Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2022, Vol. 16 Issue (1) : 131-143    https://doi.org/10.1007/s11709-021-0787-8
RESEARCH ARTICLE
Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with externally bonded CFRP sheets
Mohammad R. IRSHIDAT(), Rami S. AL-HUSBAN
Department of Civil Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
 Download: PDF(29032 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper studied the effect of incorporation of carbon nanotubes (CNTs) in carbon fiber reinforced polymer (CFRP) on strengthening of reinforced concrete (RC) beams. The RC beams were prepared, strengthened in flexure by externally bonded CFRP or CNTs-modified CFRP sheets, and tested under four-point loading. The experimental results showed the ability of the CNTs to delay the initiation of the cracks and to enhance the flexural capacity of the beams strengthened with CFRP. A nonlinear finite element (FE) model was built, validated, and used to study the effect of various parameters on the strengthening efficiency of CNTs-modified CFRP. The studied parameters included concrete strength, flexural reinforcement ratio, and CFRP sheet configuration. The numerical results showed that utilization of CNTs in CFRP production improved the flexural capacity of the strengthened beams for U-shape and underside-strip configurations. The enhancement was more pronounced in the case of U-shape than in the case of use of sheet strip covers on the underside of the beam. In case of using underside-strip, the longer or the wider the sheet, the higher was the flexural capacity of the beams. The flexural enhancement of RC beams by strengthening with CNTs-modified CFRP decreased with increasing the rebar diameter and was not affected by concrete strength.

Keywords RC beams      flexural      strengthening      CFRP      CNTs      finite element     
Corresponding Author(s): Mohammad R. IRSHIDAT   
Just Accepted Date: 07 December 2021   Online First Date: 21 January 2022    Issue Date: 07 March 2022
 Cite this article:   
Mohammad R. IRSHIDAT,Rami S. AL-HUSBAN. Effect of bond enhancement using carbon nanotubes on flexural behavior of RC beams strengthened with externally bonded CFRP sheets[J]. Front. Struct. Civ. Eng., 2022, 16(1): 131-143.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0787-8
https://academic.hep.com.cn/fsce/EN/Y2022/V16/I1/131
Fig.1  (a) RC beam dimensions and reinforcements; (b) test setup and loading configuration.
Fig.2  Typical FE model of strengthened RC beams.
Fig.3  Constitutive models used for (a) concrete in compression; (b) steel rebars; (c) bond between concrete and CFRP.
material modulus of elasticity (GPa) Poisson’s ratio shear modulus (GPa) ultimate stress (MPa) ultimate strain
component value component value component value
CFRP Ex 139.8 Vxy 0.22 Gxy 12.25 2911 2.1%
Ey 18.8 Vyz 0.3 Gyz 7.83
Ez 18.8 Vxz 0.22 Gxz 7.83
CNTs modified CFRP Ex 160.8 Vxy 0.22 Gxy 13.7 3348 2.1%
Ey 21.6 Vyz 0.3 Gyz 8.3
Ez 21.6 Vxz 0.22 Gxz 8.3
Tab.1  Orthotropic mechanical properties for CFRP and CNTs- modified CFRP composites
Fig.4  Experimental versus FE results for control beam. (a) Cracks initiation; (b) cracks pattern.
Fig.5  Experimental versus FE results showing cracks initiation, cracks pattern and failure mode for beams strengthened with (a) CFRP and (b) CNTs-modified CFRP.
specimen method first crack load (kN) ultimate load (kN) toughness (J)
value variation value variation value variation
control Exp. 5.85 1% 44.5 2% 1845 2%
FE 5.89 45.5 1882
CFRP Exp. 11.50 2% 66.2 −1.5% 1064 3.9%
FE 11.69 65.2 1105
CNTs modified CFRP Exp. 12.50 3% 69.9 1.7% 1425 3.7%
FE 12.92 70.9 1475
Tab.2  Experimental results and FE model validation
Fig.6  Experimental versus FE load-deflection curves for tested beams.
Fig.7  Layout and FE models of beams strengthened with CNTs-modified CFRP sheet with different lengths.
Fig.8  FE results of beams strengthened with CNTs-modified CFRP sheet with different lengths. (a) Load-deflection curves; (b) cracks initiation; (c) cracks pattern.
designation first crack load (kN) ultimate load (kN) toughness (J)
Control 5.8 45.5 1882
CNT-L50 7.2 46.9 781
CNT-L100 9.7 51.9 980
CNT-L150 12.9 70.9 1475
NE-L150 11.69 65.2 1105
CNT-W2 6.3 49.9 950
CNT-W6 9.1 57.2 1150
CNT-W10 12.9 69.9 1475
CNT-U50 7.7 56.6 1015
CNT-U100 10.9 72.7 760
CNT-U150 14.5 106.2 1197
NE-U150 10.7 79.4 826
Control-C25 4.9 33.4 688
CNT-C25 6.9 50.5 1289
Control-C30 5.5 39.3 882
CNT-C30 9.7 60.6 1475
Control-C40 5.8 45.1 1702
CNT-C40 12.9 69.9 1475
Control-C50 6.2 48.2 1435
CNT-C50 13.2 77.5 1445
Control-D10 5.2 36.1 834
CNT-D10 11.9 59.8 868
Control-D12 5.8 45.1 1703
CNT-D12 12.9 69.9 1475
Control-D14 6.3 58.5 1870
CNT-D14 13.1 76.5 1769
Tab.3  FE parametric study results
Fig.9  Layout and FE models of beams strengthened with CNTs-modified CFRP sheet with different width.
Fig.10  FE results of beams strengthened with CNTs-modified CFRP sheet with different width. (a) Load-deflection curves; (b) cracks pattern.
Fig.11  FE models of beams strengthened with U-shape CNTs-modified CFRP sheet.
Fig.12  FE results of beams strengthened with U-shape CNTs-modified CFRP sheet width. (a) Load-deflection curves; (b) cracks pattern.
Fig.13  Effect of concrete strength on strengthening efficiency of CNTs-modified CFRP sheet. (a) Load-deflection curves; (b) normalized flexural capacity.
Fig.14  Cracks pattern of beams cast with varies concrete grades and strengthened with CNTs-modified CFRP sheet.
Fig.15  Effect of steel rebar diameter on strengthening efficiency of CNTs-modified CFRP sheet. (a) Load-deflection curves; (b) normalized flexural capacity.
Fig.16  Cracks pattern of beams reinforced with varies steel bars and strengthened with CNTs-modified CFRP sheet.
1 M Sai Krishna, G A V S Sandeep Kumar, A Cyril Thomas. Behaviour of reinforced concrete beams bonded with side bonded FRP sheets. Materials Today: Proceedings, 2021, 43 : 2404– 2410
https://doi.org/10.1016/j.matpr.2021.02.140
2 R A Hawileh, H A Musto, J A Abdalla, M Z Naser. Finite element modeling of reinforced concrete beams externally strengthened in flexure with side-bonded FRP laminates. Composites. Part B, Engineering, 2019, 173 : 106952–
https://doi.org/10.1016/j.compositesb.2019.106952
3 M M Ism, M Rabie. Flexural behavior of continuous RC beams strengthened with externally bonded CFRP sheets. Alexandria Engineering Journal, 2019, 58( 2): 789– 800
https://doi.org/10.1016/j.aej.2019.07.001
4 M Panahi, S A Zareei, A Izadi. Flexural strengthening of reinforced concrete beams through externally bonded FRP sheets and near surface mounted FRP bars. Case Studies in Construction Materials, 2021, 15 : e00601–
5 J A Abdalla, A Mohammed, R A Hawileh. Flexural strengthening of reinforced concrete beams with externally bonded hybrid systems. Procedia Structural Integrity, 2020, 28 : 2312– 2319
https://doi.org/10.1016/j.prostr.2020.11.078
6 M Z Naser, R A Hawileh, J A Abdalla. Fiber-reinforced polymer composites in strengthening reinforced concrete structures: A critical review. Engineering Structures, 2019, 198 : 109542–
https://doi.org/10.1016/j.engstruct.2019.109542
7 A Siddika, M A A Mamun, R Alyousef, Y H M Amran. Strengthening of reinforced concrete beams by using fiber-reinforced polymer composites: A review. Journal of Building Engineering, 2019, 25 : 100798–
https://doi.org/10.1016/j.jobe.2019.100798
8 O R Abuodeh, J A Abdalla, R A Hawileh. Flexural strengthening of RC beams using aluminum alloy plates with mechanically-fastened anchorage systems: An experimental investigation. Engineering Structures, 2021, 234 : 111969–
https://doi.org/10.1016/j.engstruct.2021.111969
9 C Y Zhou, Y N Yu, E L Xie. Strengthening RC beams using externally bonded CFRP sheets with end self-locking. Composite Structures, 2020, 241 : 112070–
https://doi.org/10.1016/j.compstruct.2020.112070
10 A G Razaqpur, R Cameron, A A B Mostafa. Strengthening of RC beams with externally bonded and anchored thick CFRP laminate. Composite Structures, 2020, 233 : 111574–
https://doi.org/10.1016/j.compstruct.2019.111574
11 M R Irshidat, M H Al-Saleh, H Almashagbeh. Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites. Materials & Design, 2016, 89 : 225– 234
https://doi.org/10.1016/j.matdes.2015.09.166
12 M R Irshidat, M H Al-Saleh. Flexural strength recovery of heat-damaged RC beams using carbon nanotubes modified CFRP. Construction & Building Materials, 2017, 145 : 474– 482
https://doi.org/10.1016/j.conbuildmat.2017.04.047
13 K Douier, R A Hawileh, J A Abdalla. Effect of U-wrap anchors on the strength and ductility of externally bonded RC beams with mortar bonded GSM sheets. Procedia Structural Integrity, 2020, 28 : 986– 993
https://doi.org/10.1016/j.prostr.2020.11.113
14 J H Lee, M M Lopez, C E Bakis. Slip effects in reinforced concrete beams with mechanically fastened FRP strip. Cement and Concrete Composites, 2009, 31( 7): 496– 504
https://doi.org/10.1016/j.cemconcomp.2009.04.008
15 H H Mhanna, R A Hawileh, J A Abdalla. Shear behavior of RC T-beams externally strengthened with anchored high modulus carbon fiber-reinforced polymer (CFRP) laminates. Composite Structures, 2021, 272 : 114198–
https://doi.org/10.1016/j.compstruct.2021.114198
16 S T Smith, S Hu, S J Kim, R Seracino. FRP-strengthened RC slabs anchored with FRP anchors. Engineering Structures, 2011, 33( 4): 1075– 1087
https://doi.org/10.1016/j.engstruct.2010.11.018
17 R Kalfat, R Al-Mahaidi. Investigation into bond behaviour of a new CFRP anchorage system for concrete utilising a mechanically strengthened substrate. Composite Structures, 2010, 92( 11): 2738– 2746
https://doi.org/10.1016/j.compstruct.2010.04.004
18 A P Kharitonov, A G Tkachev, A N Blohin, T P Dyachkova, D E Kobzev, A V Maksimkin, A S Mostovoy, L N Alekseiko. Reinforcement of Bisphenol-F epoxy resin composites with fluorinated carbon nanotubes. Composites Science and Technology, 2016, 134 : 161– 167
https://doi.org/10.1016/j.compscitech.2016.08.017
19 A H Korayem, M R Barati, G P Simon, X L Zhao, W H Duan. Reinforcing brittle and ductile epoxy matrices using carbon nanotubes masterbatch. Composites Part A: Applied Science and Manufacturing, 2014, 61 : 126– 133
https://doi.org/10.1016/j.compositesa.2014.02.016
20 M Li, Y Gu, Y Liu, Y Li, Z Zhang. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon, 2013, 52 : 109– 121
https://doi.org/10.1016/j.carbon.2012.09.011
21 Q P Feng, Y H Deng, H M Xiao, Y Liu, C B Qu, Y Zhao, S Y Fu. Enhanced cryogenic interfacial normal bond property between carbon fibers and epoxy matrix by carbon nanotubes. Composites Science and Technology, 2014, 104 : 59– 65
https://doi.org/10.1016/j.compscitech.2014.09.006
22 T C Rousakis, K B Kouravelou, T K Karachalios. Effects of carbon nanotube enrichment of epoxy resins on hybrid FRP–FR confinement of concrete. Composites. Part B, Engineering, 2014, 57 : 210– 218
https://doi.org/10.1016/j.compositesb.2013.09.044
23 E Soliman, U F Kandil, M Reda Taha. Limiting shear creep of epoxy adhesive at the FRP–concrete interface using multi-walled carbon nanotubes. International Journal of Adhesion and Adhesives, 2012, 33 : 36– 44
https://doi.org/10.1016/j.ijadhadh.2011.09.006
24 M R Irshidat, M H Al-Saleh, M Al-Shoubaki. Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Composite Structures, 2015, 134 : 523– 532
https://doi.org/10.1016/j.compstruct.2015.08.108
25 M R Irshidat, M H Al-Saleh. Repair of heat-damaged RC columns using carbon nanotubes modified CFRP. Materials and Structures, 2017, 50( 2): 162–
https://doi.org/10.1617/s11527-017-1034-6
26 M R Irshidat, M H Al-Saleh. Effect of using carbon nanotube modified epoxy on bond–slip behavior between concrete and FRP sheets. Construction & Building Materials, 2016, 105 : 511– 518
https://doi.org/10.1016/j.conbuildmat.2015.12.183
27 G M Chen, J G Teng, J F Chen, Q G Xiao. Finite element modeling of debonding failures in FRP-strengthened RC beams: A dynamic approach. Computers & Structures, 2015, 158 : 167– 183
https://doi.org/10.1016/j.compstruc.2015.05.023
28 R A Hawileh, M Z Naser, J A Abdalla. Finite element simulation of reinforced concrete beams externally strengthened with short-length CFRP plates. Composites. Part B, Engineering, 2013, 45( 1): 1722– 1730
https://doi.org/10.1016/j.compositesb.2012.09.032
29 S S Zhang, J G Teng. Finite element analysis of end cover separation in RC beams strengthened in flexure with FRP. Engineering Structures, 2014, 75 : 550– 560
https://doi.org/10.1016/j.engstruct.2014.06.031
30 E Hognestad, N W Hanson, D McHenry. Concrete stress distribution in ultimate strength design. Journal Proceedings, 1955, 52( 12): 455– 480
31 K J William, E P Warnke. Constitutive Model for the Triaxial Behavior of Concrete. In: concrete structures subjected to triaxial stresses. Bergamo: ISMES, 1974
32 X Z Lu, J G Teng, L P Ye, J J Jiang. Bond–slip models for FRP sheets/plates bonded to concrete. Engineering Structures, 2005, 27( 6): 920– 937
https://doi.org/10.1016/j.engstruct.2005.01.014
33 S S Choobbor, R A Hawileh, A Abu-Obeidah, J A Abdalla. Performance of hybrid carbon and basalt FRP sheets in strengthening concrete beams in flexure. Composite Structures, 2019, 227 : 111337–
https://doi.org/10.1016/j.compstruct.2019.111337
34 B Yu, Z Jiang, X Z Tang, C Y Yue, J Yang. Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating. Composites Science and Technology, 2014, 99 : 131– 140
https://doi.org/10.1016/j.compscitech.2014.05.021
35 M T Kim, K Y Rhee, J H Lee, D Hui, A K T Lau. Property enhancement of a carbon fiber/epoxy composite by using carbon nanotubes. Composites. Part B, Engineering, 2011, 42( 5): 1257– 1261
https://doi.org/10.1016/j.compositesb.2011.02.005
36 Y T Obaidat, S Heyden, O Dahlblom. The effect of CFRP and CFRP/concrete interface models when modelling retrofitted RC beams with FEM. Composite Structures, 2010, 92( 6): 1391– 1398
https://doi.org/10.1016/j.compstruct.2009.11.008
37 R Al-Rousan, R Haddad. NLFEA sulfate-damage reinforced concrete beams strengthened with FRP composites. Composite Structures, 2013, 96 : 433– 445
https://doi.org/10.1016/j.compstruct.2012.09.007
38 K V Venkatesha, S V Dinesh, K B Rao, B H Bharatkumar, S R Balasubramanian, N R Iyer. Experimental investigation of reinforced concrete beams with and without CFRP wrapping. Slovak Journal of Civil Engineering, 2012, 20 : 15– 26
https://doi.org/10.2478/v10189-012-0014-7
39 L K Amaireh, A Al-Tamimi. Optimum configuration of CFRP composites for strengthening of reinforced concrete beams considering the contact constraint. Procedia Manufacturing, 2020, 44 : 350– 357
https://doi.org/10.1016/j.promfg.2020.02.284
40 R Z Al-Rousan. Effect of CFRP schemes on the flexural behavior of RC beams modeled by using a nonlinear finite-element analysis. Mechanics of Composite Materials, 2015, 51( 4): 437– 446
https://doi.org/10.1007/s11029-015-9515-6
41 T Cosgun. An experimental study of RC beams with varying concrete strength classes externally strengthened with CFRP composites. Journal of Engineered Fibers and Fabrics, 2016, 11(3): 155892501501000
[1] Meng ZHOU, Jiaji WANG, Jianguo NIE, Qingrui YUE. Theoretical study on the confine-stiffening effect and fractal cracking of square concrete filled steel tubes in tension loads[J]. Front. Struct. Civ. Eng., 2021, 15(6): 1317-1336.
[2] Zaid MOMANI, Eyosias BENEBERU, Nur YAZDANI. Effect of earth reinforcement, soil properties and wall properties on bridge MSE walls[J]. Front. Struct. Civ. Eng., 2021, 15(5): 1209-1221.
[3] Hongyuan TANG, Ruizhong LIU, Xin ZHAO, Rui GUO, Yigang JIA. Axial compression behavior of CFRP-confined rectangular concrete-filled stainless steel tube stub column[J]. Front. Struct. Civ. Eng., 2021, 15(5): 1144-1159.
[4] Wenwen ZHU, Xiamin HU, Jing ZHANG, Tao LI, Zeyu CHEN, Wei SHAO. Experimental study on mechanical properties of a novel micro-steel fiber reinforced magnesium phosphate cement-based concrete[J]. Front. Struct. Civ. Eng., 2021, 15(4): 1047-1057.
[5] Mohammad REZANEZHAD, Seyed Ahmad LAJEVARDI, Sadegh KARIMPOULI. An investigation on prevalent strategies for XFEM-based numerical modeling of crack growth in porous media[J]. Front. Struct. Civ. Eng., 2021, 15(4): 914-936.
[6] Seyed M. N. GHOREISHI, Mahdi FAKOOR, Ahmad AZIZI. Progressive failure analysis of notched composite plate by utilizing macro mechanics approach[J]. Front. Struct. Civ. Eng., 2021, 15(3): 623-642.
[7] Rajarshi PRAMANIK, Dilip Kumar BAIDYA, Nirjhar DHANG. Reliability assessment of three-dimensional bearing capacity of shallow foundation using fuzzy set theory[J]. Front. Struct. Civ. Eng., 2021, 15(2): 478-489.
[8] Shuangxi FENG, Huayang LEI, Yongfeng WAN, Haiyan JIN, Jun HAN. Influencing factors and control measures of excavation on adjacent bridge foundation based on analytic hierarchy process and finite element method[J]. Front. Struct. Civ. Eng., 2021, 15(2): 461-477.
[9] Diego Maria BARBIERI, Inge HOFF, Chun-Hsing HO. Crushed rocks stabilized with organosilane and lignosulfonate in pavement unbound layers: Repeated load triaxial tests[J]. Front. Struct. Civ. Eng., 2021, 15(2): 412-424.
[10] Ahmmad A. ABBAS, Farid H. ARNA ’OT, Sallal R. ABID, Mustafa ÖZAKÇA. Flexural behavior of ECC hollow beams incorporating different synthetic fibers[J]. Front. Struct. Civ. Eng., 2021, 15(2): 399-411.
[11] Nazim Abdul NARIMAN, Martin HUSEK, Ilham Ibrahim MOHAMMAD, Kaywan Othman AHMED, Diyako DILSHAD, Ibrahim KHIDR. Analysis of stiffness and flexural strength of a reinforced concrete beam using an invented reinforcement system[J]. Front. Struct. Civ. Eng., 2021, 15(2): 378-389.
[12] Qing JIANG, Hanqin WANG, Xun CHONG, Yulong FENG, Xianguo YE. Flexural behavior of high-strength, steel-reinforced, and prestressed concrete beams[J]. Front. Struct. Civ. Eng., 2021, 15(1): 227-243.
[13] Zhouyan XIA, Jan-Willem G. VAN DE KUILEN, Andrea POLASTRI, Ario CECCOTTI, Minjuan HE. Influence of core stiffness on the behavior of tall timber buildings subjected to wind loads[J]. Front. Struct. Civ. Eng., 2021, 15(1): 213-226.
[14] Pratik P. BHATT, Venkatesh K. R. KODUR, Anuj M. SHAKYA, Tarek ALKHRDAJI. Performance of insulated FRP-strengthened concrete flexural members under fire conditions[J]. Front. Struct. Civ. Eng., 2021, 15(1): 177-193.
[15] Yi RUI, Nicholas de BATTISTA, Cedric KECHAVARZI, Xiaomin XU, Mei YIN. Distributed fiber optic monitoring of a CFA pile with a central reinforcement bar bundle[J]. Front. Struct. Civ. Eng., 2021, 15(1): 167-176.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed