Please wait a minute...
Frontiers of Structural and Civil Engineering

ISSN 2095-2430

ISSN 2095-2449(Online)

CN 10-1023/X

Postal Subscription Code 80-968

2018 Impact Factor: 1.272

Front. Struct. Civ. Eng.    2021, Vol. 15 Issue (6) : 1426-1440    https://doi.org/10.1007/s11709-021-0783-z
RESEARCH ARTICLE
Shear behavior of ultra-high-performance concrete beams prestressed with external carbon fiber-reinforced polymer tendons
Li JIA1, Zhi FANG1,2(), Maurizio GUADAGNINI3, Kypros PILAKOUTAS3, Zhengmeng HUANG4
1. College of Civil Engineering, Hunan University, Changsha 410082, China
2. Key Laboratory for Wind and Bridge Engineering of Hunan Province, Changsha 410082, China
3. Department of Civil and Structural Engineering, The University of Sheffield, Sheffield S1 3JD, UK
4. Guizhou Transportation Planning Survey and Design Academe Co. Ltd., Guiyang 550003, China
 Download: PDF(17771 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The ultra-high-performance concrete (UHPC) and fiber-reinforced polymer (FRP) are well-accepted high-performance materials in the field of civil engineering. The combination of these advanced materials could contribute to improvement of structural performance and corrosion resistance. Unfortunately, only limited studies are available for shear behavior of UHPC beams reinforced with FRP bars, and few suggestions exist for prediction methods for shear capacity. This paper presents an experimental investigation on the shear behavior of UHPC beams reinforced with glass FRP (GFRP) and prestressed with external carbon FRP (CFRP) tendons. The failure mode of all specimens with various shear span to depth ratios from 1.7 to 4.5 was diagonal tension failure. The shear span to depth ratio had a significant influence on the shear capacity, and the effective prestressing stress affected the crack propagation. The experimental results were then applied to evaluate the equations given in different codes/recommendations for FRP-reinforced concrete structures or UHPC structures. The comparison results indicate that NF P 18-710 and JSCE CES82 could appropriately estimate shear capacity of the slender specimens with a shear span to depth ratio of 4.5. Further, a new shear design equation was proposed to take into account the effect of the shear span to depth ratio and the steel fiber content on shear capacity.

Keywords beam      external prestressing      ultra-high-performance concrete      fiber-reinforced polymers      shear behavior      design equation     
Corresponding Author(s): Zhi FANG   
Just Accepted Date: 16 November 2021   Online First Date: 16 December 2021    Issue Date: 21 January 2022
 Cite this article:   
Li JIA,Zhi FANG,Maurizio GUADAGNINI, et al. Shear behavior of ultra-high-performance concrete beams prestressed with external carbon fiber-reinforced polymer tendons[J]. Front. Struct. Civ. Eng., 2021, 15(6): 1426-1440.
 URL:  
https://academic.hep.com.cn/fsce/EN/10.1007/s11709-021-0783-z
https://academic.hep.com.cn/fsce/EN/Y2021/V15/I6/1426
Fig.1  Dimensions and cross section of the specimens (dimensions in mm). (a) Dimensions of the specimens; (b) details of section A-A.
specimen code tensile GFRP bar (mm) GFRP stirrup (mm) a (mm) a/d fpe (MPa) fpe/ffp (%)
B-1.7-30 3 ?12 ?6@100 310 1.7 762 30
B-2.8-30 510 2.8 762 30
B-4.5-5 810 4.5 127 5
B-4.5-15 810 4.5 381 15
B-4.5-30 810 4.5 762 30
B-4.5-45 810 4.5 1143 45
Tab.1  Details of specimens
Fig.2  Details of stirrups.
material type nominal diameter (mm) modulus of elasticity (GPa) tensile strength (MPa)
GFRP bar 12 44.3 715
GFRP stirrup 6 42.6 833
CFRP tendon 12.54 157.0 2539
Tab.2  Mechanical properties of FRP reinforcements
Fig.3  Details of external CFRP tendon.
Fig.4  The internal GFRP reinforcements. (a) GFRP bar; (b) GFRP reinforcements arrangement.
specimen code fcu (MPa) fc (MPa) fr0 (MPa) fru (MPa) Ec (GPa)
B-1.7-30 150.4 128.7 11.4 24.5 45.1
B-2.8-30
B-4.5-5 160.9 135.5 12.6 25.9 46.1
B-4.5-15
B-4.5-30 151.8 129.5 11.2 23.6 45.4
B-4.5-45
Tab.3  Mechanical properties of UHPC
Fig.5  View of test setup.
Fig.6  The failure pattern of specimens. (a) B-1.7-30; (b) B-2.8-30; (c) B-4.5-5; (d) B-4.5-15; (e) B-4.5-30; (f) B-4.5-45.
specimen code flexural cracking shear cracking ultimate state Pu/Pcri Δucri
Pcr (kN) Δcr (mm) Pcri (kN) Δcri (mm) Pu (kN) Δu (mm)
B-1.7-30 148.0 4.95 239.8 16.33 329.2 30.80 1.37 1.89
B-2.8-30 69.2 4.51 88.6 6.86 201.5 38.60 2.27 5.63
B-4.5-5 15.6 1.46 45.4 11.68 120.4 48.99 2.65 4.19
B-4.5-15 31.3 3.60 55.5 12.32 124.4 44.81 2.24 3.64
B-4.5-30 44.4 5.06 69.6 13.61 129.6 39.92 1.86 2.93
B-4.5-45 55.7 5.83 100.5 18.58 131.1 32.17 1.30 1.73
Tab.4  Summary of the test results
Fig.7  Load-deflection relationship of specimens.
Fig.8  The influence of a/d on shear capacity.
Fig.9  The influence of fpe on shear capacity.
Fig.10  The crack propagation patterns of specimens. (a) B-1.7-30; (b) B-2.8-30; (c) B-4.5-5; (d) B-4.5-15; (e) B-4.5-30; (f) B-4.5-45.
Fig.11  Load-crack width relationship of specimen B-4.5-5.
Fig.12  Tendon stress-deflection relationship of specimens. (a) Specimens with different fpe; (b) specimens with different a/d.
Fig.13  Load-concrete strain relationship of specimens. (a) Specimens with different fpe; (b) specimens with different a/d.
specimen code GB 50608-2020
Vu,GB (kN) Vc (kN) Vs (kN) Vp (kN) Vu,GB/Vu
B-1.7-30 29.2 12.5 9.3 7.4 0.18
B-2.8-30 27.5 12.5 9.3 5.8 0.27
B-4.5-5 22.9 12.3 9.3 1.4 0.38
B-4.5-15 24.5 12.3 9.3 3.0 0.39
B-4.5-30 29.0 13.8 9.3 5.9 0.45
B-4.5-45 31.0 13.8 9.3 7.9 0.47
Tab.5  Predicted results using GB 50608-2020
specimen code ACI 440.1R-15
Vu,ACI (kN) Vc (kN) Vs (kN) Vp (kN) Vu,ACI/Vu
B-1.7-30 18.4 9.1 9.3 0 0.11
B-2.8-30 18.4 9.1 9.3 0 0.18
B-4.5-5 18.7 9.4 9.3 0 0.31
B-4.5-15 18.7 9.4 9.3 0 0.30
B-4.5-30 18.4 9.1 9.3 0 0.28
B-4.5-45 18.4 9.1 9.3 0 0.28
Tab.6  Predicted results using ACI 440.1R-15
specimen code CAN/CSA S806-12
Vu,CSA (kN) Vc (kN) Vs (kN) Vp (kN) Vu,CSA/Vu
B-1.7-30 33.2 17.6 15.6 0 0.20
B-2.8-30 29.3 13.7 15.6 0 0.29
B-4.5-5 26.5 10.9 15.6 0 0.44
B-4.5-15 26.5 10.9 15.6 0 0.43
B-4.5-30 26.7 11.1 15.6 0 0.41
B-4.5-45 26.7 11.1 15.6 0 0.41
Tab.7  Predicted results using CAN/CSA S806-12
specimen code NF P 18-710
Vu,NF P (kN) Vc (kN) Vf (kN) Vs (kN) Vu,NF P/Vu
B-1.7-30 60.8 14.3 38.4 8.1 0.37
B-2.8-30 61.0 14.5 38.4 8.1 0.61
B-4.5-5 59.6 13.1 38.4 8.1 0.99
B-4.5-15 60.2 13.7 38.4 8.1 0.97
B-4.5-30 60.9 14.4 38.4 8.1 0.94
B-4.5-45 61.6 15.1 38.4 8.1 0.94
Tab.8  Predicted results using NF P 18-710
specimen code JSCE CES82
Vu,JSCE (kN) Vc (kN) Vf (kN) Vs (kN) Vp (kN) Vu,JSCE/Vu
B-1.7-30 65.7 4.9 54.2 6.6 0 0.40
B-2.8-30 62.9 2.1 54.2 6.6 0 0.62
B-4.5-5 62.7 1.9 54.2 6.6 0 1.04
B-4.5-15 62.8 2.0 54.2 6.6 0 1.01
B-4.5-30 62.9 2.1 54.2 6.6 0 0.97
B-4.5-45 63.0 2.2 54.2 6.6 0 0.96
Tab.9  Predicted results using JSCE CES82
specimen code MCS-EPFL
Vu,MCS (kN) Vc (kN) Vs (kN) Vu,MCS/Vu
B-1.7-30 85.7 78.2 7.5 0.52
B-2.8-30 85.7 78.2 7.5 0.85
B-4.5-5 85.7 78.2 7.5 1.42
B-4.5-15 85.7 78.2 7.5 1.38
B-4.5-30 85.7 78.2 7.5 1.32
B-4.5-45 85.7 78.2 7.5 1.31
Tab.10  Predicted results using MCS-EPFL
specimen code proposed equation
Vu,cal (kN) Vc (kN) Vs (kN) Vp (kN) Vu,cal/Vu Vu,cal (kN)
B-1.7-30 163.8 147.1 9.3 7.4 1.00 163.8
B-2.8-30 98.5 83.4 9.3 5.8 0.98 98.5
B-4.5-5 61.3 50.7 9.3 1.3 1.02 61.3
B-4.5-15 63.0 50.7 9.3 3.0 1.01 63.0
B-4.5-30 67.1 51.9 9.3 5.9 1.04 67.1
B-4.5-45 69.1 51.9 9.3 7.9 1.05 69.1
Tab.11  Predicted results using the proposed equation
specimen code a/d ρf (%) ρsv (%) Pu (kN) Pu,cal (kN) Pu,cal/Pu
B1 2.0 2.10 0.40 920 1050 1.14
B2 2.5 2.10 0.40 870 859 0.98
B3 3.0 2.10 0.40 817 738 0.92
B4 3.0 2.10 0.27 770 673 0.87
B5 3.0 2.10 0.20 721 641 0.88
Tab.12  Comparison of the predicted shear capacities with the experimental results from Ref. [42]
1 H Zhu, S Cheng, D Gao, S M Neaz, C Li. Flexural behaviour of partially fiber-reinforced high-strength concrete beams reinforced with FRP bars. Construction & Building Materials, 2018, 161 : 587– 597
https://doi.org/10.1016/j.conbuildmat.2017.12.003
2 F Au, J S Du. Deformability of concrete beams with unbonded FRP tendons. Engineering Structures, 2008, 30( 12): 3764– 3770
https://doi.org/10.1016/j.engstruct.2008.07.003
3 J Xue, B Briseghella, F Huang, C Nuti, H Tabatabai, B Chen. Review of ultra-high performance concrete and its application in bridge engineering. Construction & Building Materials, 2020, 260 : 119844–
https://doi.org/10.1016/j.conbuildmat.2020.119844
4 J Li, Z Wu, C Shi, Q Yuan, Z Zhang. Durability of ultra-high performance concrete—A review. Construction & Building Materials, 2020, 255 : 119296–
https://doi.org/10.1016/j.conbuildmat.2020.119296
5 A Shishegaran, M R Ghasemi, H Varaee. Performance of a novel bent-up bars system not interacting with concrete. Frontiers of Structural and Civil Engineering, 2019, 13( 6): 1301– 1315
https://doi.org/10.1007/s11709-019-0552-4
6 A Shishegaran, B Karami, T Rabczuk, A Shishegaran, M A Naghsh, M Mohammad Khani. Performance of fixed beam without interacting bars. Frontiers of Structural and Civil Engineering, 2020, 14( 5): 1180– 1195
https://doi.org/10.1007/s11709-020-0661-0
7 H Zheng, Z Fang, B Chen. Experimental study on shear behavior of prestressed reactive powder concrete I-girders. Frontiers of Structural and Civil Engineering, 2019, 13( 3): 618– 627
https://doi.org/10.1007/s11709-018-0500-8
8 X Wang, J Z Shi, G Wu, L Yang, Z S Wu. Effectiveness of basalt FRP tendons for strengthening of RC beams through the external prestressing technique. Engineering Structures, 2015, 101 : 34– 44
9 A Elrefai, J West, K Soudki. Fatigue of reinforced concrete beams strengthened with externally post-tensioned CFRP tendons. Construction and Building Materials, 2012, 29 : 246– 256
10 A K El-Sayed, E F El-Salakawy, B Benmokrane. Shear capacity of high-strength concrete beams reinforced with FRP bars. ACI Structural Journal, 2006, 103( 3): 383– 389
11 E A Ahmed, E F El-Salakawy, B Benmokrane. Performance evaluation of glass fiber-reinforced polymer shear reinforcement for concrete beams. ACI Structural Journal, 2010, 107( 1): 53– 62
12 G B Jumaa, A R Yousif. Size effect on the shear failure of high-strength concrete beams reinforced with basalt FRP bars and stirrups. Construction & Building Materials, 2019, 209 : 77– 94
https://doi.org/10.1016/j.conbuildmat.2019.03.076
13 Z Fang, R Hu, R N Jiang, Y Xiang, C Liu. Fatigue behavior of stirrup free reactive powder concrete beams prestressed with CFRP tendons. Journal of Composites for Construction, 2020, 24( 4): 04020018–
https://doi.org/10.1061/(ASCE)CC.1943-5614.0001027
14 E Ferrier, A Confrere, L Michel, G Chanvillard, S Bernardi. Shear behaviour of new beams made of UHPC concrete and FRP rebar. Composites. Part B, Engineering, 2016, 90 : 1– 13
https://doi.org/10.1016/j.compositesb.2015.11.022
15 J Qi, J Wang, Z Ma, T Tong. Shear behaviour of externally prestressed concrete beams with draped tendons. ACI Structural Journal, 2016, 113( 4): 677– 688
https://doi.org/10.14359/51688746
16 J Wang, J Qi, J Zhang. Optimization method and experimental study on the shear strength of externally prestressed concrete beams. Advances in Structural Engineering, 2014, 17( 4): 607– 615
https://doi.org/10.1260/1369-4332.17.4.607
17 K H Tan, C K Ng. Effect of shear in externally prestressed beams. ACI Structural Journal, 1998, 95( 2): 116– 128
18 A H Ghallab, M A Khafaga, M F Farouk, A Essawy. Shear behavior of concrete beams externally prestressed with Parafil ropes. Ain Shams Engineering Journal, 2013, 4( 1): 1– 16
https://doi.org/10.1016/j.asej.2012.05.003
19 S Ng, K Soudki. Shear behavior of externally prestressed beams with carbon fiber-reinforced polymer tendons. ACI Structural Journal, 2010, 107( 4): 443– 450
20 T Mészöly, N Randl. Shear behaviour of fiber-reinforced ultra-high performance concrete beams. Engineering Structures, 2018, 168 : 119– 127
https://doi.org/10.1016/j.engstruct.2018.04.075
21 M Pourbaba, A Joghataie, A Mirmiran. Shear behaviour of ultra-high performance concrete. Construction & Building Materials, 2018, 183 : 554– 564
https://doi.org/10.1016/j.conbuildmat.2018.06.117
22 D Y Yoo, N Banthia, Y S Yoon. Predicting service deflection of ultra-high-performance fiber-reinforced concrete beams reinforced with GFRP bars. Composites. Part B, Engineering, 2016, 99 : 381– 397
https://doi.org/10.1016/j.compositesb.2016.06.013
23 M Alkaysi, S El-Tawil. Factors affecting bond development between ultra high performance concrete (UHPC) and steel bar reinforcement. Construction & Building Materials, 2017, 144 : 412– 422
https://doi.org/10.1016/j.conbuildmat.2017.03.091
24 440.4R-04 ACI. Prestressing Concrete Structures with FRP Tendons. Farmington Hills: American Concrete Institute (ACI), 2004
25 440.1R-15 ACI. Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-reinforced Polymer (FRP) Bars. Farmington Hills: American Concrete Institute (ACI), 2015
26 P 18–710 NF. National Addition to Eurocode 2—Design of Concrete Structures: Specific Rules for Ultra-High Performance Fibre-Reinforced Concrete. Saint-Denis Cedex: Association Française de Normalisation (AFNOR), 2016
27 Y W Fang, Z Fang, R N Jiang, Y Xiang, D Huang. Transverse static and low-velocity impact behavior of CFRP wires under pretension. Journal of Composites for Construction, 2019, 23( 5): 04019041–
https://doi.org/10.1061/(ASCE)CC.1943-5614.0000970
28 31387-2015 GB/T. Reactive Powder Concrete. Beijing: Ministry of Housing and Urban-rural Development of the People’s Republic of China, 2015
29 Y Yuan, Z Y Wang. Shear behaviour of large-scale concrete beams reinforced with CFRP bars and handmade strip stirrups. Composite Structures, 2019, 227 : 111253–
https://doi.org/10.1016/j.compstruct.2019.111253
30 J Qi, Z J Ma, J Wang, Y Bao. Post-cracking shear behaviour of concrete beams strengthened with externally prestresssed tendons. Structures, 2020, 23 : 214– 224
https://doi.org/10.1016/j.istruc.2019.09.009
31 Y L Voo, W K Poon, S J Foster. Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups. Journal of Structural Engineering, 2010, 136( 11): 1393– 1400
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000234
32 Q Wang, H L Song, C L Lu, L Z Jin. Shear performance of reinforced ultra-high performance concrete rectangular section beams. Structures, 2020, 27( 8): 1184– 1194
https://doi.org/10.1016/j.istruc.2020.07.036
33 J Yang, Z Fang, G L Dai. Flexural behaviour of prestressed UHPC beams. Advanced Materials Research, 2011, 243– 249: 2011-1155
34 M Herbrand, M Classen. Shear tests on continuous prestressed concrete beams with external prestressing. Structural Concrete, 2015, 16( 3): 428– 437
https://doi.org/10.1002/suco.201400082
35 Engineering Series No. 82 Concrete. Recommendations for Design and Construction of High Performance Fiber Reinforced Cement Composites with Multiple Fine Cracks. Tokyo: Japan Society of Civil Engineers (JSCE), 2008
36 GB50608-2020. Technical Standard for Fiber Reinforced Polymer (FRP) in Construction. Beijing: Ministry of Housing and Urban-rural Development of the People’s Republic of China, 2020
37 318M-08 ACI. Building Code Requirements for Structural Concrete ACI 318M–08 and Commentary. Farmington Hills: American Concrete Institute (ACI), 2008
38 S806-12 CAN/CSA. Design and Construction of Building Structures with Fibre-reinforced Polymers. Rexdale: Canadian Standards Association (CSA), 2012
39 CECS38-2004. Technical Specification for Fiber Reinforced Concrete Structures. Beijing: China Association for Engineering Construction Standardization (CECS), 2004
40 UHPFRC MCS-EPFL Recommendation. Ultra-high performance fibre reinforced cement-based composites (UHPFRC) construction material, dimensioning and application. Lausanne: Swiss Federal Institute of Technology (MCS-EPFL), 2016
41 H Zheng. Experimental study on shear behaviour of concrete box beams. Dissertation for the Doctoral Degree. Changsha: Hunan University, 2015 (in Chinese)
42 T Cao. Experimental study on shear behaviours of CFRP tendons reinforced FRCC flexural components. Thesis for the Master’s Degree. Nanjing: Southeast University, 2016 (in Chinese)
[1] Hui ZHANG, Zhixiang ZHANG, Peiwei GAO, Lei CUI, Youqiang PAN, Kuan LI. Performance of steel bridge deck pavement structure with ultra high performance concrete based on resin bonding[J]. Front. Struct. Civ. Eng., 2021, 15(4): 895-904.
[2] Narges PAHNABI, Seyed Mohammad SEYEDPOOR. Damage identification in connections of moment frames using time domain responses and an optimization method[J]. Front. Struct. Civ. Eng., 2021, 15(4): 851-866.
[3] Ahmmad A. ABBAS, Farid H. ARNA ’OT, Sallal R. ABID, Mustafa ÖZAKÇA. Flexural behavior of ECC hollow beams incorporating different synthetic fibers[J]. Front. Struct. Civ. Eng., 2021, 15(2): 399-411.
[4] Pratik P. BHATT, Venkatesh K. R. KODUR, Anuj M. SHAKYA, Tarek ALKHRDAJI. Performance of insulated FRP-strengthened concrete flexural members under fire conditions[J]. Front. Struct. Civ. Eng., 2021, 15(1): 177-193.
[5] Zhao-Hui LU, Hong-Jun WANG, Fulin QU, Yan-Gang ZHAO, Peiran LI, Wengui LI. Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete beam[J]. Front. Struct. Civ. Eng., 2020, 14(4): 888-906.
[6] Divahar RAVI, Aravind Raj PONSUBBIAH, Sangeetha Sreekumar PRABHA, Joanna Philip SARATHA. Experimental, analytical and numerical studies on concrete encased trapezoidally web profiled cold-formed steel beams by varying depth-thickness ratio[J]. Front. Struct. Civ. Eng., 2020, 14(4): 930-946.
[7] Iman FATTAHI, Hamid Reza MIRDAMADI, Hamid ABDOLLAHI. Application of consistent geometric decomposition theorem to dynamic finite element of 3D composite beam based on experimental and numerical analyses[J]. Front. Struct. Civ. Eng., 2020, 14(3): 675-689.
[8] Yasmin MURAD, Wassel AL BODOUR, Ahmed ASHTEYAT. Seismic retrofitting of severely damaged RC connections made with recycled concrete using CFRP sheets[J]. Front. Struct. Civ. Eng., 2020, 14(2): 554-568.
[9] Fei GAO, Zhiqiang TANG, Biao HU, Junbo CHEN, Hongping ZHU, Jian MA. Investigation of the interior RC beam-column joints under monotonic antisymmetrical load[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1474-1494.
[10] Jordan CARTER, Aikaterini S. GENIKOMSOU. Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars[J]. Front. Struct. Civ. Eng., 2019, 13(6): 1520-1530.
[11] Yunlin LIU, Shitao ZHU. Finite element analysis on the seismic behavior of side joint of Prefabricated Cage System in prefabricated concrete frame[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1095-1104.
[12] Hassan ABEDI SARVESTANI. Parametric study of hexagonal castellated beams in post-tensioned self-centering steel connections[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1020-1035.
[13] Zhi QIAO, Zuanfeng PAN, Weichen XUE, Shaoping MENG. Experimental study on flexural behavior of ECC/RC composite beams with U-shaped ECC permanent formwork[J]. Front. Struct. Civ. Eng., 2019, 13(5): 1271-1287.
[14] Behrouz BEHNAM, Fahimeh SHOJAEI, Hamid Reza RONAGH. Seismic progressive-failure analysis of tall steel structures under beam-removal scenarios[J]. Front. Struct. Civ. Eng., 2019, 13(4): 904-917.
[15] Hui ZHENG, Zhi FANG, Bin CHEN. Experimental study on shear behavior of prestressed reactive powder concrete I-girders[J]. Front. Struct. Civ. Eng., 2019, 13(3): 618-627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed