Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2022, Vol. 16 Issue (7) : 843-857    https://doi.org/10.1007/s11709-022-0834-0
RESEARCH ARTICLE
Shear strength model of the reinforced concrete beams with embedded through-section strengthening bars
Linh Van Hong BUI, Phuoc Trong NGUYEN()
Faculty of Civil Engineering, Ho Chi Minh City Open University, Ho Chi Minh City 700000, Vietnam
 Download: PDF(6227 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, finite element (FE) analysis is utilized to investigate the shear capacity of reinforced concrete (RC) beams strengthened with embedded through-section (ETS) bars. Effects of critical variables on the beam shear strength, including the compressive strength of concrete, stiffness ratio between ETS bars and steel stirrups, and use of ETS strengthening system alone, are parametrically investigated. A promising method based on the bond mechanism between ETS strengthening and concrete is then proposed for predicting the shear resistance forces of the strengthened beams. An expression for the maximum bond stress of the ETS bars to concrete is developed. This new expression eliminates the difficulty in the search and selection of appropriate bond parameters from adhesion tests. The results obtained from the FE models and analytical models are validated by comparison with those measured from the experiments. Consequently, the model proposed in this study demonstrates better performance and more accuracy for prediction of the beam shear-carrying capacity than those of existing models. The results obtained from this study can also serve researchers and engineers in selection of the proper shear strength models for design of ETS-strengthened RC beams.

Keywords embedded through-section      strengthening      fiber-reinforced polymer      finite element      shear strength model      bond mechanism     
Corresponding Author(s): Phuoc Trong NGUYEN   
Just Accepted Date: 26 July 2022   Online First Date: 11 October 2022    Issue Date: 17 November 2022
 Cite this article:   
Linh Van Hong BUI,Phuoc Trong NGUYEN. Shear strength model of the reinforced concrete beams with embedded through-section strengthening bars[J]. Front. Struct. Civ. Eng., 2022, 16(7): 843-857.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-022-0834-0
https://academic.hep.com.cn/fsce/EN/Y2022/V16/I7/843
Fig.1  Specifications of the beams tested in previous studies [12,14,16] (dimensions in mm). (Reprinted from Journal of Composites for Construction, 16(5), Mofidi A, Chaallal O, Benmokrane B, Neale K W, Experimental tests and design model for RC beams strengthened in shear using the embedded through-section FRP method, 540–550, Copyright 2012, with permission from American Society of Civil Engineers.) (Reprinted from Composite Structures, 126, Breveglieri M, Aprile A, Barros J A O, Embedded through-section shear strengthening technique using steel and CFRP bars in RC beams of different percentage of existing stirrups, 101–113, Copyright 2015, with permission from Elsevier.)
group beams ρsw (%) Esw (GPa) dsw (mm) db (mm) ρf (%) Ef (GPa) fc (MPa) ff (MPa) Ef ρf/Esw ρsw Ef ρf + Esw ρsw (MPa)
Mofidi et al. [12] S0-12d130s 12.7 0.64 148 29.6 1885 - 947.2
S1-9d260s 0.25 200 8 9.5 0.18 148 29.6 1885 0.533 766.4
S1-12d260s 0.25 200 8 12.7 0.32 148 29.6 1885 0.947 973.6
S1-12d130s 0.38 200 8 12.7 0.64 148 29.6 1885 1.246 1707
S1-9d260p 0.25 200 8 9.5 0.18 155 29.6 2800 0.558 779
S3-12d130s 0.38 200 8 12.7 0.64 148 29.6 1885 1.246 1707
Breveglieri et al. [14] 2S-C180-90 (C1) 0.10 200 6 8 0.16 160 29.7 1920 1.280 456
2S-C180-45 (C2) 0.10 200 6 8 0.22 160 29.7 1920 1.760 552
4S-C180-90 (C3) 0.17 200 6 8 0.16 160 32.3 1920 0.753 596
4S-C180-45 (C4) 0.17 200 6 8 0.22 160 32.3 1920 1.035 692
Bui et al. [16] B1 0.11 200 6 10 0.24 50 38 1076 0.551 341.2
B2 0.11 200 6 10 0.34 50 38 1076 0.779 391.4
B3 0.24 200 9 10 0.24 50 38 1076 0.253 601.2
B4 0.24 200 9 10 0.34 50 38 1076 0.357 651.4
Tab.1  Beam configurations for experiments in previous studies
group beams ρsw (%) Esw (GPa) dsw (mm) db (mm) ρf (%) Ef (GPa) fc (MPa) ff (MPa) Ef ρf/Esw ρsw Ef ρf + Esw ρsw (MPa)
Group 1 (for fc = 20 MPa varying stiffness ratio) G1_Original 0.24 200 9 10 0.24 50 20 1076 0.257 592.4
G1_B1 0.14 200 6 10 0.29 40 20 755 0.417 395.6
G1_B2 0.10 200 6 10 0.15 75 20 1366 0.521 318.5
G1_B3 0.31 200 9 9.5 0.13 100 20 1500 0.209 759.6
G1_B4 0.10 200 6 10 0.10 120 20 1700 0.556 325.8
G1_B5 0.39 200 9 9 0.08 160 20 2400 0.160 911.1
G1_B6 0.19 200 10 8 0.06 200 20 0.320 512.0
Group 2 (for fc = 38 MPa varying stiffness ratio) G2_Original 0.24 200 9 10 0.24 50 38 1076 0.257 592.4
G2_B1 0.14 200 6 10 0.29 40 38 755 0.417 395.6
G2_B2 0.10 200 6 10 0.15 75 38 1366 0.521 318.5
G2_B3 0.31 200 9 9.5 0.13 100 38 1500 0.209 759.6
G2_B4 0.10 200 6 10 0.10 120 38 1700 0.556 325.8
G2_B5 0.39 200 9 9 0.08 160 38 2400 0.160 911.1
G2_B6 0.19 200 10 8 0.06 200 38 0.320 512.0
Group 3 (for fc = 70 MPa varying stiffness ratio) G3_Original 0.24 200 9 10 0.24 50 70 1076 0.257 592.4
G3_B1 0.14 200 6 10 0.29 40 70 755 0.417 395.6
G3_B2 0.10 200 6 10 0.15 75 70 1366 0.521 318.5
G3_B3 0.31 200 9 9.5 0.13 100 70 1500 0.209 759.6
G3_B4 0.10 200 6 10 0.10 120 70 1700 0.556 325.8
G3_B5 0.39 200 9 9 0.08 160 70 2400 0.160 911.1
G3_B6 0.19 200 10 8 0.06 200 70 0.320 512.0
Group 4 (for ETS only) G4_Original 10 0.24 50 38 1076 121.2
G4_B1 10 0.29 40 38 755 116.4
G4_B2 9.5 0.13 100 38 1366 131.3
G4_B3 10 0.10 120 38 1500 116.4
G4_B4 9 0.08 160 38 2400 125.7
G4_B5 8 0.06 200 38 124.1
Tab.2  Beam configurations for parametric studies using FEM
Fig.2  Modelings for FEM simulation: (a) concrete model in compression [25,26]; (b) concrete model in tension [25,26]; (c) steel and FRP material models [25,26]; (d) bond model [25,26]. (Reprinted from Journal of Building Engineering, 29, Bui L V H, Stitmannaithum B, Jongvivatsakul P, Comprehensive investigation on bond mechanism of embedded throughsection fiber-reinforced polymer bars to concrete for structural analysis, 101180, Copyright 2020, with permission from Elsevier.)
Fig.3  A half FE model.
Fig.4  Comparison between experiment and FEM simulation: (a) load?deflection curves for representative specimens B1, B2, C1, and C2; (b) beam shear capacity; (c) ETS shear contribution.
Fig.5  Failure patterns. Note: The gray color displayed in the strain contour demonstrates the exceeding ultimate strain occurred in concrete. (photos of the experimental results of the beams are reproduced from Breveglieri et al. [14] with permission). (Reprinted from Composite Structures, 126, Breveglieri M, Aprile A, Barros J A O, Embedded through-section shear strengthening technique using steel and CFRP bars in RC beams of different percentage of existing stirrups, 101–113, Copyright 2015, with permission from Elsevier.)
Fig.6  Stress in steel reinforcement and ETS-FRP bars in the specimen 2S-C180-45 (C2) (stress unit in MPa).
Fig.7  Scheme to determine equivalent bond mechanism: (a) equivalent bond block [25] (Reprinted from Journal of Building Engineering, 29, Bui L V H, Stitmannaithum B, Jongvivatsakul P, Comprehensive investigation on bond mechanism of embedded throughsection fiber-reinforced polymer bars to concrete for structural analysis, 101180, Copyright 2020, with permission from Elsevier.); (b) example for determination of the critical crack plane and crack angle via smeared cracks from the FEM simulation.
Fig.8  Verification of shear resisting models. Note: τm in the model of Mofidi et al. [12] and the proposed model is selected to have best fit with ETS shear contribution.
items Mofidi et al.’s model [12] Bui et al.’s model [16] proposed model
Calibration of τm to have best fit with Vf
 average (Vn_pred./Vn_exp./FEM) 0.73 1.03 1.05
  Cov (average) 0.18 0.27 0.18
τm expression (Eq. (16)) with k = 1
 average (Vn_pred./Vn_exp./FEM) 0.73 1.03 1.04
  Cov (average) 0.21 0.27 0.26
τm expression (Eq. (16)) with k = 0.8
 average (Vn_pred./Vn_exp./FEM) 0.71 1.03 0.98
  Cov (average) 0.20 0.27 0.25
Tab.3  Accuracy of the models
Fig.9  Relationship between material function and maximum bond stress.
Fig.10  Verification of the shear strength models with proposed expression for maximum bond stress.
1 S J E Dias, J A O Barros. Shear strengthening of T cross section reinforced concrete beams by near-surface mounted technique. Journal of Composites for Construction, 2008, 12(3): 300–311
https://doi.org/10.1061/(ASCE)1090-0268(2008)12:3(300
2 K N Rahal, H A Rumaih. Tests on reinforced concrete beams strengthened in shear using near surface mounted CFRP and steel bars. Engineering Structures, 2011, 33(1): 53–62
https://doi.org/10.1016/j.engstruct.2010.09.017
3 O Chaallal, A Mofidi, B Benmokrane, K Neale. Embedded through-section FRP rod method for shear strengthening of RC beams: Performance and comparison with existing techniques. Journal of Composites for Construction, 2011, 15(3): 374–383
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000174
4 S J E Dias, J A O Barros. Shear strengthening of RC beams with NSM CFRP laminates: Experimental research and analytical formulation. Composite Structures, 2013, 99: 477–490
https://doi.org/10.1016/j.compstruct.2012.09.026
5 A K Panigrahi, K C Biswal, M R Barik. Strengthening of shear deficient RC T-beams with externally bonded GFRP sheets. Construction & Building Materials, 2014, 57: 81–91
https://doi.org/10.1016/j.conbuildmat.2014.01.076
6 M A Hosen, M Z Jumaat, A B M S Islam. Side Near Surface Mounted (SNSM) technique for flexural enhancement of RC beams. Materials & Design, 2015, 83: 587–597
https://doi.org/10.1016/j.matdes.2015.06.035
7 J Carter, A S Genikomsou. Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars. Frontiers of Structural and Civil Engineering, 2019, 13(6): 1520–1530
https://doi.org/10.1007/s11709-019-0580-0
8 L V H Bui, B Stitmannaithum. Prediction of shear contribution for the FRP strengthening systems in RC beams: A simple bonding-based approach. Journal of Advanced Concrete Technology, 2020, 18(10): 600–617
https://doi.org/10.3151/jact.18.600
9 S W Bae, A Belarbi. Behavior of various anchorage systems used for shear strengthening of concrete structures with externally bonded FRP sheets. Journal of Bridge Engineering, 2013, 18(9): 837–847
https://doi.org/10.1061/(ASCE)BE.1943-5592.0000420
10 P Valerio, T J Ibell, A P Darby. Deep embedment of FRP for concrete shear strengthening. Proceedings of the Institution of Civil Engineers—Structures and Buildings, 2009, 162(5): 311–321
https://doi.org/10.1680/stbu.2009.162.5.311
11 J A O BarrosG M DalfréE TrombiniA Aprile. Exploring the possibilities of a new technique for the shear strengthening of RC elements. In: Proceedings of International Conference of Challenges Civil Construction (CCC2008). Portugal: University of Porto, 2008
12 A Mofidi, O Chaallal, B Benmokrane, K W Neale. Experimental tests and design model for RC beams strengthened in shear using the embedded through-section FRP method. Journal of Composites for Construction, 2012, 16(5): 540–550
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000292
13 M Breveglieri, A Aprile, J A O Barros. Shear strengthening of reinforced concrete beams strengthened using embedded through section steel bars. Engineering Structures, 2014, 81: 76–87
https://doi.org/10.1016/j.engstruct.2014.09.026
14 M Breveglieri, A Aprile, J A O Barros. Embedded through section shear strengthening technique using steel and CFRP bars in RC beams of different percentage of existing stirrups. Composite Structures, 2015, 126: 101–113
https://doi.org/10.1016/j.compstruct.2015.02.025
15 M Breveglieri, A Aprile, J A O Barros. RC beams strengthened in shear using the embedded through-section technique: Experimental results and analytical formulation. Composites. Part B, Engineering, 2016, 89: 266–281
https://doi.org/10.1016/j.compositesb.2015.11.023
16 L V H Bui, B Stitmannaithum, T Ueda. Experimental investigation of concrete beams strengthened with embedded through-section steel and FRP bars. Journal of Composites for Construction, 2020, 24(5): 04020052
https://doi.org/10.1061/(ASCE)CC.1943-5614.0001055
17 T Rabczuk, G Zi, S Bordas, H Nguyen-Xuan. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 2008, 75(16): 4740–4758
https://doi.org/10.1016/j.engfracmech.2008.06.019
18 T RabczukG ZiS BordasH Nguyen-Xuan. A simple and robust three-dimensional cracking-particle method without enrichment. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37−40): 2437−2455
19 T RabczukT Belytschko. A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Computer Methods in Applied Mechanics and Engineering, 2007, 196(29−30): 2777−2799
20 T Rabczuk, T Belytschko. Cracking particles: A simplified meshfree method for arbitrary evolving cracks. International Journal for Numerical Methods in Engineering, 2004, 61(13): 2316–2343
https://doi.org/10.1002/nme.1151
21 H L Ren, X Y Zhuang, C Anitescu, T Rabczuk. An explicit phase field method for brittle dynamic fracture. Computers & Structures, 2019, 217: 45–56
https://doi.org/10.1016/j.compstruc.2019.03.005
22 S Goswami, C Anitescu, S Chakraborty, T Rabczuk. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture. Theoretical and Applied Fracture Mechanics, 2020, 106: 102447
https://doi.org/10.1016/j.tafmec.2019.102447
23 A GodatP LabossièreK W NealeO Chaallal. Behavior of RC members strengthened in shear with EB FRP: Assessment of models and FE simulation approaches. Computers & Structures, 2012, 92–93: 92–93
24 A Godat, O Chaallal, K W Neale. Nonlinear finite element models for the embedded through-section FRP shear-strengthening method. Computers & Structures, 2013, 119: 12–22
https://doi.org/10.1016/j.compstruc.2012.12.016
25 L V H Bui, B Stitmannaithum, P Jongvivatsakul. Comprehensive investigation on bond mechanism of embedded throughsection fiber-reinforced polymer bars to concrete for structural analysis. Journal of Building Engineering, 2020, 29: 101180
https://doi.org/10.1016/j.jobe.2020.101180
26 L V H Bui, B Stitmannaithum, T Ueda. Simulation of concrete beams strengthened by embedded through-section steel and GFRP bars with newly developed bond model. Journal of Advanced Concrete Technology, 2020, 18(7): 364–385
https://doi.org/10.3151/jact.18.364
27 ADINA. Version 8.5.4. Watertown, MA: ADINA R&D Incorporation. 2009
28 ANSYS. Version15.0. Canonsburg, PA: Ansys Inc., 2013
29 M Breveglieri, J A O Barros, A Aprile, A Ventura-Gouveia. Strategies for numerical modeling the behavior of RC beams strengthened in shear using the ETS technique. Engineering Structures, 2016, 128: 296–315
https://doi.org/10.1016/j.engstruct.2016.09.027
30 K M Hamdia, M Silani, X Zhuang, P He, T Rabczuk. Stochastic analysis of the fracture toughness of polymeric nanoparticle composites using polynomial chaos expansions. International Journal of Fracture, 2017, 206(2): 215–227
https://doi.org/10.1007/s10704-017-0210-6
31 TIS20-2543. Steel Bars for Reinforced Concrete: Round Bars. Bangkok: TISI (Thai Industrial Standards Institute), 2000
32 TIS24-2548. Steel Bars for Reinforced Concrete: Round Bars. Bangkok: TISI (Thai Industrial Standards Institute), 2003
33 R A Hawileh. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement. Materials & Design, 2015, 65: 831–839
https://doi.org/10.1016/j.matdes.2014.10.004
34 E Hognestad, N W Hanson, D McHenry. Concrete stress distribution in ultimate strength design. ACI Journal Proceedings, 1955, 52(12): 455–479
35 K J Willam, E P Warnke. Constitutive models for the triaxial behavior of concrete. IABSE Proceedings, 1975, 19: 1–30
36 T Rabczuk, G Zi. Numerical fracture analysis of prestressed concrete beams. International Journal of Concrete Structures and Materials, 2008, 2(2): 153–160
https://doi.org/10.4334/IJCSM.2008.2.2.153
37 T Rabczuk, T Belytschko. Application of particle methods to static fracture of reinforced concrete structures. International Journal of Fracture, 2006, 137(1−4): 19–49
https://doi.org/10.1007/s10704-005-3075-z
38 T RabczukJ AkkermannJ Eibl. A numerical model for reinforced concrete structures. International Journal of Solids and Structures, 2005, 42(5−6): 1327−1354
39 318-08 ACI. Building Code Requirements for Structural Concrete and Commentary. Detroit, MI: American Concrete Institute, 2008
40 J Dai, T Ueda, Y Sato. Development of the nonlinear bond stress–slip model of fiber reinforced plastics sheet–concrete interfaces with a simple method. Journal of Composites for Construction, 2005, 9(1): 52–62
https://doi.org/10.1061/(ASCE)1090-0268(2005)9:1(52
41 M Caro, Y Jemaa, S Dirar, A Quinn. Bond performance of deep embedment FRP bars epoxy-bonded into concrete. Engineering Structures, 2017, 147: 448–457
https://doi.org/10.1016/j.engstruct.2017.05.069
42 T C Triantafillou. Shear strengthening of reinforced concrete beams using epoxy-bonded FRP composites. ACI Structural Journal, 1998, 85(2): 107–115
[1] Kadir SENGUN, Guray ARSLAN. Investigation of the parameters affecting the behavior of RC beams strengthened with FRP[J]. Front. Struct. Civ. Eng., 2022, 16(6): 729-743.
[2] Nang Duc BUI, Hieu Chi PHAN, Tiep Duc PHAM, Ashutosh Sutra DHAR. A hierarchical system to predict behavior of soil and cantilever sheet wall by data-driven models[J]. Front. Struct. Civ. Eng., 2022, 16(6): 667-684.
[3] Dominik KUERES, Dritan TOPUZI, Maria Anna POLAK. Predetermination of potential plastic hinges on reinforced concrete frames using GFRP reinforcement[J]. Front. Struct. Civ. Eng., 2022, 16(5): 624-637.
[4] Pooya ZAKIAN, Hossein ASADI HAYEH. Finite element simulation for elastic dislocation of the North-Tehran fault: The effects of geologic layering and slip distribution for the segment located in Karaj[J]. Front. Struct. Civ. Eng., 2022, 16(4): 533-549.
[5] Abbas YAZDANI. Applying the spectral stochastic finite element method in multiple-random field RC structures[J]. Front. Struct. Civ. Eng., 2022, 16(4): 434-447.
[6] Pravin Kumar Venkat Rao PADALU, Yogendra SINGH. Seismic safety evaluation methodology for masonry building and retrofitting using splint and bandage technique with wire mesh[J]. Front. Struct. Civ. Eng., 2022, 16(4): 478-505.
[7] Lianjin TAO, Cheng SHI, Peng DING, Sicheng LI, Shang WU, Yan BAO. A study on bearing characteristic and failure mechanism of thin-walled structure of a prefabricated subway station[J]. Front. Struct. Civ. Eng., 2022, 16(3): 359-377.
[8] Qinghua LI, Xing YIN, Botao HUANG, Yifeng ZHANG, Shilang XU. Strengthening of the concrete face slabs of dams using sprayable strain-hardening fiber-reinforced cementitious composites[J]. Front. Struct. Civ. Eng., 2022, 16(2): 145-160.
[9] Mohammad R. IRSHIDAT, Rami S. AL-HUSBAN. Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with externally bonded CFRP sheets[J]. Front. Struct. Civ. Eng., 2022, 16(1): 131-143.
[10] Xing MING, John C. HUANG, Zongjin LI. Materials-oriented integrated design and construction of structures in civil engineering—A review[J]. Front. Struct. Civ. Eng., 2022, 16(1): 24-44.
[11] Meng ZHOU, Jiaji WANG, Jianguo NIE, Qingrui YUE. Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel tubes in tension loads[J]. Front. Struct. Civ. Eng., 2021, 15(6): 1317-1336.
[12] Li JIA, Zhi FANG, Maurizio GUADAGNINI, Kypros PILAKOUTAS, Zhengmeng HUANG. Shear behavior of ultra-high-performance concrete beams prestressed with external carbon fiber-reinforced polymer tendons[J]. Front. Struct. Civ. Eng., 2021, 15(6): 1426-1440.
[13] Zaid MOMANI, Eyosias BENEBERU, Nur YAZDANI. Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls[J]. Front. Struct. Civ. Eng., 2021, 15(5): 1209-1221.
[14] Mohammad REZANEZHAD, Seyed Ahmad LAJEVARDI, Sadegh KARIMPOULI. An investigation on prevalent strategies for XFEM-based numerical modeling of crack growth in porous media[J]. Front. Struct. Civ. Eng., 2021, 15(4): 914-936.
[15] Seyed M. N. GHOREISHI, Mahdi FAKOOR, Ahmad AZIZI. Progressive failure analysis of notched composite plate by utilizing macro mechanics approach[J]. Front. Struct. Civ. Eng., 2021, 15(3): 623-642.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed