTHF21-21-21fcc/fco, 1
4APTL-4SDFTHFTHF24-24-24fcc/fco, 1
5APTL-5SDFTHFTHF27-27-27fcc/fco, 1
6APTL-6SDFTHFTHF30-30-30fcc/fco, 1
Tab.5  Triple Layers ANN Models with all Parameters for FRCM
Fig.6  ANN models predictions for the FRCM using the database with all 15 input parameters. (a) Double layers; (b) triple layers.
Fig.7  ANN models error for the FRCM. (a) ANN with double layers; (b) ANN with triple layers.
Fig.8  Multi-correlation between input variables and output.
Fig.9  The score of input variables.
Sr. No.ANNall input parametersinputsL1-2L3-4hiddenoutput
1SPDL-1A, fco, eco, fuo, euo, fcm, ftm,Em, ffu,Ef,ρ, ρf, af13SDFTHF26, 26fcc/fco, 1
2SPDL-2A, fco, fuo, fcm, ftm,Em, ffu,Ef,ρ, ρf, af11SDFTHF22, 22fcc/fco, 1
3SPDL-3A, fco /fuo, fcm /ftm,Em, ffu, Ef, ρ, ρf, af9SDFTHF18, 18fcc/fco, 1
4SPDL-4A, l/h, fco /fuo, fcm /ftm,Em, ffu, Ef, af8SDFTHF16, 16fcc/fco, 1
5SPDL-5A, fco /fuo, fcm /ftm,Em, ffu,Ef, af7SDFTHF14, 14fcc/fco, 1
6SPDL-6fco, ffu, Ef, ρ, ρf5SDFTHF10, 10fcc/fco, 1
Tab.6  Double Layers ANN Models with all Selected for FRCM
Sr. No.ANNall input parametersinputsL1-2L3-4L3-4hiddenoutput
1SPDL-1A, fco, eco, fuo,euo, fcm, ftm, Em, ffu,Ef,ρ, ρf, af13SDFTHFTHF26,26,26fcc/fco, 1
2SPDL-2A, fco, fuo, fcm, ftm,Em, ffu,Ef,ρ, ρf, af11SDFTHFTHF22,22,22fcc/fco, 1
3SPDL-3A, fco /fuo, fcm /ftm,Em, ffu, Ef, ρ, ρf, af9SDFTHFTHF18,18,18fcc/fco, 1
4SPDL-4A, l/h, fco /fuo, fcm /ftm,Em, ffu, Ef, af8SDFTHFTHF16,16,16fcc/fco, 1
5SPDL-5A, fco /fuo, fcm /ftm,Em, ffu,Ef, af7SDFTHFTHF14,14,14fcc/fco, 1
6SPDL-6fco, ffu, Ef, ρ, ρf5SDFTHFTHF10,10,10fcc/fco, 1
Tab.7  Triple Layers ANN Models with all Selected for FRCM
Fig.10  ANN models predictions for the FRCM using the database with selected input parameters. (a) Double layers; (b) triple layers.
Fig.11  ANN models error for the FRCM. (a) Double layers; (b) triple layers.
tree modelSVMGaussian processXGBoost
preset: fine tree minimum leaf size: 4 surrogate decision splits: offkernel function: cubic box constraint: 0.037 epsilon: 0.00058 standardize: truebasic function: constant kernel function: isotropic rational quadratic kernel scale: 265.7 sigma: 0.0004 standardize: truenumber of trees: 100 epsilon: 0.3 lamda: 1 sigma: 0.0004 standardize: true
Tab.8  Comparison of D-ANN and T-ANN with 4 classical models (primary parameters for the three ML models)
Fig.12  Prediction results for the FRCM of other models. (a) Decision tree model; (b) SVM model; (c) Gaussian process model; (d) XGBoost model.
ML modeltraining datasettesting datasetall dataset
R2RMSEMAER2RMSEMAER2RMSEMAE
decision tree0.820.140.090.760.170.110.810.140.09
SVM0.850.120.060.890.120.060.860.120.06
Gaussian process0.870.110.070.840.140.090.870.120.07
XGBoost0.890.10.070.860.130.090.880.110.07
D-ANN0.950.090.020.920.10.030.930.110.02
T-ANN0.910.10.030.890.110.060.90.130.04
Tab.9  Results of comparison of D-ANN and T-ANN with 4 classical models
Fig.13  Comparison of predictions between ANN models and physical models for FRCM.
Fig.14  Normal distribution of ratios for the case of FRCM.
Fig.15  Range limits of ratios for the FRCM.
1 H Yalciner, A A Hedayat. Repairing and strengthening of an existing reinforced concrete building: A north cyprus perspective. American Journal of Engineering and Applied Sciences, 2010, 3(1): 109–116
https://doi.org/10.3844/ajeassp.2010.109.116
2 T C Triantafillou. Strengthening of existing concrete structures: Concepts and structural behavior. In: Textile Fibre Composites in Civil Engineering. Amsterdam: Elsevier Inc., 2016, 303–322
3 D A Bournas, T C Triantafillou, K Zygouris, F Stavropoulos. Textile-reinforced mortar versus FRP jacketing in seismic retrofitting of RC columns with continuous or lap-spliced deformed bars. Journal of Composites for Construction, 2009, 13(5): 360–371
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000028
4 D A Bournas, P V Lontou, C G Papanicolaou, T C Triantafillou. Textile-reinforced mortar versus fiber-reinforced polymer confinement in reinforced concrete columns. ACI Structural Journal, 2007, 104(6): 740–748
5 D MostofinejadN MoshiriN Mortazavi. Effect of corner radius and aspect ratio on compressive behavior of rectangular concrete columns confined with CFRP. Materials and Structures, 2015, 48(1−2): 107−122
6 D Liu, H Huang, J Zuo, K Duan, Y Xue, Y Li. Experimental and numerical study on short eccentric columns strengthened by textile-reinforced concrete under sustaining load. Journal of Reinforced Plastics and Composites, 2017, 36(23): 1712–1726
https://doi.org/10.1177/0731684417725396
7 L Ombres, S Mazzuca. Confined concrete elements with cement-based composites: Confinement effectiveness and prediction models. Journal of Composites for Construction, 2017, 21(3): 04016103
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000755
8 A Napoli, R Realfonzo. Compressive strength of concrete confined with fabric reinforced cementitious matrix (FRCM): Analytical models. Composites Part C: Open Access, 2020, 2: 100032
9 H Guo, X Zhuang, T Rabczuk. A deep collocation method for the bending analysis of Kirchhoff plate. Computers, Materials & Continua, 2019, 59(2): 433–456
https://doi.org/10.32604/cmc.2019.06660
10 C Anitescu, E Atroshchenko, N Alajlan, T Rabczuk. Artificial neural network methods for the solution of second order boundary value problems. Computers, Materials & Continua, 2019, 59(1): 345–359
https://doi.org/10.32604/cmc.2019.06641
11 E Samaniego, C Anitescu, S Goswami, V M Nguyen-Thanh, H Guo, K Hamdia, X Zhuang, T Rabczuk. An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Computer Methods in Applied Mechanics and Engineering, 2020, 362: 112790
https://doi.org/10.1016/j.cma.2019.112790
12 X Zhuang, H Guo, N Alajlan, H Zhu, T Rabczuk. Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. European Journal of Mechanics. A, Solids, 2021, 87: 104225
https://doi.org/10.1016/j.euromechsol.2021.104225
13 H Guo, X Zhuang, P Chen, N Alajlan, T Rabczuk. Stochastic deep collocation method based on neural architecture search and transfer learning for heterogeneous porous media. Engineering with Computers, 2022, 1–26
14 H Guo, X Zhuang, P Chen, N Alajlan, T Rabczuk. Analysis of three-dimensional potential problems in non-homogeneous media with physics-informed deep collocation method using material transfer learning and sensitivity analysis. Engineering with Computers, 2022, 1–22
15 H B Ly, T A Nguyen, V Q Tran. Development of deep neural network model to predict the compressive strength of rubber concrete. Construction & Building Materials, 2021, 301: 124081
https://doi.org/10.1016/j.conbuildmat.2021.124081
16 F Deng, Y He, S Zhou, Y Yu, H Cheng, X Wu. Compressive strength prediction of recycled concrete based on deep learning. Construction & Building Materials, 2018, 175: 562–569
https://doi.org/10.1016/j.conbuildmat.2018.04.169
17 H Naderpour, A Kheyroddin, G G Amiri. Prediction of FRP-confined compressive strength of concrete using artificial neural networks. Composite Structures, 2010, 92(12): 2817–2829
https://doi.org/10.1016/j.compstruct.2010.04.008
18 A Cascardi, F Micelli, M A Aiello. An artificial neural networks model for the prediction of the compressive strength of FRP-confined concrete circular columns. Engineering Structures, 2017, 140: 199–208
https://doi.org/10.1016/j.engstruct.2017.02.047
19 H Naderpour, K Nagai, P Fakharian, M Haji. Innovative models for prediction of compressive strength of FRP-confined circular reinforced concrete columns using soft computing methods. Composite Structures, 2019, 215: 69–84
https://doi.org/10.1016/j.compstruct.2019.02.048
20 J Gao, M Koopialipoor, D J Armaghani, A Ghabussi, S Baharom, A Morasaei, A Shariati, M Khorami, J Zhou. Evaluating the bond strength of FRP in concrete samples using machine learning methods. Smart Structures and Systems, 2020, 26: 403–418
21 H M Elsanadedy, Y A Al-Salloum, H Abbas, S H Alsayed. Prediction of strength parameters of FRP-confined concrete. Composites. Part B, Engineering, 2012, 43(2): 228–239
https://doi.org/10.1016/j.compositesb.2011.08.043
22 T C Triantafillou, C G Papanicolaou, P Zissimopoulos, T Laourdekis. Concrete confinement with textile-reinforced mortar jackets. ACI Materials Journal, 2006, 103: 28–37
23 P Colajanni, F De Domenico, A Recupero, N Spinella. Concrete columns confined with fibre reinforced cementitious mortars: Experimentation and modelling. Construction & Building Materials, 2014, 52: 375–384
https://doi.org/10.1016/j.conbuildmat.2013.11.048
24 M Spoelstra, G Monti. FRP-confined concrete model. Journal of Composites for Construction, 1999, 3(3): 143–150
https://doi.org/10.1061/(ASCE)1090-0268(1999)3:3(143
25 L Ombres. Concrete confinement with a cement based high strength composite material. Composite Structures, 2014, 109: 294–304
https://doi.org/10.1016/j.compstruct.2013.10.037
26 M Fossetti, G Alotta, F Basone, G Macaluso. Simplified analytical models for compressed concrete columns confined by FRP and FRCM system. Materials and Structures, 2017, 50(6): 1–20
https://doi.org/10.1617/s11527-017-1110-y
27 J Gonzalez-Libreros, M Zanini, F Faleschini, C Pellegrino. Confinement of low-strength concrete with fiber reinforced cementitious matrix (FRCM) composites. Composites. Part B, Engineering, 2019, 177: 107407
https://doi.org/10.1016/j.compositesb.2019.107407
28 F Faleschini, M A Zanini, L Hofer, C Pellegrino. Experimental behavior of reinforced concrete columns confined with carbon-FRCM composites. Construction & Building Materials, 2020, 243: 118296
https://doi.org/10.1016/j.conbuildmat.2020.118296
29 M KadhimA AdheemA JawdhariM Altaee. Predictive Capability of Existing Confinement Models for FRCM Composites Confined Concrete. 2020 (Available at the website of European Union Digital Library)
30 K Toska, F Faleschini. FRCM-confined concrete: Monotonic vs. cyclic axial loading. Composite Structures, 2021, 268: 113931
https://doi.org/10.1016/j.compstruct.2021.113931
31 549.4R-13 ACI. Guide to Design and Construction of Externally Bonded Fabric-Reinforced Cementitious Matrix (FRCM) Systems for Repair and Strengthening Concrete and Masonry Structures. Farmington Hills, MI: American Concrete Institute, 2013
32 R Ortlepp. TRC-strengthened columns. In: 8th International Conference FIBRE CONCRETE 2015: Technology, Design, Application. Prague: Czech Technical University in Prague, 2015, 1–9
33 Y de Caso, F J Basalo, F Matta, A Nanni. Fiber reinforced cement-based composite system for concrete confinement. Construction & Building Materials, 2012, 32: 55–65
https://doi.org/10.1016/j.conbuildmat.2010.12.063
34 P HajelaL Berke. Neural networks in structural analysis and design: An overview. Computing Systems in Engineering, 1992, 3(1−4): 525−538
35 Y Pu, E Mesbahi. Application of artificial neural networks to evaluation of ultimate strength of steel panels. Engineering Structures, 2006, 28(8): 1190–1196
https://doi.org/10.1016/j.engstruct.2005.12.009
36 V Plevris, P G Asteris. Modeling of masonry failure surface under biaxial compressive stress using Neural Networks. Construction & Building Materials, 2014, 55: 447–461
https://doi.org/10.1016/j.conbuildmat.2014.01.041
37 Z WaszczyszynL Ziemiański. Neural networks in mechanics of structures and materials—New results and prospects of applications. Computers & Structures, 2001, 79(22−25): 2261−2276
38 A Ahmad, M Elchalakani, N Elmesalami, A El Refai, F Abed. Reliability analysis of strength models for short-concrete columns under concentric loading with FRP rebars through artificial neural network. Journal of Building Engineering, 2021, 42: 102497
https://doi.org/10.1016/j.jobe.2021.102497
39 A Raza, A Ahmad. Investigation of HFRC columns reinforced with GFRP bars and spirals under concentric and eccentric loadings. Engineering Structures, 2021, 227: 111461
https://doi.org/10.1016/j.engstruct.2020.111461
40 P Colajanni, M Fossetti, G Macaluso. Effects of confinement level, cross-section shape and corner radius on the cyclic behavior of CFRCM confined concrete columns. Construction & Building Materials, 2014, 55: 379–389
https://doi.org/10.1016/j.conbuildmat.2014.01.035
41 T Triantafillou, C Papanicolaou, P Zissimopoulos, T Laourdekis. Concrete confinement with textile-reinforced mortar jackets. ACI Structural Journal, 2006, 103: 28–37
42 P ColajanniF Di TrapaniG MacalusoM FossettiM Papia. Cyclic axial testing of columns confined with fiber reinforced cementitiuos matrix. In: Proceedings of the 6th international conference on FRP composites in civil engineering (CICE’12). Rome: Sapienza University of Rome, 2012
43 T Trapko. Confined concrete elements with PBO-FRCM composites. Construction & Building Materials, 2014, 73: 332–338
https://doi.org/10.1016/j.conbuildmat.2014.09.055
44 A D’AmbrisiA ProtaG Mantegazza. Confinement of concrete with FRCM materials: Experimental analysis and modeling. In: AICAP National Symposium. Rome: AICAP, 2011
45 L Ombres. Confinement effectiveness in concrete strengthened with fiber reinforced cement based composite jackets. In: 8th International Symposium on Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures (FRPCS-8). Patras: University of Patras, 2007
46 A Cascardi, F Longo, F Micelli, M A Aiello. Compressive strength of confined column with fiber reinforced mortar (FRM): New design-oriented-models. Construction and Building Materials, 2017, 156: 387–401
47 M Di Ludovico, A Prota, G Manfredi. Structural upgrade using basalt fibers for concrete confinement. Journal of Composites for Construction, 2010, 14(5): 541–552
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000114
48 D GarcíaP AlonsoJ T San-JoséL GarmendiaC Perlot. Confinement of medium strength concrete cylinders with basalt textile reinforced mortar. In: ICPIC 2010—13th International Congress on Polymers in Concrete. Madeira Island: University of Minho, 1–8
49 G E Thermou, K Katakalos, G Manos. Concrete confinement with steel-reinforced grout jackets. Materials and Structures, 2015, 48(5): 1355–1376
https://doi.org/10.1617/s11527-013-0239-6
50 C M Quyen, N X Huy, L N Khuong, N H Giang. The effect of cross-sectional shape on the effectiveness of reinforcing concrete short columns with woven mesh reinforced concrete. Thai Nguyen city: Thain Nguyen University of Technology, 2021, 808
51 R OrtleppA LorenzM Curbach. Geometry effects onto the load bearing capacity of column heads strengthened with TRC. In: Proceedings of 2011 fib Symposium: Concrete Engineering for Excellence and Efficiency. Prague: fib, 2011
52 G E Thermou, I Hajirasouliha. Compressive behaviour of concrete columns confined with steel-reinforced grout jackets. Composites. Part B, Engineering, 2018, 138: 222–231
https://doi.org/10.1016/j.compositesb.2017.11.041
53 J Gonzalez-Libreros, C Sabau, L H Sneed, G Sas, C Pellegrino. Effect of confinement with FRCM composites on damaged concrete cylinders. In: International Conference on Strain-Hardening Cement-Based Composites. Dordrecht: Springer, 2017, 770–777
54 J Donnini, S Spagnuolo, V Corinaldesi. A comparison between the use of FRP, FRCM and HPM for concrete confinement. Composites. Part B, Engineering, 2019, 160: 586–594
https://doi.org/10.1016/j.compositesb.2018.12.111
55 A Sadrmomtazi, M Khabaznia, B Tahmouresi. Effect of organic and inorganic matrix on the behavior of FRP-wrapped concrete cylinders. Journal of Rehabilitation in Civil Engineering., 2016, 4: 52–66
56 A N Al-Gemeel, Y Zhuge. Using textile reinforced engineered cementitious composite for concrete columns confinement. Composite Structures, 2019, 210: 695–706
https://doi.org/10.1016/j.compstruct.2018.11.093
57 L ZengL LiF Liu. Experimental study on fibre-reinforced cementitious matrix confined concrete columns under axial compression. Journal of Chemists and Chemical Engineers, 2017, 66(3–4): 165–172
58 L Ombres. Structural performances of thermally conditioned PBO FRCM confined concrete cylinders. Composite Structures, 2017, 176: 1096–1106
https://doi.org/10.1016/j.compstruct.2017.06.026
59 I Taleb, R Dssouli, M A Serhani. Big data pre-processing: A quality framework. In: 2015 IEEE International Congress on Big Data. Santa Clara, CA: IEEE, 2015, 191–198
60 L Barbini, A P Ompusunggu, A J Hillis, J L du Bois, A Bartic. Phase editing as a signal pre-processing step for automated bearing fault detection. Mechanical Systems and Signal Processing, 2017, 91: 407–421
https://doi.org/10.1016/j.ymssp.2016.12.004
61 B Ashtiani, R Leus, M B Aryanezhad. New competitive results for the stochastic resource-constrained project scheduling problem: exploring the benefits of pre-processing. Journal of Scheduling, 2011, 14(2): 157–171
https://doi.org/10.1007/s10951-009-0143-7
62 A AhmadM U ArshidT MahmoodN AhmadA WaheedS S Safdar. Knowledge-based prediction of load-carrying capacity of RC flat slab through neural network and FEM. Mathematical Problems in Engineering, 2021
63 A Ahmad, D M Cotsovos, N D Lagaros. Framework for the development of artificial neural networks for predicting the load carrying capacity of RC members. SN Applied Sciences, 2020, 2(4): 1–21
64 A AhmadD M CotsovosN D Lagaros. Assessing the reliability of RC code predictions through the use of artificial neural networks. In: 1st International Conference on Structural Safety under Fire & Blast. Glasgow: ASRANet, 2016
65 P RefaeilzadehL TangH Liu. Encyclopedia of Database Systems. New York: Springer, 532–538
66 P Sedgwick. Pearson’s Correlation Coefficient. BMJ (Clinical Research Ed.), 2012, 345: e4483
67 R A Armstrong. Should Pearson’s correlation coefficient be avoided? Ophthalmic & Physiological Optics, 2019, 39(5): 316–327
68 L Egghe, L Leydesdorff. The relation between Pearson’s correlation coefficient r and Salton’s cosine measure. Journal of the American Society for Information Science and Technology, 2009, 60(5): 1027–1036
https://doi.org/10.1002/asi.21009
69 C J Willmott, K Matsuura. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research, 2005, 30: 79–82
https://doi.org/10.3354/cr030079
70 T Chai, R R Draxler. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature.. Geoscientific Model Development, 2014, 7(3): 1247–1250
https://doi.org/10.5194/gmd-7-1247-2014
71 C Lv, Y Xing, J Zhang, X Na, Y Li, T Liu, D Cao, F Wang. Levenberg–Marquardt backpropagation training of multilayer neural networks for state estimation of a safety-critical cyber-physical system. IEEE Transactions on Industrial Informatics, 2017, 14(8): 3436–3446
72 T HastieR TibshiraniJ Friedman. The Elements of Statistical Learning. 2nd ed. New York: Springer. 2009, 587–603
73 H Zheng, J Yuan, L Chen. Short-term load forecasting using EMD-LSTM neural networks with a Xgboost algorithm for feature importance evaluation. Energies, 2017, 10(8): 1168
https://doi.org/10.3390/en10081168
74 L BreimanJ H FriedmanR A OlshenC J Stone. Classification and Regression Trees. Oxfordshire: Routledge, 2017
[1] Linh Van Hong BUI, Phuoc Trong NGUYEN. Shear strength model of the reinforced concrete beams with embedded through-section strengthening bars[J]. Front. Struct. Civ. Eng., 2022, 16(7): 843-857.
[2] Zhiqiang DONG, Gang WU, Hong ZHU, Haitao WANG, Yihua ZENG. Mechanism and control of the long-term performance evolution of structures[J]. Front. Struct. Civ. Eng., 2020, 14(5): 1039-1048.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed